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Risk of a predictor and PAC learning

Assume now that the predictor is generated from training data Dn

according to the scheme:

A :
⋃

n∈N (X × Y)n → AX
Dn 7→ f̂

As a consequence R(f̂ )−R(f ∗) is a random variable.

Expected Risk
E
[
R(f̂ )

]
−R(f ∗)

Probably Approximately Correct Learning

Do approximately as well as the target function with very high probability

P
(
R(f̂ )−R(f ∗) ≤ ε

)
≥ 1− δ

→ Control the convergence in probability of the excess risk.
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Back to learning: facing the curse of dimensionality

So far we

characterized good predictors

specified how to assess theoretically the quality of a learning scheme

→ But both rely on the unknown risk R !

R can only be computed if we know PX ,Y

→ Can we estimate/learn PX ,Y from the training data?

Problems:

If PX ,Y is characterized by a small number of parameters

→ Possible to estimate → approach similar to classical statistics

Learning PX ,Y is often a more complicated than learning f !!

→ We should not try and solve a more complicated problem than the
initial learning problem.

X × Y is typically a high dimensional space.

→ Density estimation requires an amount of data which grows
exponentially with the number of dimensions

This is the Curse of dimensionality
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Curse of dimensionality

Exponential grow of “volume” with dimensions

Histograms

Construct a histogram for X ∈ [0, 1] with 10 bins

→ possible with 100 observations

Construct a histogram for X ∈ [0, 1]10

→ size et number of bin ?

→ a priori impossible with 100 or even with 106 observations !

Model for SNPs

SNP: Single-Nucleotide Polymorphism

Correspond to 90% of human genetic variation

Number of loci k > 105

Number of configurations > 2105
...
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Empirical Risk Minimization
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Empirical Risk Minimization

Idea: Replace the population distribution of the data by the empirical
distribution of the training data.

Given a training set
{(x1, y1), . . . , (xn, yn)}, we define the

Empirical Risk

R̂n(f ) =
1

n

n∑
i=1

`(f (xi ), yi )

Empirical Risk Minimization principle

consists in minimizing the empirical risk.

Problem: The target function for the empirical risk is only defined at
the training points.
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Learning as an ill-posed problem

A problem is well-posed in the sense of Hadamard if

It admits a solution

This solution is unique

The solution depends continuously on the problem parameters for
an appropriate topology.

Learning as formulated is

underconstrained

with by essence incomplete information

and thus ill-posed.
Introduce an inductive bias by restricting the hypothesis space and/or
using regularization.
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Hypothesis space

For both computational and statistical reasons, it is necessary to
consider to restrict the set of predictors or the set of hypotheses
considered. Given a hypothesis space S ⊂ YX considered the
constrained ERM problem

min
f ∈S
R̂n(f )

linear functions

polynomial functions

spline functions

multiresolution approximation spaces (wavelet)

Overfitting and control of the complexity 10/25
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Polynomial regression and overfitting
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Polynomial regression: an instance of linear regression
Model of the form Y = w0 + w1X + w2X

2 + . . .+ wpX
p + ε
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w
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Overfitting: symptoms and characteristics
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Tikhonov regularization

min
f ∈S
R̂n(f ) + λ‖f ‖2

λ is the regularization coefficient or hyperparameter

Is the problem now well-posed?

If R̂n is convex

⇒ The objective is strongly convex and coercive for any λ > 0

⇒ The solution exists and is unique.

⇒ λ 7→ f̂λ is a continuous function

If R̂n is bounded below

⇒ The objective is coercive for any λ > 0

⇒ At least a solution exists

If R̂n is C2 with bounded curvature

⇒ Regularization eliminates small local minima.
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Ridge regression

Is obtained by applying Tikhonov regularization to OLS regression.

min
w∈Rp

1

2n
‖y − Xw‖2

2 + λ‖w‖2
2

Problem now strongly convex thus well-posed

Thus with unique solution:

ŵ(ridge) = (X>X + λI)−1X>y

Shrinkage effect

Regularization improves the conditioning number of the Hessian

⇒ Problem now easier to solve computationally
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Polynomial regression with ridge
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Complexity
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Controlling the complexity of the hypothesis space

Explicit control

number of variables

maximal degree for polynomial functions

degree and number of knots for spline functions

maximal resolution in wavelet approximations.

bandwidth in RKHS

The complexity is fixed.

Implicit control with regularization.
The complexity of the predictor results from a compromise between
fitting and increasing complexity.

Problem of model selection: How to choose the level of complexity?
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Risk decomposition: approximation-estimation trade-off

R(f̂S)−R(f ∗)︸ ︷︷ ︸
excess risk

= R(f̂S)−R(f ∗S )︸ ︷︷ ︸
estimation error

+R(f ∗S )−R(f ∗)︸ ︷︷ ︸
approximation error

Sometimes also called “bias-variance tradeoff
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Approximation-estimation tradeoff
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Bias-variance decomposition of a predictor

E
[
(Z − c)2

]
= E

[
(Z − E[Z ])2

]︸ ︷︷ ︸
variance

+ (E[Z ]− c)2︸ ︷︷ ︸
squared bias

.

EDn

[(
f̂ (x)− f (x)

)2]
= EDn

[ (
f̂ (x)−EDn [f̂ (x)]

)2 ]
+
(
EDn [f̂ (x)]− f (x)

)2

E
[
E(f̂ )

]
= EDn,X

[
R(f̂ )

]
−R(f ∗)

= E[(f̂ (X )− f ∗(X ))2]

= E[(f̂ (X )− E[f̂ (X )|X ])2]︸ ︷︷ ︸
variance of f̂

+E[(E[f̂ (X )|X ]− f ∗(X ))2]︸ ︷︷ ︸
bias of f̂

with f ∗(X ) = E[Y |X ].
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