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Risk of a predictor and PAC learning

Assume now that the predictor is generated from training data D,
according to the scheme:

At Upen (X x )"

— AY
D, — f

As a consequence R(f) — R(f*) is a random variable.

Expected Risk R
E[R(f)] — R(f*)

Probably Approximately Correct Learning
Do approximately as well as the target function with very high probability
P(R(?) ~R(fY) < e) >1-6

— Control the convergence in probability of the excess risk.
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Back to learning: facing the curse of dimensionality

So far we
@ characterized good predictors
@ specified how to assess theoretically the quality of a learning scheme
— But both rely on the unknown risk R !
@ R can only be computed if we know Px y
— Can we estimate/learn Px y from the training data?
Problems:
o If Px y is characterized by a small number of parameters
— Possible to estimate — approach similar to classical statistics
@ Learning Px y is often a more complicated than learning f !
—  We should not try and solve a more complicated problem than the
initial learning problem.
o X x ) is typically a high dimensional space.
— Density estimation requires an amount of data which grows
exponentially with the number of dimensions

This is the Curse of dimensionality
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Empirical Risk Minimization

Idea: Replace the population distribution of the data by the empirical
distribution of the training data. Given a training set

{(x1,y1),---,(Xn, ¥n)}, we define the

Empirical Risk

Empirical Risk Minimization principle

@ consists in minimizing the empirical risk.

Problem: The target function for the empirical risk is only defined at
the training points.
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Learning as an ill-posed problem

A problem is well-posed in the sense of Hadamard if
@ It admits a solution
@ This solution is unique

@ The solution depends continuously on the problem parameters for
an appropriate topology.

Learning as formulated is
@ underconstrained
@ with by essence incomplete information

and thus ill-posed.
Introduce an inductive bias by restricting the hypothesis space and/or
using regularization.
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Hypothesis space

For both computational and statistical reasons, it is necessary to
consider to restrict the set of predictors or the set of hypotheses
considered. Given a hypothesis space S C Y considered the
constrained ERM problem

min R ,(f
fes (f)
linear functions

polynomial functions

spline functions

multiresolution approximation spaces (wavelet)
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Polynomial regression: an instance of linear regression
Model of the form Y = wp + wiX + wo X2+ ... + wpXP + ¢

n

1 2 2
m“|ln2n.zl(y,-—(W0—|- W1Xj + WoX; ++WpX,p))
=

0 1 0 1

x x
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Ridge regression

Is obtained by applying Tikhonov regularization to OLS regression.

2

@ Problem now strongly convex thus well-posed

@ Thus with unique solution:

w(ridge) — (XTX + )\I)—ley

@ Shrinkage effect
@ Regularization improves the conditioning number of the Hessian

= Problem now easier to solve computationally
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Controlling the complexity of the hypothesis space

Explicit control
@ number of variables
@ maximal degree for polynomial functions
@ degree and number of knots for spline functions
@ maximal resolution in wavelet approximations.
@ bandwidth in RKHS

The complexity is fixed.
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Controlling the complexity of the hypothesis space

Explicit control
@ number of variables
@ maximal degree for polynomial functions
@ degree and number of knots for spline functions
@ maximal resolution in wavelet approximations.
@ bandwidth in RKHS

The complexity is fixed.

Implicit control with regularization.
The complexity of the predictor results from a compromise between
fitting and increasing complexity.

Problem of model selection: How to choose the level of complexity?
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Risk decomposition: approximation-estimation trade-off

R(fs) — R(F*) = R(fs) — R(£E) + R(E) — R(F*)

.

Vv
excess risk estimation error approximation error

@ Sometimes also called “bias-variance tradeoff
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Approximation-estimation tradeoff

Approximation Interpolation
Underfitting Qverfitting
5 » ”}_

3“01 - ."!
Lot .7 ra
(3?\2 - /"',ae,
) ae” - o
Optimum et ,-‘;@6

-.____T.___,.

Complexity of the model {~ effective number of degrees of freedom)
[mainly tuned by the hyperparameters of the estimator]
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Bias-variance decomposition of a predictor
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vV TV
variance squared bias

o~

Ep, [(f(x)—f(x))?] = Ep, [ (F(x)~Ep,[F(x)])?] + (Ep,[F(x)] - f(x))?

E[E(F)] = Ep,x[R(f)] — R(f*)
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Bias-variance decomposition of a predictor

E[(Z - ¢] = E[(Z - E[Z]?] + (E[Z] - <)’

TV
variance squared bias

o~

Ep, [(f(x)—f(x))?] = Ep, [ (F(x)~Ep,[F(x)])?] + (Ep,[F(x)] - f(x))?

E[£(F)] Ep, x [R()] — R(f*)
E[(F(X) — £*(X))?]

E[(F(X) — E[F(X)IX])*] + E[E[F(X)IX] = £*(X))?]

variance of f bias of

with F*(X) = E[Y|X].
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