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Let x = (x1,x2) € R? and ¢(x) = (x1, %2, x2,x2,V2x1x0) "

(P(x),0(y)) = xiy1+xy2 + xEyE + x3y2 + 2xxy1y»
= xay1 +xey2 + (ay)? + (ey2)® + 20ay1) (xey2)
= (x,y)+ (x,y)°

Forw=(0,0,1,1,0)", w'¢(x)—-1<0 & |x|2<1L

Linear separators in R> correspond to conic separators in R?.
http://www.youtube.com/watch?v=31iCbRZPrZA

Let x = (x1,...,Xp) € RP and

B(X) = (X105, Xp, XE, ooy X p,\fX1X2,...,\f2X,'XJ',...\/§Xp_1Xp)T.

Still have

(0(x), 9(y)) = (x,y) + (x,y)?
But explicit mapping too expensive to compute: ¢(x) € RPHP(PH1)/2,
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e the evaluation functionals f — f(x) be C° for all x € X
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Reproducing kernel Hilbert space

Nice space of functions for non-parametric statistics and machine
learning? Require that

e the evaluation functionals f — f(x) be C° for all x € X

@ the space should be a Hilbert space H

Then by the Riesz representation theorem, there must exist an element
hyx € H such that

Vi eH, f(x)=(hf),.
But then by definition hy(x) = (hx, h,),, = hx(y).
Define the reproducing kernel as the function
K:XxX—>R
(x,¥) = (hx; hy),, -
By definition hy(-) = K(x,-) so that
F(x) = (K(x,-), f) and - (K(x,), K(y,-))s = K(x,y)-

A space with these properties is called a reproducing kernel Hilbert space
(RKHS).
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Positive definite function

Definition (Positive definite function)

A symmetric positive definite function is a function K : (x,y) — K(x,y)

such that for all xq,...,x, € X and aq,...,a, € R,
Z ajoK(xi, x;) > 0.
1<ij<n

SVM 4/27



A reproducing kernel is a positive definite function

Proposition
A reproducing kernel is a positive definite function.
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A reproducing kernel is a positive definite function

Proposition
A reproducing kernel is a positive definite function.

Proof of the claim The reproducing kernel is necessarily a symmetric
positive definite function since for all x1,...,x, € X, and all
at,...,an € R

>~ aiaiK(x.q) = (3 aiK(x,). 3 05K (5,)) >0,
ij

with equality if and only if o;j = 0 for all .

Converse?

Yes, any symmetric positive definite function is the reproducing kernel of
a RKHS (Aronszajn, 1950).
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Moore-Aronszajn theorem

Theorem

A symmetric function K on X is positive definite if and only if there
exists a Hilbert space H and a mapping

o X —H
X = ¢(x)

such that K(x,y) = (¢(x), o(y)) .
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Moore-Aronszajn theorem

Theorem
A symmetric function K on X is positive definite if and only if there
exists a Hilbert space H and a mapping

o: X —-H
X B(x)

such that K(x,y) = (¢(x), o(y)) .

When we work with kernels, we therefore always use a feature map but
very often implicitly. We will not show this theorem in this course.

SVM 6/27
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Linear kernel
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Common RKHSes for X = RP

Linear kernel
° K(x,y)=x"y
o H={fy: x—w'x|wecRrP}

o [fwlla = lIwll2

Polynomial kernel

o Ku(x,y)=(v+x"y)
o H

Radial Basis Function kernel (RBF)

x—vl]2
o Kilx,y) =exp (- L51E)
o H = Gaussian RKHS

SVM 7/27



Nonlinear SVM : Hard margin
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Nonlinear SVM: Soft margin

SVM - Degree-4 Polynomial in Feature Space

SVM - Radial Kernel in Feature Space

Training Error: 0.180
Test Error: 0.245
Bayes Error:  0.210

S 5

\“‘6_’"

Training Error: 0.160
Test Error: 0.218
Bayes Error:  0.210 o
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||| measures the smoothness of the function f

Indeed:

[F(x) = FO = [(F KOx ) = KO )), < Dl K (x ) = K(X ) e
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|| f]|22 measures the smoothness of the function f

Indeed:

[F(x) = FO = [(F KOx ) = KO )), < Dl K (x ) = K(X ) e

o f is Lipschitz with respect to the ¢, distance induced by the RKHS

d(x,x") = ||K(x, ) =K (X, )l = VK(x, x) + K(X', x') — 2K (x, x)

@ ||f||5 is the Lipschitz constant

SVM 10/27



Some data do not live in a vector space...

@ Sequence of human hemoglobin subunit gamma-1 (HGB1)
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Some data do not live in a vector space...

@ Sequence of human hemoglobin subunit gamma-1 (HGB1)

MGHFTEEDKATITSLWGKVNVEDAGGETLGRLLVVYPWTQRFFDSFGNLSSAS. ..

Xml tree of a webpage Graph structure of a molecule

Can we learn functions of these? — Kernels for combinatorial objects

SVM
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Working with strings

@ Let X be an alphabet of symbols or letters (e.g. {A,C,G,T})
A sequence of letters is called a word or a string

U=uy...upa string (e.g. u=ATA)

°
°
@ |u| = nis the length of the string
@ Uy.p = U1...uU is prefix of u

°

Uj:np = Uk ... U, is a suffix of u
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Working with strings

Let X be an alphabet of symbols or letters (e.g. {A,C,G,T})
A sequence of letters is called a word or a string
U=uy...upa string (e.g. u=ATA)

|u| = nis the length of the string

Ur.x = U7 ... Uy is prefix of u

Uj:np = Uk ... U, is a suffix of u

Uuv = ui...UpV1...Vnm is the concatenation of u and v.

v is a substring of u if there exist words v/ and u” such that
u= u'vu”. We will then note v C u.

@ v is a subsequence of u, if there exist a sorted index set / such that
v = u;. For example v = uyusugu7 is a subsequence of u since for
I ={1,3,4,7} this subsequence can be written v = u.

@ ¢ is the empty string and so u = cu = ue
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Kernel for strings: p-spectrum kernel

Idea: a word is represented by the list of substrings of length p. For
example the representation of GAGA for the 2-spectrum kernel on
{a,C,G}is

AA AC AG CA CC CG GA GC GG
(0, 0, 1, 0, 0, 0, 2 0, 0
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Kernel for strings: p-spectrum kernel

Idea: a word is represented by the list of substrings of length p. For
example the representation of GAGA for the 2-spectrum kernel on
{a,C,G}is

AA AC AG CA CC CG GA GC GG
(0, 0, 1, 0, 0, 0, 2 0, 0

The feature map for a string s is

¢(S) = (¢U(5)) ueYP with ¢u(s) = #{’ ’ Sii(i+p—-1) = u}
The kernel is

K(s,t) = > du(s) pu(t)-

uexr
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String kernels: other spectrum kernels

Blended spectrum kernel

ZaJ s, t) with K; the usual j-spectrum kernel.
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String kernels: subsequence kernels

Denote Z, = {1,...,n}

Feature map:

Pu(s) = #{I C Ly | u=s}
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String kernels: subsequence kernels

Denote Z, = {1,...,n}

Feature map:
du(s) = #{I C Ly | u= st}

Kernel:

Ks.t) = 3 0u(s) du(t)

uUeEL*

= Y gty
(1,J)

= #{(,) s =1}

@ The empty substring € is counted only once in each string.
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Subsequence kernels: dynamic programming

K(sa, t) = ZKStlkl

k:ty=a
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Subsequence kernels: dynamic programming

K(sa,t) = K(s,t)+ > K(s, tr:—1)
k:ty=a

So that, if we denote xj; := K(sy.j, t1.j), the recursion becomes

J
Kijj =Ki-1,j+ ) lip—syKi—1k-1
J J k i
k=1
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Subsequence kernels: dynamic programming
K(Saa t) = K(Sa t) + Z K(57 tl:k—l)

k:ty=a

So that, if we denote xj; := K(sy.j, t1.j), the recursion becomes

J
Kij = Ki-1,j + E Lt =s) Ki-1k—1

k=1
€ t1 .. tj
15 1 1 e 1
51 1 R1,1 R1,j
52
sici | 1 Kicin ... Kic1y
Si 1 Ri1l Rij
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Other types of kernels

Fisher kernels

°
@ Tree kernels
o Graph kernels
°

Dedicated kernels for genomics/proteomics

@ Set kernels

and more
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Kernel combinations

Assume K, K1 and K, are positive definite functions,
then the following are still p.d. kernel functions:
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Kernel combinations

Assume K, K1 and K, are positive definite functions,
then the following are still p.d. kernel functions:
Sum of kernels: For a1, an > 0, K(x,y) = a1Ki(x,y) + aaK(x,y)
Limits of kernels:  K(x,y) = lim K,(x,y)
n—o0
Pointwise product:  K(x,y) = Ki(x,y) K2(x y)

Pairwise kernel: K(x,y) Z K(x,z)K(z,y)
zeEZ
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n—o0

Pointwise product:  K(x,y) = Ki(x,y) K2(x y)

Pairwise kernel: K(x,y) Z K(x,z)K(z,y)

zeZ
K(x,y)

K(x,x)K(y,y)

Normalized kernel: f((x,y) = = cos é(qb(x), gb(y))

In terms of kernel matrices

Pointwise product: K = K; ® Kj (Hadamard product)

Pairwise kernel: K

K? (Matrix product)
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Representer theorem
Theorem (Kimmeldorf and Wahba, 1971)

Consider the optimization problem

1r(ré|7r_1[ L(f(x1),- .-, f(xn)) + )‘HfH%-L

Then any local minimum is of the form
f= Z aiK(xi,-),
i=1

for some vector o € R".
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Representer theorem

Theorem (Kimmeldorf and Wahba, 1971)

Consider the optimization problem

p&tﬂ L(f(x1),- .-, f(xn)) + )‘HfH%-L

Then any local minimum is of the form

f= z": aiK(xi, ),
i=1

for some vector o € R".

Proof Indeed, let f be a local optimum and consider the subspace
n
S={glg= ZaiK(X;,~), a €R"}.
i=1

SVM 19/27



Representer theorem

We can decompose f = f/, + f| with f;; = Projg(f).
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We can decompose f = f/, + f| with f;; = Projg(f). We then have
fL(X,') = <fl, K(X,', )>7.[ =0 and (fl, f//>9.[ =0.
Thus
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Representer theorem

We can decompose f = f/, + f| with f;; = Projg(f). We then have
fL(X,') = <f’l, K(X,', )>7.[ =0 and <fl, f//>7.[ =0.
Thus

L(f(x1)- -, f(xa)) + A%
L(fy(x1), - £y () + A (11 115+ 20FL, £)a + 1L 0130)
= L(fy(a), ..., f(xa)) + My l5 + ML

So that we must have f| = 0.
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Learning with functions from a RKHS

ln
m'fgéf;,;+/\f2 P
fe'ﬂ”id (f(xi), i) | HH (P)
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By the representer theorem, the solution of the regularized empirical risk
minimization problem lies in the subspace of H generated by the point
Xj, i.e.,
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Learning with functions from a RKHS

1[1
m'fgéf;,;+/\f2 P
felﬂni:l (f(xi), i) | HH (P)

By the representer theorem, the solution of the regularized empirical risk
minimization problem lies in the subspace of H generated by the point
Xj, i.e.,

n

= Za;K(x,-, -) for some a; € R. (R)

i=1
The solution of (P) is therefore of the form (R) with a € R” the solution
of
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Kernel ridge regression

1L A
min 5 Z(f(Xi) —yi)5+ §||f||%{
i=1
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Kernel ridge regression

1L A
min 5 Z(f(xi) —yi)5+ §||f||%{
i=1

@ We could use the representer theorem and solve the optimization
problem w.r.t. o

o We will show directly that the predictor can be expresses solely with
the Gram matrix.

We know that the solution to ridge regression is

w=(X"X+ )Xy
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A matrix identity and the matrix inversion lemma
Let X € R"™*P,

X"+ XTXXT = (1, + XTX)X" =X"(1, + XXT)
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A matrix identity and the matrix inversion lemma
Let X € R"™*P,

X"+ XTXXT = (1, + XTX)X" =X"(1, + XXT)

X', + XX =1, + X"X)"1xT

L — X (I, + XXX = 1, — (I, + XTX)"1XTX
= (L +X"X)"H[(1, + X"X) = XTX]
= (I, +X"'%x)7!

Matrix inversion lemma

(I, +X"X) =1, - X"(1, + XXT)71X

Computational cost reduced from O(p%) to O(n?p).
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Kernel ridge regression

Denoting k(z) the vector with entries [k(z)]; = K(x;,z), we have

z'w = z' (XX +Al,)" Xy
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Kernel ridge regression

Denoting k(z) the vector with entries [k(z)]; = K(x;,z), we have

z'w = z' (XX +Al,)" Xy
= zZ"XT(XXT + A1) 1y
= k(z) (Al +K)ly

So we have f(x) = > ; ;K (x;,x) with

a=\,+K)ty|
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Ressources

http://www.kernel-machines.org/
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