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Changing the dot product

Let x = (x1, x2) ∈ R2 and φ(x) = (x1, x2, x
2
1 , x

2
2 ,
√

2x1x2)>.

〈φ(x), φ(y)〉 = x1y1 + x2y2 + x2
1 y 2

1 + x2
2 y 2

2 + 2x1x2y1y2

= x1y1 + x2y2 + (x1y1)2 + (x2y2)2 + 2(x1y1)(x2y2)

= 〈x, y〉+ 〈x, y〉2

For w = (0, 0, 1, 1, 0)>, w>φ(x)− 1 ≤ 0 ⇔ ‖x‖2 ≤ 1.

Linear separators in R5 correspond to conic separators in R2.
http://www.youtube.com/watch?v=3liCbRZPrZA

Let x = (x1, . . . , xp) ∈ Rp and

φ(x) = (x1, . . . , xp, x
2
1 , . . . , x

2
p ,
√

2x1x2, . . . ,
√

2xixj , . . .
√

2xp−1xp)>.

Still have
〈φ(x), φ(y)〉 = 〈x, y〉+ 〈x, y〉2

But explicit mapping too expensive to compute: φ(x) ∈ Rp+p(p+1)/2.
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Reproducing kernel Hilbert space
Nice space of functions for non-parametric statistics and machine
learning?

Require that

the evaluation functionals f 7→ f (x) be C0 for all x ∈ X .
the space should be a Hilbert space H

Then by the Riesz representation theorem, there must exist an element
hx ∈ H such that

∀f ∈ H, f (x) = 〈hx , f 〉H .
But then by definition hy (x) = 〈hx , hy 〉H = hx(y).
Define the reproducing kernel as the function

K : X × X → R
(x , y) 7→ 〈hx , hy 〉H .

By definition hx(·) = K (x , ·) so that

f (x) = 〈K (x , ·), f 〉H and 〈K (x , ·),K (y , ·)〉H = K (x , y).

A space with these properties is called a reproducing kernel Hilbert space
(RKHS).
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Positive definite function

Definition (Positive definite function)

A symmetric positive definite function is a function K : (x , y) 7→ K (x , y)
such that for all x1, . . . , xn ∈ X and α1, . . . , αn ∈ R,∑

1≤i ,j≤n
αiαjK (xi , xj) ≥ 0.
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A reproducing kernel is a positive definite function

Proposition

A reproducing kernel is a positive definite function.

Proof of the claim The reproducing kernel is necessarily a symmetric
positive definite function since for all x1, . . . , xn ∈ X , and all
α1, . . . , αn ∈ R.∑

i ,j

αiαjK (xi , xj) =
〈∑

i αiK (xi , ·),
∑

j αjK (xj , ·)
〉
H
≥ 0,

with equality if and only if αi = 0 for all i .

Converse?

Yes, any symmetric positive definite function is the reproducing kernel of
a RKHS (Aronszajn, 1950).
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Moore-Aronszajn theorem

Theorem

A symmetric function K on X is positive definite if and only if there
exists a Hilbert space H and a mapping

φ : X → H
x 7→ φ(x)

such that K (x , y) = 〈φ(x), φ(y)〉H.

When we work with kernels, we therefore always use a feature map but
very often implicitly. We will not show this theorem in this course.
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Common RKHSes for X = Rp

Linear kernel

K (x , y) = x>y

H = {fw : x 7→ w>x | w ∈ Rp}
‖fw‖H = ‖w‖2

Polynomial kernel

Kh(x , y) = (γ + x>y)d

H

Radial Basis Function kernel (RBF)

Kh(x , y) = exp
(
− ‖x−y‖

2
2

2h

)
H = Gaussian RKHS
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Nonlinear SVM : Hard margin
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Nonlinear SVM: Soft margin
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‖f ‖H measures the smoothness of the function f

Indeed:

|f (x)− f (x ′)| = |
〈
f ,K (x , ·)− K (x ′, ·)

〉
H
| ≤ ‖f ‖H‖K (x , ·)− K (x ′, ·)‖H

f is Lipschitz with respect to the `2 distance induced by the RKHS

d(x , x ′) = ‖K (x , ·)−K (x ′, ·)‖H =
√

K (x , x) + K (x ′, x ′)− 2K (x , x ′)

‖f ‖H is the Lipschitz constant
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Some data do not live in a vector space...

Sequence of human hemoglobin subunit gamma-1 (HGB1)

MGHFTEEDKATITSLWGKVNVEDAGGETLGRLLVVYPWTQRFFDSFGNLSSAS. . .

Xml tree of a webpage Graph structure of a molecule

Can we learn functions of these? → Kernels for combinatorial objects
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Working with strings

Let Σ be an alphabet of symbols or letters (e.g. {A,C,G,T})

A sequence of letters is called a word or a string

u = u1 . . . un a string (e.g. u=ATA)

|u| = n is the length of the string

u1:k = u1 . . . uk is prefix of u

uk:n = uk . . . un is a suffix of u

uv = u1 . . . unv1 . . . vm is the concatenation of u and v .

v is a substring of u if there exist words u′ and u′′ such that
u = u′vu′′. We will then note v @ u.

v is a subsequence of u, if there exist a sorted index set I such that
v = uI . For example v = u1u3u4u7 is a subsequence of u since for
I = {1, 3, 4, 7} this subsequence can be written v = uI .

ε is the empty string and so u = εu = uε
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Kernel for strings: p-spectrum kernel

Idea: a word is represented by the list of substrings of length p. For
example the representation of GAGA for the 2-spectrum kernel on
{A,C,G} is

AA AC AG CA CC CG GA GC GG

(0, 0, 1, 0, 0, 0, 2, 0, 0)

The feature map for a string s is

φ(s) =
(
φu(s)

)
u∈Σp with φu(s) = #{i | si :(i+p−1) = u}

The kernel is
K (s, t) =

∑
u∈Σp

φu(s)φu(t).
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String kernels: other spectrum kernels

Blended spectrum kernel

K̃p(s, t) =

p∑
j=1

ajKi (s, t) with Kj the usual j-spectrum kernel.

Mismatch kernel

Like the spectrum kernel but allowing mistakes...

φp,mu (s) = #
{

v | v @ s, |v | = |u|, dH(u, v) ≤ m
}
.

with dH(u, v) =
∑n

k=1 1{ui 6=vi} the Hamming distance between u and v
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String kernels: subsequence kernels

Denote In = {1, . . . , n}

Feature map:
φu(s) = #

{
I ⊂ I|s| | u = sI

}

Kernel:

K (s, t) =
∑
u∈Σ∗

φu(s)φu(t)

=
∑
(I ,J)

1{sI =tJ}

= #
{

(I , J) | sI = tJ
}

The empty substring ε is counted only once in each string.
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Subsequence kernels: dynamic programming

K (sa, t) = K (s, t) +
∑

k:tk=a

K (s, t1:k−1)

So that, if we denote κij := K (s1:i , t1:j), the recursion becomes

κi , j = κi−1, j +

j∑
k=1

1{tk=si} κi−1,k−1

ε t1 . . . tj . . .

ε 1 1 . . . 1 . . .
s1 1 κ1,1 . . . κ1,j . . .
s2
...

si−1 1 κi−1,1 . . . κi−1,j

si 1 κi ,1 . . . κi ,j
...

...
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Other types of kernels

Fisher kernels

Tree kernels

Graph kernels

Dedicated kernels for genomics/proteomics

Set kernels

and more

SVM 17/27



Kernel combinations

Assume K ,K1 and K2 are positive definite functions,
then the following are still p.d. kernel functions:

Sum of kernels: For α1, α2 > 0, K̃ (x , y) = α1K1(x , y) + α2K (x , y)

Limits of kernels: K (x , y) = lim
n→∞

Kn(x , y)

Pointwise product: K̃ (x , y) = K1(x , y) K2(x , y)

Pairwise kernel: K̃ (x , y) =
∑
z∈Z

K (x , z)K (z , y)

Normalized kernel: K̃ (x , y) =
K (x , y)√

K (x , x)K (y , y)
= cos∠

(
φ(x), φ(y)

)
In terms of kernel matrices

Pointwise product: K̃ = K1 �K2 (Hadamard product)

Pairwise kernel: K̃ = K2 (Matrix product)

SVM 18/27



Kernel combinations

Assume K ,K1 and K2 are positive definite functions,
then the following are still p.d. kernel functions:

Sum of kernels: For α1, α2 > 0, K̃ (x , y) = α1K1(x , y) + α2K (x , y)

Limits of kernels: K (x , y) = lim
n→∞

Kn(x , y)

Pointwise product: K̃ (x , y) = K1(x , y) K2(x , y)

Pairwise kernel: K̃ (x , y) =
∑
z∈Z

K (x , z)K (z , y)

Normalized kernel: K̃ (x , y) =
K (x , y)√

K (x , x)K (y , y)
= cos∠

(
φ(x), φ(y)

)
In terms of kernel matrices

Pointwise product: K̃ = K1 �K2 (Hadamard product)

Pairwise kernel: K̃ = K2 (Matrix product)

SVM 18/27



Kernel combinations

Assume K ,K1 and K2 are positive definite functions,
then the following are still p.d. kernel functions:

Sum of kernels: For α1, α2 > 0, K̃ (x , y) = α1K1(x , y) + α2K (x , y)

Limits of kernels: K (x , y) = lim
n→∞

Kn(x , y)

Pointwise product: K̃ (x , y) = K1(x , y) K2(x , y)

Pairwise kernel: K̃ (x , y) =
∑
z∈Z

K (x , z)K (z , y)

Normalized kernel: K̃ (x , y) =
K (x , y)√

K (x , x)K (y , y)
= cos∠

(
φ(x), φ(y)

)
In terms of kernel matrices

Pointwise product: K̃ = K1 �K2 (Hadamard product)

Pairwise kernel: K̃ = K2 (Matrix product)

SVM 18/27



Kernel combinations

Assume K ,K1 and K2 are positive definite functions,
then the following are still p.d. kernel functions:

Sum of kernels: For α1, α2 > 0, K̃ (x , y) = α1K1(x , y) + α2K (x , y)

Limits of kernels: K (x , y) = lim
n→∞

Kn(x , y)
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Representer theorem

Theorem (Kimmeldorf and Wahba, 1971)

Consider the optimization problem

min
f ∈H

L(f (x1), . . . , f (xn)) + λ‖f ‖2
H

Then any local minimum is of the form

f =
n∑

i=1

αiK (xi , ·),

for some vector α ∈ Rn.

Proof Indeed, let f be a local optimum and consider the subspace

S = {g | g =
n∑

i=1

αiK (xi , ·), α ∈ Rn}.
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Representer theorem

We can decompose f = f// + f⊥ with f// = ProjS(f ).

We then have

f⊥(xi ) = 〈f⊥,K (xi , ·)〉H = 0 and 〈f⊥, f//〉H = 0.

Thus

L(f (x1), . . . , f (xn)) + λ‖f ‖2
H

= L(f//(x1), . . . , f//(xn)) + λ
(
‖f//‖2

H + 2〈f⊥, f//〉H + ‖f⊥‖2
H
)

= L(f//(x1), . . . , f//(xn)) + λ ‖f//‖2
H + λ ‖f⊥‖2

H

So that we must have f⊥ = 0.
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Learning with functions from a RKHS

min
f ∈H

1

n

n∑
i=1

`(f (xi ), yi ) + λ ‖f ‖2
H (P)

By the representer theorem, the solution of the regularized empirical risk
minimization problem lies in the subspace of H generated by the point
xi , i.e.,

f ∗ =
n∑

i=1

αiK (xi , ·) for some αi ∈ R. (R)

The solution of (P) is therefore of the form (R) with α ∈ Rn the solution
of

min
α∈Rn

1

n

n∑
i=1

`
( n∑

j=1

αjK (xj , xi ), yi

)
+ λ

∑
1≤i ,j≤n

αiαjK (xi , xj).
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Kernel ridge regression

min
1

2

n∑
i=1

(f (xi )− yi )
2
2 +

λ

2
‖f ‖2
H

We could use the representer theorem and solve the optimization
problem w.r.t. α

We will show directly that the predictor can be expresses solely with
the Gram matrix.

We know that the solution to ridge regression is

ŵ = (X>X + λI)−1X>y
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A matrix identity and the matrix inversion lemma
Let X ∈ Rn×p,

X> + X>XX> = (Ip + X>X)X> = X>(In + XX>)

X>(In + XX>)−1 = (Ip + X>X)−1X>

Ip − X>(In + XX>)−1X = Ip − (Ip + X>X)−1X>X

= (Ip + X>X)−1
[
(Ip + X>X)− X>X

]
= (Ip + X>X)−1

Matrix inversion lemma

(Ip + X>X)−1 = Ip − X>(In + XX>)−1X

Computational cost reduced from O(p3) to O(n2p).
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Kernel ridge regression

Denoting k(z) the vector with entries [k(z)]i = K (xi , z), we have

z>ŵ = z>(X>X + λIp)−1X>y

= z>X>(XX> + λIn)−1y

= k(z)>(λIn + K)−1y

So we have f (x) =
∑n

i=1 αiK (xi , x) with

α = (λIn + K)−1y .
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Ressources

http://www.kernel-machines.org/
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