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Supervised, unsupervised and semi-supervised classification

Supervised learning

Training set composed of pairs {(x1, y1), . . . , (xn, yn)}.
→ Learn to classify new points in the classes

Unsupervised learning

Training set composed of pairs {x1, . . . , xn}.
→ Partition the data in a number of classes.
→ Possibly produce a decision rule for new points.

Transductive learning

Data available at train time composed of
train data {(x1, y1), . . . , (xn, yn)} + test data {xn+1, . . . , xn}
→ Classify all the test data

Semi-supervised learning

Data available at train time composed of
labelled data {(x1, y1), . . . , (xn, yn)} + unlabelled data {xn+1, . . . , xn}
→ Produce a classification rule for future points

Clustering, Gaussian mixture model and EM 5/22



K-means
Key assumption: Data composed of K “roundish” clusters of similar
sizes with centroids (µ1, · · · ,µK ).

Problem can be formulated as: min
µ1,··· ,µK

1

n

n∑
i=1

min
k
‖xi − µk‖2.

Difficult (NP-hard) nonconvex problem.

K -means algorithm

1 Draw centroids at random

2 Assign each point to the closest centroid

Ck ←
{
i | ‖xi − µk‖2 = min

j
‖xi − µj‖2

}
3 Recompute centroid as center of mass of the cluster

µk ←
1

| Ck |
∑
i∈Ck

xi

4 Go to 2

Clustering, Gaussian mixture model and EM 6/22



K-means properties

Three remarks:

K-means is greedy algorithm

It can be shown that K-means converges in a finite number of steps.

The algorithm however typically get stuck in local minima and it
practice it is necessary to try several restarts of the algorithm with a
random initialization to have chances to obtain a better solution.

Will fail if the clusters are not round
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The EM algorithm for the Gaussian
mixture model
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The Kullback-Leibler divergence
Definition Let X a finite state space and p and q two distributions on X

KL(p ‖ q) =
∑
x

p(x) log
p(x)

q(x)
= EX∼p

[
log

p(X )

q(X )

]
Entropy: H(p) = −∑x p(x) log p(x)

So KL(p ‖ q) = EX∼p
[
− log q(X )

]
− H(p).

Property: ∀p, q, KL(p ‖ q) ≥ 0.
Proof:

KL(p ‖ q) =
∑
x

q(x)
p(x)

q(x)
log

p(x)

q(x)
= EX∼q

[
p(X )

q(X )
log

p(X )

q(X )

]

Let Y = p(X )
q(X ) . Then, we have EX∼q[Y ] =

∑
x p(x) = 1.

KL(p ‖ q) = EX∼q
[
Y logY

]
= EX∼q

[
φ(Y )

]
≥ φ(EX∼q[Y ]) = 0
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Differential KL and entropies

Let P and Q two probability distributions with densities p and q with
respect to a measure µ. Then, we can define

KL(p ‖ q) =

∫
x

(
log

p(x)

q(x)

)
p(x)dµ(x) = EX∼P

[
log

p(X )

q(X )

]
Differential entropy

H(p) = −
∫
x
p(x) log p(x)dµ(x)

Caveats: the differential entropy is dangerous

H(p) � 0

H depends on the choice of µ...!
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Gaussian mixture model

K components

z component indicator

z = (z1, . . . , zK )> ∈ {0, 1}K
z ∼M(1, (π1, . . . , πK ))

p(z) =
K∏

k=1

πzkk

p(x|z; (µk ,Σk)k) =
K∑

k=1

zk N (x;µk ,Σk)

p(x) =
K∑

k=1

πk N (x;µk ,Σk)

Estimation: argmax
µk ,Σk

log

[
K∑

k=1

πk N (x;µk ,Σk)

]

xn

zn

N

µ Σ

π

(a)

0 0.5 1

0

0.5

1

Clustering, Gaussian mixture model and EM 12/22



Applying maximum likelihood to the Gaussian mixture
Let Z = {z ∈ {0, 1}K |∑K

k=1 zk = 1}

p(x) =
∑
z∈Z

p(x, z) =
∑
z∈Z

K∏
k=1

[
πk N (x;µk ,Σk)

]zk
=

K∑
k=1

πk N (x;µk ,Σk)

Issue

The marginal log-likelihood ˜̀(θ) =
∑

i log(p(x(i))) with
θ =

(
π, (µk ,Σk)1≤k≤K

)
is now complicated

No hope to find a simple solution to the maximum likelihood
problem

By contrast the complete log-likelihood has a rather simple form:

˜̀
(
θ) =

M∑
i=1

log p(x(i), z(i)) =
∑
i , k

z
(i)
k logN (x (i);µk ,Σk)+

∑
i ,k

z
(i)
k log(πk),
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Applying maximum likelihood to the multinomial mixture

˜̀
(
θ) =

M∑
i=1

log p(x(i), z(i)) =
∑
i ,k

z
(i)
k logN (x(i);µk ,Σk)+

∑
i ,k

z
(i)
k log(πk),

If we knew z(i) we could maximize ˜̀(θ).
If we knew θ =

(
π, (µk ,Σk)1≤k≤K

)
, we could find the best z(i)

since we could compute the true a posteriori on z(i) given x(i):

p(z
(i)
k = 1 | x; θ) =

πk N (x(i);µk ,Σk)∑K
j=1 πj N (x(i);µj ,Σj)

→ Seems a chicken and egg problem...
In addition, we want to solve

max
θ

∑
i

log

(∑
z(i)

p(x(i), z(i))

)
and not max

θ,
z(1),...,z(M)

∑
i

log p(x(i), z(i))

Can we still use the intuitions above to construct an algorithm
maximizing the marginal likelihood?
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Principle of the Expectation-Maximization Algorithm

log p(x;θ) = log
∑

z

p(x, z;θ) = log
∑

z

q(z)
p(x, z;θ)

q(z)

≥
∑

z

q(z) log
p(x, z;θ)

q(z)

= Eq[log p(x, z;θ)] + H(q) =: L(q,θ)

This shows that L(q,θ) ≤ log p(x;θ)

Moreover: θ 7→ L(q,θ) is a concave function.

Finally it is possible to show that

L(q,θ) = log p(x;θ)− KL(q ‖ p(·|x;θ))

So that if we set q(z) = p(z | x;θ(t)) then

L(q,θ(t)) = p(x; θ(t)).

θold θnew

L (q, θ)

ln p(X|θ)
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A graphical idea of the EM algorithm

θold θnew

L (q, θ)

ln p(X|θ)
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Expectation Maximization algorithm

Initialize θ = θ0

WHILE (Not converged)

Expectation step

1 q(z) = p(z | x;θ(t−1))

2 L(q,θ) = Eq

[
log p(x,Z;θ)

]
+ H(q)

Maximization step

1 θ(t) = argmax
θ

Eq

[
log p(x,Z;θ)

]
ENDWHILE

θold θnew

L (q, θ)

ln p(X|θ)

θold = θ(t−1)

θnew = θ(t)

Clustering, Gaussian mixture model and EM 17/22



Expected complete log-likelihood

With the notation: q
(t)
ik = P

q
(t)
i

(z
(i)
k = 1) = E

q
(t)
i

[
z
(i)
k

]
, we have

Eq(t)
[

˜̀(θ)
]

= Eq(t)
[

log p(X,Z; θ)
]

= Eq(t)

[ M∑
i=1

log p(x(i), z(i); θ)

]
= Eq(t)

[∑
i ,k

z
(i)
k logN (x(i),µk ,Σk) +

∑
i ,k

z
(i)
k log(πk)

]
=

∑
i , k

E
q
(t)
i

[
z
(i)
k

]
logN (x(i),µk ,Σk) +

∑
i ,k

E
q
(t)
i

[
z
(i)
k

]
log(πk)

=
∑
i , k

q
(t)
ik logN (x(i),µk ,Σk) +

∑
i ,k

q
(t)
ik log(πk)
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Expectation step for the Gaussian mixture

We computed previously q
(t)
i (z(i)), which is a multinomial distribution

defined by

q
(t)
i (z(i)) = p(z(i)|x(i); θ(t−1))

Abusing notation we will denote (q
(t)
i1 , . . . , q

(t)
iK ) the corresponding vector

of probabilities defined by

q
(t)
ik = P

q
(t)
i

(z
(i)
k = 1) = E

q
(t)
i

[
z
(i)
k

]

q
(t)
ik = p(z

(i)
k = 1 | x(i); θ(t−1)) =

π
(t−1)
k logN (x(i),µ

(t−1)
k ,Σ

(t−1)
k )∑K

j=1 π
(t−1)
j logN (x(i),µ

(t−1)
j ,Σ

(t−1)
j )
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Maximization step for the Gaussian mixture

(
πt , (µ

(t)
k ,Σ

(t)
k )1≤k≤K

)
= argmax

θ
Eq(t)

[
˜̀(θ)

]

This yields the updates:

µ
(t)
k =

∑
i x(i) q

(t)
ik∑

i q
(t)
ik

, Σ
(t)
k =

∑
i

(
x(i) − µ

(t)
k

)(
x(i) − µ

(t)
k

)>
q
(t)
ik∑

i q
(t)
ik

and π
(t)
k =

∑
i q

(t)
ik∑

i ,k ′ q
(t)
ik ′
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Final EM algorithm for the Multinomial mixture model
Initialize θ = θ0

WHILE (Not converged)

Expectation step

q
(t)
ik ←

π
(t−1)
k logN (x(i),µ

(t−1)
k ,Σ

(t−1)
k )∑K

j=1 π
(t−1)
j logN (x(i),µ

(t−1)
j ,Σ

(t−1)
j )

Maximization step

µ
(t)
k =

∑
i x(i) q

(t)
ik∑

i q
(t)
ik

, Σ
(t)
k =

∑
i

(
x(i) − µ

(t)
k

)(
x(i) − µ

(t)
k

)>
q
(t)
ik∑

i q
(t)
ik

and π
(t)
k =

∑
i q

(t)
ik∑

i ,k ′ q
(t)
ik ′

ENDWHILE
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EM Algorithm for the Gaussian mixture model III

p(x|z) p(z|x)
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