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Supervised, unsupervised and semi-supervised classification

Supervised learning

Training set composed of pairs {(x1,¥1),- .-, (Xn, ¥n)}
— Learn to classify new points in the classes

Unsupervised learning

Training set composed of pairs {X1,...,Xn}.

— Partition the data in a number of classes.

— Possibly produce a decision rule for new points.

Transductive learning

Data available at train time composed of

train data {(x1,y1),...,(Xn,¥n)} + test data {xp41,...,Xn}
— Classify all the test data

Semi-supervised learning

Data available at train time composed of

labelled data {(x1,y1),...,(Xn,¥n)} + unlabelled data {x,41,...,%p}
— Produce a classification rule for future points
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K-means

Key assumption: Data composed of K “roundish” clusters of similar
sizes with centroids (g1, , k).

Problem can be formulated as: min E mlon, il
M1 5K n

Difficult (NP-hard) nonconvex problem.
K-means algorithm
@ Draw centroids at random

@ Assign each point to the closest centroid
= {i | Ixi — pal? = min [|x; - will*}

© Recompute centroid as center of mass of the cluster

Zx'
/C
Q Goto?2 ©
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K-means properties

Three remarks:
@ K-means is greedy algorithm
@ It can be shown that K-means converges in a finite number of steps.

@ The algorithm however typically get stuck in local minima and it
practice it is necessary to try several restarts of the algorithm with a
random initialization to have chances to obtain a better solution.

o Will fail if the clusters are not round

Clustering, Gaussian mixture model and EM 7/22



The EM algorithm for the Gaussian
mixture model
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The Kullback-Leibler divergence

Definition Let X a finite state space and p and g two distributions on X

KL(pllq) = EX: p(x) log 58 = Bxep [ log 583}

Entropy: H(p) = —>_, p(x)log p(x)

So KL(p|l q) = Ex~p| — log q(X)] — H(p).
Property: Vp,q, KL(p| g) > 0.
Proof:

Let Y = %. Then, we have Exq[Y] = >, p(x) =

KL(p |l q) = Ex~q[Ylog Y] = Ex~q[8(Y)] = ¢(Ex~q[Y]) =0
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Differential KL and entropies

Let P and Q two probability distributions with densities p and g with
respect to a measure . Then, we can define

KL(p| q) = /X (Iog ZET(;) p(x)du(x) = EXNP[|Og 5E§;]

Differential entropy

H(p) = | plx)1og p(x)dn(x)

Caveats: the differential entropy is dangerous

° H(p) #0
@ H depends on the choice of u...!
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Gaussian mixture model

K components

z component indicator
z=(z1,...,zx)" €{0,1}K
z~ M(1,(m1,...,7K))

K
p(z) = [ =&
k=1

°
K
o p(x|z; (pk, Xk)k) = Z zk N(x; pg, k)
k=1
K
o p(x) =) M N(X; e, i)
k=1
°

K
Estimation:  argmax log Z T N(x; p, i)
179937 k=1
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Applying maximum likelihood to the Gaussian mixture
Let Z={z e {0,1}K | Kz =1}

p(x) = Zp(x z Z H |:7TkN(X i, Xk } Zﬂkj\/'(x Bk, Xk)

zeZ zeZ k=1 k=1

Issue
o The marginal log-likelihood #(6) = 3~ log(p(x())) with
0 = (m, (k, Xk)1<k<k) is now complicated

@ No hope to find a simple solution to the maximum likelihood
problem

@ By contrast the complete log-likelihood has a rather simple form:

Zlogp (x(), Z zk Iog./\/ D e, ) +Z zk Iog (7x),

ik
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Applying maximum likelihood to the multinomial mixture

M
=Y log p(x,20) = 3" 27 10g N (xD; i, Ti)+ Y 27 log (),
i=1

ik ik

o If we knew z()) we could maximize #(6).
o If we knew 6 = (m, (pk, Bk)1<k<k), we could find the best z()
since we could compute the true a posteriori on z() given x():

e N (xD; i, Bie)
S T N (xD; iy, 3))

— Seems a chicken and egg problem...
@ In addition, we want to solve

maxZIog(Zp x() z()> and not Zlogp

z() 2 Z(M) i

Pz =1 x:6) =

@ Can we still use the intuitions above to construct an algorithm
maximizing the marginal likelihood?
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Principle of the Expectation-Maximization Algorithm

logp(x;0) = log>» p(x,z;0) = Iogz XZO)

> 22: q(z )logp((i)o)

= Eqg[log p(x, z; 0)] + H(q) =: L(q,0)

@ This shows that £(q,0) < log p(x; 8)

@ Moreover: 8 — L(q,8) is a concave function.

o Finally it is possible to show that
£L(q,0) = log p(x; 0) — KL(q || p(-[x; ))
So that if we set g(z) = p(z | x; 8(!)) then

L(q,0) = p(x; 01).




A graphical idea of the EM algorithm

001d 0 new
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Expectation Maximization algorithm

Initialize @ = 6q

WHILE (Not converged)

Expectation step
@ q(2) = p(z| x;017Y)
Q@ £(q,0) = Eq[logp(x,Z;0)] + H(q)

Maximization step

o o = argmax Eq | log p(x, Z; 9)] e = gt-1)
0

onew — e(t)
ENDWHILE
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Expected complete log-likelihood

With the notation: qfkt) = Pq(t) (zlgi) =1)= qut) [z,((i)], we have

E,0[€(0)] = E o |logp(X,Z;0)]

[
= Equ)[ 2 og N (xD, i, 20) + 2 |0€(7Tk)]
ik ik

E

ye 2] log N (x, i, Z) + 3 E 2] log(m)

ik ik
= Z ql(kt) |OgN(X(i), Mk, Ek) + Z q,(kt) |Og(7['k)
ik P
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Expectation step for the Gaussian mixture

We computed previously qft)(z(")), which is a multinomial distribution
defined by

ql(t)(z(i)) - p(z(i)|x(i); g(ffl))

(1) (1)

Abusing notation we will denote (g;;,’, ..., g, ) the corresponding vector
of probabilities defined by

q) =P (2! =1) =E 4 [2"]

q q;
—1) —1) y(t-1)
gl = p(z) =1 x;0-1) = Tk . Io)gN(x() ( i ( )1)
! ! t—1 t t—
ZJ 17 j |OgN( 7 /J‘j ’ Ej )
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Maximization step for the Gaussian mixture

(7", (), 24 ) 1<kek) = argmax Eq o [((6)]

This yields the updates:

i i i T
o T Oa) || o S 00 =) (O — ) " )
AT 5,4
()
and |2 = Ziqk()
> ik Dk
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Final EM algorithm for the Multinomial mixture model
Initialize @ = 69
WHILE (Not converged)
Expectation step
" 7([((1:—1) |og/\/(x(i), “S(t—l), 2]E(f—l))

Ti” -1 ; -1 -1
S log N, uf T, =)

Maximization step

(0 _ L) gl

() 2 X i 3 () — ) (D — )" g
: > q:(kt)

P qlglf)

q'
and wl((t) = ik q'k(t)
Zi,k’ i

» =

)

ENDWHILE



EM Algorithm for the Gaussian mixture model IlI

p(x|z)

N
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