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Abstract

Using the `1-norm to regularize the estimation of the parameter vector of a linear
model leads to an unstable estimator when covariates are highly correlated. In this
paper, we introduce a new penalty function which takes into account the correla-
tion of the design matrix to stabilize the estimation. This norm, called the trace
Lasso, uses the trace norm of the selected covariates, which is a convex surrogate
of their rank, as the criterion of model complexity. We analyze the properties of
our norm, describe an optimization algorithm based on reweighted least-squares,
and illustrate the behavior of this norm on synthetic data, showing that it is more
adapted to strong correlations than competing methods such as the elastic net.

1 Introduction

The concept of parsimony is central in many scientific domains. In the context of statistics, signal
processing or machine learning, it takes the form of variable or feature selection problems, and is
commonly used in two situations: first, to make the model or the prediction more interpretable or
cheaper to use, i.e., even if the underlying problem does not admit sparse solutions, one looks for the
best sparse approximation. Second, sparsity can also be used given prior knowledge that the model
should be sparse. Many methods have been designed to learn sparse models, namely methods based
on greedy algorithms [1, 2], Bayesian inference [3] or convex optimization [4, 5].

In this paper, we focus on the regularization by sparsity-inducing norms. The simplest example
of such norms is the `1-norm, leading to the Lasso, when used within a least-squares framework.
In recent years, a large body of work has shown that the Lasso was performing optimally in high-
dimensional low-correlation settings, both in terms of prediction [6], estimation of parameters or
estimation of supports [7, 8]. However, most data exhibit strong correlations, with various correla-
tion structures, such as clusters (i.e., close to block-diagonal covariance matrices) or sparse graphs,
such as for example problems involving sequences (in which case, the covariance matrix is close to
a Toeplitz matrix [9]). In these situations, the Lasso is known to have stability problems: although
its predictive performance is not disastrous, the selected predictor may vary a lot (typically, given
two correlated variables, the Lasso will only select one of the two, at random).

Several remedies have been proposed to this instability. First, the elastic net [10] adds a strongly
convex penalty term (the squared `2-norm) that will stabilize selection (typically, given two cor-
related variables, the elastic net will select the two variables). However, it is blind to the exact
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correlation structure, and while strong convexity is required for some variables, it is not for other
variables. Another solution is to consider the group Lasso, which will divide the predictors into
groups and penalize the sum of the `2-norm of these groups [11]. This is known to accomodate
strong correlations within groups [12]; however it requires to know the groups in advance, which is
not always possible. A third line of research has focused on sampling-based techniques [13, 14, 15].

An ideal regularizer should thus take into account the design (like the group Lasso, with oracle
groups), but without requiring human intervention (like the elastic net); it should thus add strong
convexity only where needed, and not modifying variables where things behave correctly. In this
paper, we propose a new norm towards this end.

More precisely we make the following contributions:

• We propose in Section 2 a new norm based on the trace norm (a.k.a. nuclear norm) that
interpolates between the `1-norm and the `2-norm depending on correlations.

• We show that there is a unique minimum when penalizing with this norm in Section 2.2.

• We provide optimization algorithms based on reweighted least-squares in Section 3.

• We study the second-order expansion around independence and relate it to existing work
on including correlations in Section 4.

• We perform synthetic experiments in Section 5, where we show that the trace Lasso out-
performs existing norms in strong-correlation regimes.

Notations. Let M ∈ Rn×p. We use superscripts for the columns of M, i.e., M(i) denotes the i-th
column, and subscripts for the rows, i.e., Mi denotes the i-th row. For M ∈ Rp×p, diag(M) ∈ Rp
is the diagonal of the matrix M, while for u ∈ Rp, Diag(u) ∈ Rp×p is the diagonal matrix whose
diagonal elements are the ui. Let S be a subset of {1, ..., p}, then uS is the vector u restricted to
the support S, with 0 outside the support S. We denote by Sp the set of symmetric matrices of size
p. We will use various matrix norms, here are the notations we use: ‖M‖∗ is the trace norm, i.e.,
the sum of the singular values of the matrix M, ‖M‖op is the operator norm, i.e., the maximum
singular value of the matrix M, ‖M‖F is the Frobenius norm, i.e., the `2-norm of the singular
values, which is also equal to

√
tr(M>M) and ‖M‖2,1 is the sum of the `2-norm of the columns

of M: ‖M‖2,1 =

p∑
i=1

‖M(i)‖2.

2 Definition and properties of the trace Lasso

We consider the problem of predicting y ∈ R, given a vector x ∈ Rp, assuming a linear model

y = w>x + ε,

where ε is an additive (typically Gaussian) noise with mean 0 and variance σ2. Given a training set
X = (x1, ...,xn)> ∈ Rn×p and y = (y1, ..., yn)> ∈ Rn, a widely used method to estimate the
parameter vector w is penalized empirical risk minimization

ŵ ∈ argmin
w

1

n

n∑
i=1

`(yi,w
>xi) + λf(w), (1)

where ` is a loss function used to measure the error we make by predicting w>xi instead of yi, while
f is a regularization term used to penalize complex models. This second term helps avoiding over-
fitting, especially in the case where we have many more parameters than observation, i.e., n � p.

2.1 Related work

We will now present some classical penalty functions for linear models which are widely used in the
machine learning and statistics community. The first one, known as Tikhonov regularization [16] or
ridge [17], is the squared `2-norm. When used with the square loss, estimating the parameter vector
w is done by solving a linear system. One of the main drawbacks of this penalty function is the fact
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that it does not perform variable selection and thus does not behave well in sparse high-dimensional
settings.

Hence, it is natural to penalize linear models by the number of variables used by the model. Un-
fortunately, this criterion, sometimes denoted by ‖ · ‖0 (`0-penalty), is not convex and solving the
problem in Eq. (1) is generally NP-Hard [18]. Thus, a convex relaxation for this problem was in-
troduced, replacing the size of the selected subset by the `1-norm of w. This estimator is known
as the Lasso [4] in the statistics community and basis pursuit [5] in signal processing. Under some
assumptions, the two problems are in fact equivalent (see for example [19] and references therein).

When two predictors are highly correlated, the Lasso has a very unstable behavior: it often only
selects the variable that is the most correlated with the residual. On the other hand, Tikhonov
regularization tends to shrink coefficients of correlated variables together, leading to a very stable
behavior. In order to get the best of both worlds, stability and variable selection, Zou and Hastie
introduced the elastic net [10], which is the sum of the `1-norm and squared `2-norm. Unfortunately,
this estimator needs two regularization parameters and is not adaptive to the precise correlation
structure of the data. Some authors also proposed to use pairwise correlations between predictors
to interpolate more adaptively between the `1-norm and squared `2-norm, by introducing a method
called pairwise elastic net [20] (see comparisons with our approach in Section 5).

Finally, when one has more knowledge about the data, for example clusters of variables that should
be selected together, one can use the group Lasso [11]. Given a partition (Si) of the set of variables,
it is defined as the sum of the `2-norms of the restricted vectors wSi

:

‖w‖GL =

k∑
i=1

‖wSi
‖2.

The effect of this penalty function is to introduce sparsity at the group level: variables in a group are
selected all together. One of the main drawback of this method, which is also sometimes one of its
quality, is the fact that one needs to know the partition of the variables, and so one needs to have a
good knowledge of the data.

2.2 The ridge, the Lasso and the trace Lasso

In this section, we show that Tikhonov regularization and the Lasso penalty can be viewed as norms
of the matrix XDiag(w). We then introduce a new norm involving this matrix.

The solution of empirical risk minimization penalized by the `1-norm or `2-norm is not equivariant
to rescaling of the predictors X(i), so it is common to normalize the predictors. When normalizing
the predictors X(i), and penalizing by Tikhonov regularization or by the Lasso, people are implic-
itly using a regularization term that depends on the data or design matrix X. In fact, there is an
equivalence between normalizing the predictors and not normalizing them, using the two following
reweighted `2 and `1-norms instead of Tikhonov regularization and the Lasso:

‖w‖22 =

p∑
i=1

‖X(i)‖22 w2
i and ‖w‖1 =

p∑
i=1

‖X(i)‖2 |wi|. (2)

These two norms can be expressed using the matrix XDiag(w):

‖w‖2 = ‖XDiag(w)‖F and ‖w‖1 = ‖XDiag(w)‖2,1,
and a natural question arises: are there other relevant choices of functions or matrix norms? A
classical measure of the complexity of a model is the number of predictors used by this model,
which is equal to the size of the support of w. This penalty being non-convex, people use its convex
relaxation, which is the `1-norm, leading to the Lasso.

Here, we propose a different measure of complexity which can be shown to be more adapted in
model selection settings [21]: the dimension of the subspace spanned by the selected predictors.
This is equal to the rank of the selected predictors, or also to the rank of the matrix XDiag(w).
Like the size of the support, this function is non-convex, and we propose to replace it by a convex
surrogate, the trace norm, leading to the following penalty that we call “trace Lasso”:

Ω(w) = ‖XDiag(w)‖∗.
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The trace Lasso has some interesting properties: if all the predictors are orthogonal, then, it is equal
to the `1-norm. Indeed, we have the decomposition:

XDiag(w) =

p∑
i=1

(
‖X(i)‖2wi

) X(i)

‖X(i)‖2
e>i ,

where ei are the vectors of the canonical basis. Since the predictors are orthogonal and the ei are
orthogonal too, this gives the singular value decomposition of XDiag(w) and we get

‖XDiag(w)‖∗ =

p∑
i=1

‖X(i)‖2|wi| = ‖XDiag(w)‖2,1.

On the other hand, if all the predictors are equal to X(1), then

XDiag(w) = X(1)w>,

and we get ‖XDiag(w)‖∗ = ‖X(1)‖2‖w‖2 = ‖XDiag(w)‖F , which is equivalent to Tikhonov
regularization. Thus when two predictors are strongly correlated, our norm will behave like
Tikhonov regularization, while for almost uncorrelated predictors, it will behave like the Lasso.

Always having a unique minimum is an important property for a statistical estimator, as it is a first
step towards stability. The trace Lasso, by adding strong convexity exactly in the direction of highly
correlated covariates, always has a unique minimum, and is thus much more stable than the Lasso.
Proposition 1. If the loss function ` is strongly convex with respect to its second argument, then the
solution of the empirical risk minimization penalized by the trace Lasso, i.e., Eq. (1), is unique.

The technical proof of this proposition can be found in [22], and consists in showing that in the flat
directions of the loss function, the trace Lasso is strongly convex.

2.3 A new family of penalty functions

In this section, we introduce a new family of penalties, inspired by the trace Lasso, allowing us to
write the `1-norm, the `2-norm and the newly introduced trace Lasso as special cases. In fact, we
note that ‖Diag(w)‖∗ = ‖w‖1 and ‖p−1/21>Diag(w)‖∗ = ‖w>‖∗ = ‖w‖2. In other words,
we can express the `1 and `2-norms of w using the trace norm of a given matrix times the matrix
Diag(w). A natural question to ask is: what happens when using a matrix P other than the identity
or the line vector p−1/21>, and what are good choices of such matrices? Therefore, we introduce
the following family of penalty functions:
Definition 1. Let P ∈ Rk×p, all of its columns having unit norm. We introduce the norm ΩP as

ΩP(w) = ‖PDiag(w)‖∗.

Proof. The positive homogeneity and triangle inequality are direct consequences of the linearity of
w 7→ PDiag(w) and the fact that ‖ · ‖∗ is a norm. Since all the columns of P are not equal to zero,
we have

PDiag(w) = 0⇔ w = 0,

and so, ΩP separates points and thus is a norm.

As stated before, the `1 and `2-norms are special cases of the family of norms we just introduced.
Another important penalty that can be expressed as a special case is the group Lasso, with non-
overlapping groups. Given a partition (Sj) of the set {1, ..., p}, the group Lasso is defined by

‖w‖GL =
∑
Sj

‖wSj‖2.

We define the matrix PGL by

PGLij =

{
1/
√
|Sk| if i and j are in the same group Sk,

0 otherwise.
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Figure 1: Unit balls for various value of P>P. See the text for the value of P>P. (Best seen in
color).

Then,

PGL Diag(w) =
∑
Sj

1Sj√
|Sj |

w>Sj
. (3)

Using the fact that (Sj) is a partition of {1, ..., p}, the vectors 1Sj
are orthogonal and so are the

vectors wSj
. Hence, after normalizing the vectors, Eq. (3) gives a singular value decomposition of

PGL Diag(w) and so the group Lasso penalty can be expressed as a special case of our family of
norms:

‖PGL Diag(w)‖∗ =
∑
Sj

‖wSj
‖2 = ‖w‖GL.

In the following proposition, we show that our norm only depends on the value of P>P. This is an
important property for the trace Lasso, where P = X, since it underlies the fact that this penalty
only depends on the correlation matrix X>X of the covariates.
Proposition 2. Let P ∈ Rk×p, all of its columns having unit norm. We have

ΩP(w) = ‖(P>P)1/2 Diag(w)‖∗.

We plot the unit ball of our norm for the following value of P>P (see figure 1):(
1 0.9 0.1

0.9 1 0.1
0.1 0.1 1

) (
1 0.7 0.49

0.7 1 0.7
0.49 0.7 1

) (
1 1 0
1 1 0
0 0 1

)

We can lower bound and upper bound our norms by the `2-norm and `1-norm respectively. This
shows that, as for the elastic net, our norms interpolate between the `1-norm and the `2-norm. But
the main difference between the elastic net and our norms is the fact that our norms are adaptive,
and require a single regularization parameter to tune. In particular for the trace Lasso, when two
covariates are strongly correlated, it will be close to the `2-norm, while when two covariates are
almost uncorrelated, it will behave like the `1-norm. This is a behavior close to the one of the
pairwise elastic net [20].
Proposition 3. Let P ∈ Rk×p, all of its columns having unit norm. We have

‖w‖2 ≤ ΩP(w) ≤ ‖w‖1.

2.4 Dual norm

The dual norm is an important quantity for both optimization and theoretical analysis of the estima-
tor. Unfortunately, we are not able in general to obtain a closed form expression of the dual norm for
the family of norms we just introduced. However we can obtain a bound, which is exact for some
special cases:

Proposition 4. The dual norm, defined by Ω∗P(u) = max
ΩP(v)≤1

u>v, can be bounded by:

Ω∗P(u) ≤ ‖PDiag(u)‖op.
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Proof. Using the fact that diag(P>P) = 1, we have
u>v = tr

(
Diag(u)P>PDiag(v)

)
≤ ‖PDiag(u)‖op‖PDiag(v)‖∗,

where the inequality comes from the fact that the operator norm ‖ · ‖op is the dual norm of the trace
norm. The definition of the dual norm then gives the result.

As a corollary, we can bound the dual norm by a constant times the `∞-norm:
Ω∗P(u) ≤ ‖PDiag(u)‖op ≤ ‖P‖op‖Diag(u)‖op = ‖P‖op‖u‖∞.

Using proposition (3), we also have the inequality Ω∗P(u) ≥ ‖u‖∞.

3 Optimization algorithm

In this section, we introduce an algorithm to estimate the parameter vector w when the loss function
is equal to the square loss: `(y,w>x) = 1

2 (y − w>x)2 and the penalty is the trace Lasso. It is
straightforward to extend this algorithm to the family of norms indexed by P. The problem we
consider is thus

min
w

1

2
‖y −Xw‖22 + λ‖XDiag(w)‖∗.

We could optimize this cost function by subgradient descent, but this is quite inefficient: computing
the subgradient of the trace Lasso is expensive and the rate of convergence of subgradient descent
is quite slow. Instead, we consider an iteratively reweighted least-squares method. First, we need to
introduce a well-known variational formulation for the trace norm [23]:
Proposition 5. Let M ∈ Rn×p. The trace norm of M is equal to:

‖M‖∗ =
1

2
inf
S�0

tr
(
M>S−1M

)
+ tr (S) ,

and the infimum is attained for S =
(
MM>

)1/2

.

Using this proposition, we can reformulate the previous optimization problem as

min
w

inf
S�0

1

2
‖y −Xw‖22 +

λ

2
w>Diag

(
diag(X>S−1X)

)
w +

λ

2
tr(S).

This problem is jointly convex in (w,S) [24]. In order to optimize this objective function by alter-
nating the minimization over w and S, we need to add a term λµi

2 tr(S−1). Otherwise, the infimum
over S could be attained at a non invertible S, leading to a non convergent algorithm. The infimum
over S is then attained for S =

(
XDiag(w)2X> + µiI

)1/2
.

Optimizing over w is a least-squares problem penalized by a reweighted `2-norm equal to w>Dw,
where D = Diag

(
diag(X>S−1X)

)
. It is equivalent to solving the linear system

(X>X + λD)w = X>y.

This can be done efficiently by using a conjugate gradient method. Since the cost of multiplying
(X>X+λD) by a vector isO(np), solving the system has a complexity ofO(knp), where k ≤ n+1
is the number of iterations needed to converge (see theorem 10.2.5 of [9]). Using warm restarts, k
can be even smaller than n, since the linear system we are solving does not change a lot from an
iteration to another. Below we summarize the algorithm:

ITERATIVE ALGORITHM FOR ESTIMATING w

Input: the design matrix X, the initial guess w0, number of iteration N , sequence µi.
For i = 1...N :

• Compute the eigenvalue decomposition UDiag(sk)U> of XDiag(wi−1)2X>.
• Set D = Diag(diag(X>S−1X)), where S−1 = UDiag(1/

√
sk + µi)U

>.

• Set wi by solving the system (X>X + λD)w = X>y.

For the sequence µi, we use a decreasing sequence converging to ten times the machine precision.
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3.1 Choice of λ

We now give a method to choose the initial parameter λ of the regularization path. In fact, we know
that the vector 0 is solution if and only if λ ≥ Ω∗(X>y) [25]. Thus, we need to start the path at
λ = Ω∗(X>y), corresponding to the empty solution 0, and then decrease λ. Using the inequalities
on the dual norm we obtained in the previous section, we get

‖X>y‖∞ ≤ Ω∗(X>y) ≤ ‖X‖op‖X>y‖∞.

Therefore, starting the path at λ = ‖X‖op‖X>y‖∞ is a good choice.

4 Approximation around the Lasso

We recall that when P = I ∈ Rp×p, our norm is equal to the `1-norm, and we want to understand
its behavior when P departs from the identity. Thus, we compute a second order approximation of
our norm around the Lasso: we add a small perturbation ∆ ∈ Sp to the identity matrix, and using
Prop. 6 of [22], we obtain the following second order approximation:

‖(I + ∆) Diag(w)‖∗ = ‖w‖1 + diag(∆)>|w|+∑
|wi|>0

∑
|wj |>0

(∆ji|wi| −∆ij |wj |)2

4(|wi|+ |wj |)
+
∑
|wi|=0

∑
|wj |>0

(∆ij |wj |)2

2|wj |
+ o(‖∆‖2).

We can rewrite this approximation as

‖(I + ∆) Diag(w)‖∗ = ‖w‖1 + diag(∆)>|w|+
∑
i,j

∆2
ij(|wi| − |wj |)2

4(|wi|+ |wj |)
+ o(‖∆‖2),

using a slight abuse of notation, considering that the last term is equal to 0 when wi = wj = 0. The
second order term is quite interesting: it shows that when two covariates are correlated, the effect of
the trace Lasso is to shrink the corresponding coefficients toward each other. We also note that this
term is very similar to pairwise elastic net penalties, which are of the form |w|>P|w|, where Pij is
a decreasing function of ∆ij .

5 Experiments

In this section, we perform experiments on synthetic data to illustrate the behavior of the trace Lasso
and other classical penalties when there are highly correlated covariates in the design matrix. The
support S of w is equal to {1, ..., k}, where k is the size of the support. For i in the support of
w, wi is independently drawn from a uniform distribution over [−1, 1]. The observations xi are
drawn from a multivariate Gaussian with mean 0 and covariance matrix Σ. For the first setting, Σ
is set to the identity, for the second setting, Σ is block diagonal with blocks equal to 0.2I + 0.811>

corresponding to clusters of four variables, finally for the third setting, we set Σij = 0.95|i−j|,
corresponding to a Toeplitz design. For each method, we choose the best λ. We perform a first
series of experiments (p = 1024, n = 256) for which we report the estimation error. For the second
series of experiments (p = 512, n = 128), we report the Hamming distance between the estimated
support and the true support.

In all six graphs of Figure 2, we observe behaviors that are typical of Lasso, ridge and elastic net:
the Lasso performs very well on very sparse models but its performance degrades for denser models.
The elastic net performs better than the Lasso for settings where there are strongly correlated covari-
ates, thanks to its strongly convex `2 term. In setting 1, since the variables are uncorrelated, there
is no reason to couple their selection. This suggests that the Lasso should be the most appropriate
convex regularization. The trace Lasso approaches the Lasso when n is much larger than p, but the
weak coupling induced by empirical correlations is sufficient to slightly decrease its performance
compared to that of the Lasso. By contrast, in settings 2 and 3, the trace Lasso outperforms other
methods (including the pairwise elastic net) since variables that should be selected together are in-
deed correlated. As for the penalized elastic net, since it takes into account the correlations between
variables, it is not surprising that in experiments 2 and 3 it performs better than methods that do not.
We do not have a compelling explanation for its superior performance in experiment 1.
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Figure 2: Left: estimation error (p = 1024, n = 256), right: support recovery (p = 512, n = 128).
(Best seen in color. e-net stands for elastic net, pen stands for pairwise elastic net and trace
stands for trace Lasso. Error bars are obtained over 20 runs.)

6 Conclusion

We introduce a new penalty function, the trace Lasso, which takes advantage of the correlation
between covariates to add strong convexity exactly in the directions where needed, unlike the elastic
net for example, which blindly adds a squared `2-norm term in every directions. We show on
synthetic data that this adaptive behavior leads to better estimation performance. In the future, we
want to show that if a dedicated norm using prior knowledge such as the group Lasso can be used,
the trace Lasso will behave similarly and its performance will not degrade too much, providing
theoretical guarantees to such adaptivity. Finally, we will seek applications of this estimator in
inverse problems such as deblurring, where the design matrix exhibits strong correlation structure.
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