A unified perspective on convex structured sparsity:
Hierarchical, symmetric, submodular norms and beyond

Guillaume Obozinski Francis Bach
Université Paris-Est INRIA - Sierra project-team
Laboratoire d’Informatique Gaspard Monge Département d’Informatique
Groupe Imagine, Ecole des Ponts - ParisTech de I'’Ecole Normale Supérieure
Marne-la-Vallée, France Paris, France
guillaume.obozinski@enpc.fr francis.bach@ens.fr

December 9, 2016

Abstract

In this paper, we propose a unified theory for convex structured sparsity-inducing norms on
vectors associated with combinatorial penalty functions. Specifically, we consider the situation of
a model simultaneously (a) penalized by a set-function defined on the support of the unknown
parameter vector which represents prior knowledge on supports, and (b) regularized in £,-
norm. We show that each of the obtained combinatorial optimization problems admits a natural
relaxation as an optimization problem regularized by a matching sparsity-inducing norm.

To characterize the tightness of the relaxation, we introduce a notion of lower combinatorial
envelope of a set-function. Symmetrically, a notion of upper combinatorial envelope produces the
most concise norm expression. We show that these relaxations take the form of combinatorial
latent group Lassos associated with min-cover penalties also known as block-coding schemes. For
submodular penalty functions, the associated norm, dual norm and the corresponding proximal
operator can be computed efficiently using a generic divide-and-conquer algorithm.

Our framework obtains constructive derivations for the Lasso, group Lasso, exclusive Lasso,
the OWL, OSCAR and SLOPE penalties, the k-support norm, several hierarchical penalties
considered in the literature for chains and tree structures, and produces also new norms. It leads
to general efficient algorithms for all these norms, recovering as special cases several algorithms
proposed in the literature and yielding improved procedures for some cases.

For norms associated with submodular penalties, including a large number of non-decomposable
norms, we generalize classical support recovery and fast rates convergence results based respec-
tively on generalization of the irrepresentability condition and the restricted eigenvalue condi-
tion.

1 Introduction

The last years have seen the emergence of the field of structured sparsity, which aims at identifying
a model of small complexity given a priori knowledge on its possible structure.

Various regularizations, in particular convex, have been proposed that formalized the notion that
prior information can be expressed through functions encoding the set of possible or encouraged
supports' in the model. Several convex regularizers for structured sparsity arose as generalizations

1By support, we mean the set of indices of non-zero parameters.



of the group Lasso (Yuan and Lin, 2006) to the case of overlapping groups (Jacob et al., 2009;
Jenatton et al., 2011a; Mairal et al., 2011), in particular to tree-structured groups (Jenatton et al.,
2011b; Kim and Xing, 2010; Zhao et al., 2009b). Other formulations have been considered based on
variational formulations (Micchelli et al., 2013), the perspective of multiple kernel learning (Bach
et al., 2012), submodular functions (Bach, 2010) and norms defined as convex hulls (Chandrasekaran
et al., 2012; Obozinski et al., 2011). Non convex approaches were introduced as well, by Baraniuk
et al. (2010); He and Carin (2009); Huang et al. (2011). We refer the reader to Huang et al. (2011)
for a concise overview and discussion of the related literature and to Bach et al. (2012) for a more
detailed tutorial presentation.

In this context, and given a model parametrized by a vector of coefficients w € RY with V =
{1,...,d}, the main objective of this paper is to find an appropriate way to combine together
combinatorial penalties, that control the structure of a model in terms of the sets of variables
allowed or favored to enter the function learned, with continuous regularizers —such as ¢,-norms,
that control the magnitude of their coefficients —into a convex regularization that would control
both.

Part of our motivation stems from previous work on regularizers that “convexify” combinatorial
penalties. Bach (2010) proposes to consider the tightest convex relaxation of the restriction of a
submodular penalty to a unit ¢.-ball in the space of model parameters w € R?. However, this
relaxation scheme implicitly assumes that the coefficients are in a unit £,.-ball; then, the obtained
relaxation induces clustering artifacts of the values of the learned vector. It would thus seem desirable
to propose relaxation schemes that do not assume that coefficients are bounded but rather to control
continuously their magnitude and to find alternatives to the £,-norm. Finally the class of functions
considered is restricted to submodular functions.

Yet another motivation is to follow loosely the principle of two-part or multiple-part codes from min-
imum description length (MDL) theory (Rissanen, 1978). In particular if the model is parametrized
by a vector of parameters w, it is possible to encode (an approximation of) w itself with a two-part
code, by encoding first the support Supp(w)—or set of non-zero values—of w with a code length
of the form F'(Supp(w)) and by encoding the actual values of w using a code based on a log prior
distribution on the vector w that could motivate the choice of an f,-norm as a surrogate for the
code length. This leads naturally to consider penalties of the form pF(Supp(w)) + v|w|b and to
find appropriate notions of relaxation.

In this paper, we therefore consider combined penalties of the form mentioned above and propose
first an appropriate convex relaxation in Section 2; first elementary examples are listed in Section 2.1;
the properties of general combinatorial functions preserved by the relaxation are captured by the
notion of lower combinatorial envelope introduced in Section 2.2. In Section 2.3, we introduce the
upper combinatorial envelope, which provides concise representation of the norm and establishes
links with atomic norms. Section 3 relates the obtained norms to the latent group Lasso and to
set-cover penalties. In Section 4, we provide first examples of instances of the norms, in particular,
by considering what we call overlap count Lasso norms; we relate the proposed norms to overlapped
¢1/4,-group norms and with the latent group Lasso in Section 4.1. The exclusive Lasso is presented
in Section 4.3. After introducing key variational forms of the norm in Section 5, we discuss the
case of submodular functions in Section 6 and propose in particular general algorithms to compute
each norm, its dual and its associated proximal operator. Based on this theory, we study more
sophisticated examples of the norms in Section 7. In particular, we discuss the case of overlap
count Lasso norms in Section 7.1, the case of norms for hierarchical sparsity in Section 7.2 and the
case of symmetric norms associated to functions of the cardinality of the support in section 7.3. In
Section 8, we extend two statistical results that are classical for the Lasso to all norms associated with
submodular functions, namely a result of support recovery based on an irrepresentability condition



and fast rates based on a restricted eigenvalue condition. Finally, we present some experiments in
Section 9.

Notations. When indexing vectors of R? with a set A or B in exponent, 2 and z? € R? refer to
two a priori unrelated vectors; by contrast, when using A as an inder, and given a vector x € RY,
x4 denotes the vector of R? such that [z4]; = x;,i € A and [1a]; =0, i ¢ A. If 5 is a vector in R9,
we use the shorthand s(A) := ), , s; and |s| denotes the vector whose elements are the absolute
values |s;| of the elements s; in s. For p > 1, we define ¢ through the relation zl) + % = 1. The

{4-norm of a vector w will be noted [Jwl|q = (3, w-q)l/q

; Wy . For a function f : R¢ — R, we will denote

by f* is Fenchel-Legendre conjugate. We will write R, for R, U {+oco}. We will denote by t,¢s the
indicator function of the set S, taking value 0 on the set and +oo outside. We will write [k, k2] to
denote the discrete interval {k1,...,ka}.

2 Penalties and convex relaxations

Let V = {1,...,d} and 2V = {A | A C V} its power-set. We will consider positive-valued set-
functions of the form F : 2V — R, such that F(2) = 0 and F(A) > 0 for all A # @. We do not
necessarily assume that F' is non-decreasing, even if it would a priori be natural for a penalty function
of the support. We however assume that the domain of F, defined as Dy := {A | F(A) < o},
covers V, i.e., satisfies Ugep, A = V (if F is non-decreasing, this just implies that it should be finite
on singletons).

With the motivations of the previous section, and denoting by Supp(w) the set of non-zero coefficients
of a vector w, we consider a penalty involving both a combinatorial function F' and ¢,-regularization:

pen : w s 1 F(Supp(w)) + v Jw]E, (1)

where 1 and v are strictly positive scalar coefficients. Since such non-convex discontinuous penaliza-
tions are untractable computationally, we undertake to construct an appropriate convex relaxation.
The most natural convex surrogate for a non-convex function, say A, is arguably its convex envelope
(i.e., its tightest convex lower bound) which can be computed as its Fenchel-Legendre bidual A**.
However, one relatively natural requirement for a regularizer is to ask that it be also positively ho-
mogeneous (p.h.) since this leads to formulations that are invariant by rescaling of the data. Our
goal will therefore be to construct the tightest positively homogeneous convex lower bound of the
penalty considered.

Now, it is a classical result that, given a function A, its tightest p.h. (but not necessarily convex)
lower bound Ay is Ap(w) = infysg w (see Rockafellar, 1970, p.35). This is instrumental here
given the following proposition:

Proposition 1. Let A : R* — R, be a real valued function, A; defined as above. Then C, the
tightest positively homogeneous and convex lower bound of A, is well-defined and C = A}*.

Proof. The set of convex p.h. lower bounds of A is non-empty (since it contains the constant zero
function) and stable by taking pointwise suprema. Therefore it has a unique majorant, which
we call C. We have for all w € R A7*(w) < C(w) < A(w), by definition of C, the fact that
Ap, is an p.h. lower bound on A and that Fenchel bi-conjugation preserves homogeneity. (It can
indeed be checked that the conjugate of a homogeneous function h is the indicator of the polar
of {w | h(w) < 1}; then, since polar sets are closed convex sets containing the origin, the bi-
conjugate function is the support function of this polar set and must therefore be a gauge; finally



gauges are homogeneous (see Rockafellar, 1970, for more details)). We thus have for all A > 0,
A (Aw)A" < COw)A ™ < A(Aw)A L, which implies that for allw € R, A3*(w) < C(w) < Ap(w).
Since C' is convex, we must have C' = AJ*, hence the desired result. O

Using its definition we can easily compute the tightest positively homogeneous lower bound of the
penalization of Eq. (1), which we denote peny:

peny (w) = /{I;fo % F(Supp(w)) + v AP~ [lwlf?.

Setting the gradient of the convex objective to 0, one gets that the minimum is obtained for
A= (’Ij—g)l/p F(Supp(w))l/p [|w] ;1, and that

pen, (w) = (qu)/ (pv)'/? O (w),
where we introduced the notation

O(w) := F(Supp(w))/? |w],-

Up to a constant factor depending on the choices of p and v, we are therefore led to consider the
positively homogeneous penalty © we just defined, which combines the two terms multiplicatively.
Consider the norm €, (or Q" if a reference to F' is needed) whose dual norm” is defined as

*(g) . [sallq
Q(s) = PR (A (2)
We have the following result:

Proposition 2 (Convex relaxation). The norm ), is the convex envelope of ©.

Proof. Denote ©(w) = |lw||, F(Supp(w))'/9, and compute its Fenchel conjugate:
O%(s) = max w's — ||wl|, F(Supp(w))*/9, by definition of O,
weR
= max max wjsa — ||wall, F(A)? by decomposing on subsets of V,

ACV y , erlA

= TAXLjoa)l,<F(A)/1} = HR(s)<1}
where 1{,¢cg) is the indicator of the set S, that is the function equal to 0 on S and +o00 on S¢. The
Fenchel bidual of O, i.e., its largest (thus tightest) convex lower bound, is therefore exactly ©2,. O

Note that the function F' is not assumed submodular in the previous result. Since the function ©
depends on w only through |w|, by symmetry, the norm €, is also a function of |w|; such norms
are often called absolute (Stewart and Sun, 1990). Given Proposition 1, we have the immediate
corollary:

Corollary 1 (Two parts-code relaxation). Let p > 1. The norm w — (qu)*/(pv)*/? Q,(w) is the
tightest convex positively homogeneous lower bound of the function w + pF(Supp(w)) + v|wlf?.

The penalties and relaxation results considered in this section are illustrated on Figure 1.

2The assumptions on the domain Dy of F and on the positivity of F indeed guarantee that 5 is a norm.



Figure 1: Penalties in 2D. Left: graph of the penalty pen. Middle: graph of penalty pen, with
p = 2. Right: graph of the norm QI in blue overlaid over graph of pen,. All of them are for the
combinatorial function F : 2V — R*, with F(@) =0, F({1}) = F({2}) = 0.65 and F({1,2}) = 1.

2.1 Special cases

Case p = 1. In that case, we have ¢ = oo, and we always have Q; = || - |1, which can be seen
from the definition of © or from Eq. (2). But regularizing with an ¢;-norm leads to estimators
that can potentially have all possible sparsity patterns and in that sense an ¢;-norm cannot encode
hard structural constraints on the patterns. Since this means in other words that the ¢;-relaxations
essentially lose the combinatorial structure of allowed sparsity patterns possibly encoded in F', we
focus, from now on, on the case p > 1.

Lasso, group Lasso. Our norm {, instantiates as the ¢, ¢, and ¢;/¢,-norms for the simplest
functions:

o If F(A) = 4], then Q,(w) = [w]j, since Qi(s) = maxacy {544 = (maxacy ‘Sf#)”q =

Is]loo- It is interesting that the cardinality function is always relaxed to the ¢;-norm for all
{,-relaxations, and that it is not an artifact of the traditional relaxation on an f.-ball.

o If F(A) = 1{az0} , then Q,(w) = [[w]p, since Q5 (s) = maxacy [[sally = [Is]|q-

o If F(A)=32%_ l{ang, 20}, for (Gj)jeq1,..q) a partition of V, then Q,(w) = 379_, [lwg, |,
is the group Lasso or ¢;/¢,-norm (Yuan and Lin, 2006). This result provides a principled
derivation for the form of these norms, which did not exist in the literature. For groups which
do not form a partition, this identity does in fact not hold in general for p < oo, as we discuss
in Section 4.1.

Submodular functions and p = co. For a submodular function F' and in the p = oo case, the
norm QF that we derived actually coincides with the relaxation proposed by Bach (2010), and as
showed in that work, Q (w) = f(Jw|), where f is a function associated with F' and called the Lovdsz
extension of F. We discuss the case of submodular functions in detail in Section 6.

2.2 Lower combinatorial envelope

The fact that, when F is a submodular function, Q£ is equal to the Lovdsz extension f on the
positive orthant provides a guarantee on the tightness of the relaxation. Indeed f is called an
“extension” because VA C 2V, f(14) = F(A), so that f can be seen to extend the function F to R?
(set-functions are naturally defined as functions on the vertices of the hypercube, that is, {0, 1},
and thus f extends this representation of set-functions).



As a consequence, when F' is submodular, Qf (14) = f(14) = F(A), which means that the relaxation
is tight for all w of the form w = ¢ 14, for any scalar constant ¢ € R and any set A C V. If F' is not
submodular, this property does not necessarily hold, thereby suggesting that the relaxation could
be less tight in general. To characterize to which extend this is true, we introduce a couple of new
concepts.

Many of the properties of ), for any p > 1, are captured by the unit ball of 2% or its intersection
with the positive orthant. In fact, as we will see in the sequel, the ¢, ,-relaxation plays a particular
role, to establish properties of the norm, to construct algorithms and for the statistical analysis,
since it it reflects most directly the combinatorial structure of the function F.

We define the canonical polyhedron® associated with the combinatorial function as the polyhedron P
defined by
Pr={s¢ Ri, VACV, s(A) < F(A)}.

By construction, it is immediate that the unit ball of Q7 is {s € R? | |s| € Pr}.

From this polyhedron, we construct a new set-function which reflects the features of F' that are
captured by Pp:

Definition 2 (Lower combinatorial envelope). Define the lower combinatorial envelope (LCE) of F
as the set-function F_ defined by:

F_(A) = max s(A) = max s(A4).
SEPp s€Re, VBCV,s(B)<F(B)

By construction, (a) for any A C V, F_(A) < F(A) and, (b) even when F' is not monotonic, F_ is
always non-decreasing (because Pp C RY).

One of the key properties of the lower combinatorial envelope is that, as shown in the next lemma,
QF is an extension of F_ (and not of F' in general), in the same way that the Lovdsz extension is
an extension of F' when F' is submodular.

Lemma 1 (Extension property). For any A C V, we have QL (14) = F_(A).

Proof. From the definitions of Pr and F_, we get: QX (14)= max 1)js=maxs'14=F_(A).
QL] (s)<1 s€PF
O

A second important property is that a function F' and its LCE F_ share the same canonical poly-
hedron Pg.

Lemma 2 (Equality of canonical polyhedra). Pr = Pp_.

Proof. Since F_ < F, any s € Pr_ is such that s(A) < F_(A) < F(A) for any A so that clearly
Pr_ C Pr. Now conversely, for any s € Pp, any for any A, we have s(4) < maxgep, s'(4) = F_(A),
so that s € Pp_ which implies Pr C Pp_. O

But the sets {w € R? | |w| € Pr} and {w € R? | |w| € Pr_} are respectively the unit balls of Q]
and Qfg. As a direct consequence, we have:

Lemma 3 (Equality of norms). For allp>1, QF =Q,".

3The reader familiar with submodular functions will recognize that for these functions the canonical polyhedron
is the intersection of the submodular polyhedron with the positive orthant.
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Figure 2: Intersection of the canonical polyhedron with the positive orthant for three different
functions F. Full lines materialize the inequalities s(A) < F(A) that define the polyhedron. Dashed
lines materialize the induced constraints s(A4) < F_(A) that results from all constraints s(B) <
F(B), B € 2V. From left to right: (i) submodular case, that is, Dp = 2V and F_ = F = F;
(ii) Dp = {{2},{1,2}} and F_({1}) < F({1}); (iii) Dr = {{1},{2}} corresponding to a weighted

f1-norm.

Lemma 4 (Lower envelope properties). The operator £ : F +— F_ is order-preserving (i.e., if
G < F then G_ < F_), idempotent (i.e., F—_ = F_), and F_ is the unique pointwise smallest
combinatorial function among all functions G such that Pr = Pg.

Proof. To see that L is order preserving, note that if G < F, then Pg C Pr so that G_(A) =
maxsep, S(A) < maxsep, s(A) = F_(A). Idempotence follows from Lemma 2: indeed, since Pr =
Pr_, we have F__(A) = maxyep, S(A) = maxsep, s(A) = F_(A), which shows the result. Finally,
if Prp = Pg we have G_ = F_, in particular F_ < G. Since F_ itself satisfies the property that
Pr = Pp_, this shows that this is indeed the smallest element in that set. O

Note that this shows that F_ is really a combinatorial counterpart of the convex envelope. Indeed, the
operator which maps the function f to its convex envelope is also order-preserving and idempotent,
and while the convex envelope of f provides a lower bound of f which is the pointwise infimum of
all the functions that are above all the affine functions smaller than f, the LCE is a lower bound
of F' which is the pointwise infimum of all the function that are greater than all the non-decreasing
modular functions smaller than F.

Figure 2 illustrates the fact that F' and F_ share the same canonical polyhedron and that the value
of F_(A) is determined by the values that F takes on other sets. This figure also suggests that
some constraints { s(A) < F(A) } can never be active and could therefore be removed. This will be
formalized in Section 2.3.

To illustrate the relevance of the concept of lower combinatorial envelope, we compute it for a few
examples.

Example 1 (Basic functions). For A — |A|, we have |A|_ = |A] because by the extension property
|Al- = Q(‘,'ol(lA) = [[1als = |A|. Likewise, for F : A liazey, F-(A) = |[14]lc = F(A) and for
the combinatorial function associated with the group Lasso and defined by F(A) := ZBeg l{anB+oY,
with B a partition of V, we have F_(A) = > pcsl1alBlle = X peg llanBllee = F(A). In fact,
since all these functions are submodular we have QL (w) = f(|w|) for f the Lovdsz extension of F,
which satisfies f(14) = F(A), so that we necessarily have F_(A) = f(14) = F(A).



Example 2 (Range function). Consider, on V = [1,d], the range function F' : A — max(A) —
min(A) + 1 where min(A) (resp. max(A)) is the smallest (resp. largest) element in A. A motivation
to consider this function is that it induces the selection of supports that are exactly intervals. Since
the range is always larger than the cardinality we have F(A) > |A| for all A and so since taking LCFEs

is order-preserving and using that |A|— = |A| we have F_(A) > |A|- = |A|. On the other hand,
F_(A) = maxsep, s(A) < e 8 < |A] because s; < F({i}) = 1. Combining these inequalities
proves that F_(A) = |A|. As an immediate consequence QF = || - ||y which does not tend to favor

supports that are intervals. In this case, the structure encoded in the combinatorial function is lost
in the relazation...

To summarize, the LCE of a function F is the combinatorial function that is actually extended by
the norm Qg . It thus essentially worth considering only combinatorial functions that are equal to
their LCE.

2.3 Upper combinatorial envelope

Let F' be a set-function and Pp its canonical polyhedron. In this section, we follow an intuition
conveyed by Figure 2 and find a compact representation of F': the polyhedron Pr has in many cases
a number of faces which much smaller than 2¢. We formalize this in the next lemma.

Lemma 5 (Core set). There exists a unique minimal subset D of 2 such that for s € Ri,

s€Pp e (VA€ Dp, s(A) < F(A)).

Proof. 1f Cp is the convex hull of {0} U {F(A)"'1a}acv,azz and Ap the set of vertices of the
polytope Cg that are different from 0, then, for s € Ri we have
-1
(s S PF) & (gl;réljév(s,F(A) 1a) < 1) REN (£%§<S’C> < 1) & (‘féli);(s,a) < 1).
But we must have Ar C {F(A) '1a}acv,azs and so there exists a set Dp such that Ap =
{F(A)"'14}aep,. This set satisfies the property announced in the lemma and is clearly minimal,

because removing a vertex would lead to a convex hull strictly included in Cr whose polar would
strictly include Pg. O

We call Dr the core set of F. It corresponds to the set of faces of dimension d — 1 of Pr. Note
that the set Ap is almost the set of atoms characterizing the norm in the sense of Chandrasekaran
et al. (2012). More precisely, since the norm QL is such that QF (w) = QL (Jw]), i.e. the norm
is an absolute norm (Bach et al., 2012, p.27), it follows from the previous result that QL is the
atomic norm in the sense of Chandrasekaran et al. (2012) associated with the collection of atoms
AP™ = {a € {-1,0,1}¢ | |a|] € Ap}. Similarly, it is easy to show that Q! is the atomic norm
associated with the following set of atoms {u € R?, |ul|, = 1,uac = 0 for some A € Dr}. This is
illustrated in Figure 4 and 5.

This notion motivates the definition of a new set-function:

Definition 3 (Upper combinatorial envelope). We call upper combinatorial envelope (UCE) the
function Fy defined by Fy(A) = F(A) for A € Dp and F{(A) = oo otherwise.

As the reader might expect at this point, F; provides a compact representation which captures all
the information about F that is preserved in the relaxation:

Proposition 3 (Equality of canonical polyhedra). F,F_ and F. all define the same canonical
polyhedron Pr_ = Pp = Pg, and share the same core set Dp. Moreover, VA € Dp, F_(A) =
F(A)=Fy(A).



Proof. To show that Qg* = Qg we just need to show Pp, = Pr. By the definition of I} we have
Pr, ={s € R?| s(A) < F(A), A € Dp} but the previous lemma precisely states that the last set is
equal to Pp.

We now argue that, for all A € Dp, F_(A) = F(A) = F(A). Indeed, the equality F(A) = F}(A)
holds by definition, and, for all A € D, we need to have F(A) = F_(A): by polarity, and with
notations of Lemma 5, the fact that Pr = Ppr_ entails that Cr = Cr_, so that F_(A)"'14 € Cp,
and, if we had F_(A) < F(A) then F(A)~'14 would be a strict convex combination of the origin
and F_(A)~'14, which contradicts the fact that F(4)~11, is an extreme point of Cp. O

Finally, the term “upper combinatorial envelope” is motivated by the following lemmas:

Lemma 6 (Upper envelope property). F. is the pointwise supremum of all the set-functions H
such that Py = Pr.

Proof. If Pr = Py then we must have Cr, = Cp, which is only possible if F(A)™114 € Cy for all A;
in particular, for all A € Dp, since F(A)~'14 is an extreme point of Cr, it must also be an extreme
point of Cy because of the inclusion Cy C Cp,, so that we must have H(A) = F(A) = I, (A) for
all A € Dp. For any set A ¢ Dp, we clearly have H(A) < F(A) since F{(A) = +oo. Finally,
we proved in 3 that Pr, = Pr so that F is indeed the largest element in the above defined set of
functions. O

Example 3. (Basic functions)

o For F = ||, we have (QL)* = || - |l so0 that Pr = [0,1]%. This shows that D is the set of
singletons Dp = {{1},...,{d}}.
o For F = 1{azpy, since ()" = || [|1, we have Pp = {s € RL | s(V) < F(V)} so that the

coreset is Dp = {V'}.

e For the group Lasso with G a partition of V, we have (QL)*(s) = maxpeg ||s(B)||1, so that
Pr = {s € RL | s(B) < F(B),B € G}. Clearly, given that G is a partition, none of the
constraints indexed by G can be removed so that Dp = G.

The picture that emerges at this point from the results above is rather simple: any combinatorial
function F' defines a polyhedron Pr whose faces of dimension d — 1 are indexed by a set Dp C 2V
that we called the core set. In symbolic notation: Pr = {s € R? | s(A) < F(A), A € Dg}. All the
combinatorial functions which are equal to F' on D and which otherwise take values that are larger
than its lower combinatorial envelope F_, have the same ¢, tightest positively homogeneous convex
relaxation Qg for all p > 1, the smallest such function being F_ and the largest F,.. Moreover
F_(A) = QL (A4), so that QL is an extension of F_. By construction, and even if F' is a non-
decreasing function, F_ is non-decreasing, while F; is obviously not a non-decreasing function, even
though its restriction to Dp is. It might therefore seem an odd set-function to consider; however if
Dpr is a small set, since Qg = Qfﬂ it provides a potentially much more compact representation of
the norm, which we now relate to a norm previously introduced in the literature.

3 Latent group Lasso, block-coding and set-cover penalties

The norm €2, is actually not a new norm. It was introduced from a different point of view by Jacob
et al. (2009) (see also Obozinski et al., 2011) as one of the possible generalizations of the group Lasso
to the case where groups overlap.



To establish the connection, we now provide a more explicit form for €2,,, which is different from the
definition via its dual norm which we have exploited so far.

We consider models that are parameterized by a vector w € RV and associate to them latent variables
that are tuples of vectors of RV indexed by the power-set of V. Precisely, with the notation

V= {v = (vMacy € (RV)QV s.t. Supp(v?) A},

given a set function F : 2" — R, we define the norms €, as (see an illustration in Figure 3):

Qp(w) = min > F(A) [[ph]], st w=Y_ o™ (3)
vev iov Acv
th} V\‘Q'r . V{I,Z} V{1,2,3.4}

R

Figure 3: Illustration of the decomposition of w into w =3 , -y, vA.

As suggested by notations and as first proved for p = 2 by Jacob et al. (2009), we have:

Lemma 7. §, and Q;‘, are dual to each other.

An elementary proof of this result is provided by Obozinski et al. (2011)*. We propose a slightly
more abstract proof of this result in appendix A using explicitly the fact that €, is defined as an
infimal convolution.

We will refer to this norm €2, as the latent group Lasso since it is defined by introducing latent
variables v4 that are themselves regularized instead of the original model parameters. We refer the
reader to Obozinski et al. (2011) for a detailed presentation of this norm, some of its properties and
some support recovery results in terms of the support of the latent variables. In Jacob et al. (2009)
the expansion (3) did not involve all terms of the power-set but only a subcollection of sets G C 2V.
The notion of core set discussed in Section 2.3 is dual to the notion of redundant set introduced by
Obozinski et al. (2011, Sec. 8.1).

The motivation of Jacob et al. (2009) was to find a convex regularization which would induce sparsity
patterns that are unions of groups in G and explain the estimated vector w as a combination of a
small number of latent components, each supported on one group of G. The motivation is very
similar in Huang et al. (2011) who consider an ¢y-type penalty they call block coding, where each
support is penalized by the minimal sum of the coding complexities of a certain number of elementary
sets called “blocks” which cover the support. In both cases the underlying combinatorial penalty is
the minimal weighted set cover defined for a set B C V by:

F(B) = min » F(A)é* s.t. Y 6Maz1p, 51 e{0,1}, ACV.
@Dacv jov AcV
While the norm proposed by Jacob et al. (2009) can be viewed as a form of “relaxation” of the

cover-set problem, a rigorous link between the ¢y and convex formulation is missing. We will make
this statement rigorous through a new interpretation of the lower combinatorial envelope of F'.

4The proof in Obozinski et al. (2011) addresses the p = 2 case but generalizes immediately to other values of p.
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Indeed, assume w.l.o.g. that w € Ri. For z,y € RV, we write >y if z; > y; for all i € V. Then,

Qoo(w) = min > F(A)[o?]| s.t. vt zw
VY Aoy Acv
= min F(A) 4 s.t. Z 6414 > w,
0reRy AV Acv
since if (v4) acv is a solution so is (§414)acy with 64 = ||v4||o. We then have
F.(B) = min F(A) 64, s.t. Y 6*Maz1p, €01, ACV,  (4)
%) Acv ACV

because constraining § to the unit cube does not change the optimal solution, given that 15 < 1.
But the optimization problem in (4) is exactly the fractional weighted set-cover problem (Lovész,
1975), a classical relaxation of the weighted cover set problem in Eq. (4), where § € {0, 1} is replaced
by d € [0, 1].

Combining Proposition 2 with the fact that F_(A) is the fractional weighted set-cover, now yields:

Theorem 4. Q,(w) is the tightest convex relazation of the function w — ||wl|, F(Supp(w))/4 where
F(Supp(w)) is the weighted set-cover of the support of w.

Proof. We have F_(A) < F(A) < F(A) so that, since F_ is the lower combinatorial envelope of F,
it is also the lower combinatorial envelope of F', and therefore QII: T = Qg = Qg . O

This proves that the norm Qg proposed by Jacob et al. (2009) is indeed in a rigorous sense a
relaxation of the block-coding or set-cover penalty.

Example 4. To illustrate the above results consider the block-coding scheme for subsets of V. =
{1, 2,3} with blocks consisting only of pairs, i.e., chosen from the collection A := {{17 2},{2,3}, {1, 3}}
with costs all equal to 1. The following table lists the values of F, F_ and F:

Lo | A | {2} [ {3} {1,12} | {2713} | {1713} | {1,2,3}

F 0 00 00 00 00
F 0 1 1 1 1 1 1 2
F_ 0 1 1 1 1 1 1 3/2

Here, F is equal to its UCE (except that F1 (@) = 00) and takes therefore non trivial values only on
the core set Dp = Ag. All non-empty sets except V' can be covered by exactly one set, which explains
the cases where F_ and F' take the value one. F(V) = 2 since V is covered by any pair of blocks
and a slight improvement is obtained if fractional covers is allowed since for 61 = 6o = 63 = %, we
have 1y = 01 1{2,3) + 02 1431} + 03 111 2y and therefore F_ (V) = 01 + 62 + 03 = %

The interpretation of the LCE as the value of a minimum fractional weighted set cover suggests a
new interpretation of F (or equivalently of Dr) as defining the smallest set of blocks (Dr) and
their costs, that induce a fractional set over problem with the same optimal value.

It is interesting to note that it is Lovdsz (1975) who introduced the concept of optimal fractional
weighted set cover, while we just showed that the value of that cover is precisely F_, i.e., the
combinatorial function which is the restriction on indicators of sets of the function QEJ = Qfg =
fol-|, where, if F_ is submodular, f is its Lovdsz extension. As an immediate consequence, if F
is submodular, F; = F_ is equal itself to its associated fractional weighted set cover.

The interpretation of F_ as the value of a minimum fractional weighted cover set problem allows us
also to show a result which is dual to the property of LCEs, and which we now present.

11



(O.1/F({2})
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Figure 4: Unit balls in R? for four combinatorial functions (actually all submodular) on two variables.
Top left and middle row: p = oco; top right and bottom row: p = 2. Changing values of F' may make
some of the extreme points disappear. All norms are hulls of a disk and points along the axes, whose
size and position is determined by the values taken by F. On top row: F(A) = F_(A) = |A['/? (all
possible extreme points); and from left to right on the middle and bottom rows: F(A) = |A| (leading
0 |- 1), F(A) = F_(A) = min{|A], 1} (leading t0 | - [,), F(A) = F_(4) = 11 an(2)0) + Laro).
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F(A) = 1iangsyzey + Lian(i,2120)
Qo(w) = |ws| + [lwr,2y |2

¢
¢ 9

|A|1/2 _
all pos31ble extreme points = Han{l.z3}#0}
Hlian(z3)22) T Lian{2y e}

Figure 5: Unit balls for structured sparsity-inducing norms, with the corresponding submodular
functions and the associated norm, for />-relaxations. For each example, we plot on top the sets D 4
and on the bottom the convex hull of their union.
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3.1 Largest convex positively homogeneous extension

By symmetry with the characterization of the lower combinatorial envelope as the smallest combi-
natorial function that has the same tightest convex and positively homogeneous (p.h.) relaxation as
a given combinatorial function F', we can, given a convex positively homogeneous function g, define
the combinatorial function F' : A — g¢(14), which by construction, is the combinatorial function
which g extends (in the sense of Lovész ) to R‘j_, and ask if there exists a largest convex and p.h.
function g7 among all such functions. It turns out that this problem is well-posed if the question
is restricted to functions that are also coordinate-wise non-decreasing. Perhaps not surprisingly, it
is then the case that the largest convex p.h. function extending the same induced combinatorial
function is precisely Q| as we show in the next lemma.

Lemma 8 (Largest convex positively homogeneous extension). Let g be a convez, p.h. and coordinate-
wise non-decreasing function defined on Ri. Define F as F : A g(14) and denote by F_ its lower
combinatorial envelope. Then F = F_ and Vw € R?, g(|w|) < QL (w).

Proof. From Equation (4), we know that F_ can be written as the value of a minimal weighted
fractional set-cover. But if 15 <), 5414, we have

> 0%9(14) 2 9(Cacv 07) = 9(1p),
Acv

where the first inequality results from the convexity and homogeneity of g, and the second from
the assumption that it is coordinate-wise non-decreasing. As a consequence, injecting the above
inequality in (4), we have F_(B) > F(B). But since, we always have F_ < F| this proves the
equality.

For the second statement, using the coordinate-wise monotonicity of g and its homogeneity, we have

g(lw]) < lwlloog(Isupp(w)) = l[wllooF'(Supp(w)). Then, taking the convex envelope of functions on
both sides of the inequality we get g(| - [)** < (]| - ||OOF(Supp(-)))** = QF  where (-)* denotes the
Fenchel-Legendre transform. O
4 Examples

In this section, we present the main examples of existing and new norms that fall into our framework.
For more advanced examples, see Section 7.

4.1 Overlap count functions, their relaxations and the ¢, //,-norms

A natural family of set functions to consider are the functions that, given a collection of sets G C
2V are defined as the (weighted with positive weights dg, B € G) number of these sets that are
intersected by the support:

Frn(A) = Z dplianB+o}- (5)
Beg

Since A — 1{anp+w) is clearly submodular and since submodular functions form a positive cone,
all these functions are submodular, which implies that Qg N is a tight relaxation of Fr. We call them
overlap count functions.
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Overlap count functions vs. set-covers. As mentioned in Section 2.1, if G is a partition, the
norm Qgﬁ is the ¢1/f,-norm; in this special case, Fiy is actually the value of the minimal (integer-
valued) weighted set-cover associated with the sets in G and the weights d¢.

However, it should be noted that, in general, the values of functions of the form Fn are quite
different from values of a minimal weighted set-covers. It has rather the flavor of some sort of
“maximal weighted set-cover” in the sense that any set that has a non-empty intersection in the
support would be included in the cover.

¢,-relaxations of Fy vs. {1/l,-norms. In the case where p = oo, Bach (2010) showed that even
when groups overlap we have Q0 (w) = 3 5. dBllwg|o, since the Lovdsz extension of a sum of
submodular functions is just the sum of the Lovasz extensions of the terms in the sum, and given
that on the positive orthant the Lovasz extension of A +— dplysnp+e} (Which is a submodular
function) coincides with w — dp||wp||so-

The situation is more subtle when p < oco: in that case, and perhaps surprisingly, Qgﬁ is not the
weighted (1 /¢, norm with overlap (Jenatton et al., 2011a), also referred to as the overlapping group
Lasso (which should clearly be distinguished from the latent group Lasso) and which is the norm
defined as Q, : w — 3 seg U5llwsllp- The differences between the norm Qf" and Q,, is illustrated
in Example 5, Table 1 and Figure 6. The norm Qgﬂ does not have a simple closed form in general.
In terms of sparsity patterns induced however, Qg " behaves like Qf0, and as a result the sparsity
patterns allowed by Qg n are the same as those allowed by the corresponding weighted ¢1 /¢, norm
with overlap. However, the definition of Qg n as a convex relaxation leads to fewer overpenalization
artefacts than the ¢;/¢,-norm with overlap (see Section 9).

{p-relaxation of Fiy vs. latent group Lasso based on G. It should be clear as well that Q]Ij n
is not itself the latent group Lasso associated with the collection G and the weights dg in the sense
of Jacob et al. (2009). Indeed, the latter corresponds to the function F, such that F,(A) = d4 for
A € G and F,(A) = oo otherwise, and whose LCE is the value of the minimal fractional weighted set
cover by elements in G and with the weights (dg)geg. Clearly, F, is in general strictly smaller than
F and since the relaxation of the latter is tight, it cannot be equal to the relaxation of the former,
if the combinatorial functions are themselves different. Obviously, the function Qgﬂ is still (see
Table 1) another latent group Lasso corresponding to a fractional weighted set cover and involving
a larger number of sets that the ones in G (possibly all of 2). This last statement leads us to what
might appear to be a paradox, which we discuss next.

Example 5. To illustrate the difference between the norms Qv QFn and the weighted ¢4 /¢,-norm
associated with a given set of groups G with associated weights (dg)ceg, consider the case where
G = {{1,2},{2,3}} and all weights equal 1. By definition Fr(A) = liangi,212e} + l{an{2,3}42}
FU(A) = FU4+(A) =1 for A€ G and 0o otherwise, and F, _(A) = ming g {6+ 0" | 14 < 8112y +
§' 12,3y }- We have the table below:

o | {1} | {2} | {3} | (L2} | {23} | {13} [{12,3}
Fy %) 00 00 00 1 1 00 00
Fu,— 0 1 1 1 1 1 2 2
A 0 1 2 1 2 2 2 2
Frn4+ | oo 1 00 1 00 00 00 2

The two set functions Fu,_ and Fn are clearly different. In fact, we have F,(A) = max(]A N
{1,3},|AN{2}|) and Fn is the value of the set cover associated with G'= {{1},{3},{1,2,3}} with
weights (1,1,2). The corresponding unit balls are represented on Figure 6 together with the unit ball
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Latent group Lasso

Overlap count Lasso

01 /4, with overlap

Jacob et al. (2009) (new) Jenatton et al. (2011a)

F Fu<A) FQ(A) == fA -

Def. | min {Zd353|2135321,4} fa=Y dpliansio )

s€fo,1]9! Beg Beg Beg
. 1 . 1 1
p(w) Juin S il min > S0 | > A sl
eV Beg VeV gy Beg
" -1 -1 . -1

() max '/ s, e S sslly | min a2,

Table 1: Three norms naturally associated with a set of blocks B € G with associated weights dp
either via minimal-set cover, or “overlap count”. For the two first norms that are tight relaxations
of a combinatorial function the latter is given in the first and second rows. The notation used is
V(w,G) ={veV|w=3 40"} and V(w) = V(w,2"), with V defined in Section 3. When
p =00, the norms of the two last columns are equal, with the correspondence between dg and fg
given by the definition of f4 := Fr(A). See appendix B for a proof of the form of the dual norm of
the ¢1 /¢,-norm with overlap.

of the €1 /la-norm with overlap. As can be seen on the figure, the non-trivial supports induced by
QLY are {1,2},{2,3}, while the nontrivial supports induced by the other norms are {3} = {1,2}°
and {1} = {2,3}°.

Supports stable by intersection vs. formed as unions. Jenatton et al. (2011a) have shown
that the family of norms they considered induces possible supports which form a family that is
stable by intersection, in the sense that the intersection of any two possible support is also a possible
support. But since as mentioned above they have the same support as the norms fo n,forl < p < oo,
which are latent group Lasso norms, and since Jacob et al. (2009) have discussed the fact that the
supports induced by any norm §2, are formed by unions of elements of the core set A, this might
appear paradoxical that the allowed support can be described at the same time as intersections and
as unions. There is in fact no contradiction because in general the set of supports that are induced

Qv (w) <1

QN (w) <1 lwiioyllz + lwizsyllz <1

Figure 6: Units balls for Q5%, Q2" and ¢, /£, with overlap for the groups G = {{1,2}{2,3}} in R®.
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by the latent group Lasso are in fact not necessarily stable by union: for some set A obtained exactly
as a union it is possible to have another set B with A C B and F(A) = F(B).

Three different norms. To conclude, we must, given a set of groups G and a collection of weights
(da)ceg, distinguish three norms that can be defined from it, the weighted ¢; /¢,-norm with overlap,
the norm Qgﬁ obtained as the ¢, relaxation of the submodular penalty Fi, and finally, the norm
Qg U obtained as the relaxation of the set-cover or block-coding penalty with the weights dg. For
sets of groups that form a partition, they are all equal, but not in general.

Some of the advantages of using a tight relaxation still need to be assessed empirically and theoreti-
cally, but the possibility of using ¢,-relaxation for p < oo removes the artifacts that were specific to
the /., case.

4.2 Submodular range function

The weighted ¢ /¢,-norm with overlap has been, among others, used to induce interval patterns on
chains and rectangular or convex patterns on grids (Jenatton et al., 2011a). In particular, one of the
norms considered by Jenatton et al. (2011a) provides a nice example of an overlap count function,
which it is worth presenting.

Example 6 (Modified range function). A shown in Example 2 in Section 2.2, the natural range
function on a sequence leads to a trivial LCE. Consider now the penalty with the form of Eq. (5)
with G the set of groups defined as

G={[LA1<k<p}U{[kp]|1<k<p}

A simple calculation shows that F~ (@) = 0 and that for A # &, Fn(A) = d — 1 + range(A). This
function is submodular as a sum of submodular functions, and thus equal to it lower combinatorial
envelope, which implies that the relaxation retains the structural a prior encoded by the combinatorial
function itself. We will consider the {5 relaxation of this submodular function in the experiments
(see Section 9) and compare it with the {1 /la-norm with overlap of Jenatton et al. (2011a).

4.3 Exclusive Lasso

The exclusive Lasso is a formulation proposed by Zhou et al. (2010) which considers the case where
a partition G = {Gq,..., G} of V is given and the sparsity imposed is that w should have at most
one non-zero coefficient in each group G;. The regularizer proposed by Zhou et al. (2010) is the
lp/€i-norm defined” by |lwlle, /e, = (X geg llwe ). Is this the tightest relaxation?

A natural combinatorial function corresponding to the desired constraint is the function F(A) defined
by F'(A) =1 if maxgeg |[ANG| =1 and F'(A) = co otherwise.

5The Exclusive Lasso norm which is £,/¢; should not be confused with the group Lasso norm which is ¢1/£p.
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To characterize the corresponding €2, we can compute explicitly its dual norm €7

. B Isallg
(G = max Ty

= a 5.t. <
max [salll st |[ANG|<1,Geg

k

k
= q _ Z q
i;€G a1<]<kz|817 Zmax|81| . 1||3GjHooa
]:

which shows that €2 is the /loo-norm or equivalently that €, is the £,/¢;-norm and provides a
theoretical justification for the choice of this norm: it is indeed the tightest relaxation! It is inter-
esting to compute the lower combinatorial extension of F' which is F_(A) = QZ (14) = [|[Lalle. je, =
maxgeg |A N G|. This last function is also a natural combinatorial function to consider; by the pre-
vious result F_ has the same convex relaxation as F', but it would be however less obvious to show
directly that Qg’ is the ¢, /¢1-norm (see appendix C for a direct proof which uses Lemma 8). It is
easy to check that F_ is not submodular.

5 A variational forms of the norm

Several results on €, rely on the fact that it can be related variationally to Q.

Lemma 9 (variational formulation). €, admits the two following variational formulations:

Qp(w) = max K; /q\wl\ st. VYACV, k(4) <F(A) (6)
rERY + iev
1 Jws|?
= HllIl Oo(n). (7)
z;f)m 1

Proof. Using Fenchel duality, we have:

_ T *
Qp(w) = max 5’ w st Q(w) <1
= max stw st VACYV, |[sa]|? < F(A) by definition of €,
seR
= max s |w| st. VACV, s!(A) < F(A)
S‘GR
= max K, /q\wl\ st. VACYV, k(A) < F(A) by a change of variable.
rRERY + eV
1w, 1 . .. . w;
But it is easy to verify that k; /q|w | = min o ‘1 +— nml with the minimum attained for n; = |1/‘1|7
ni€ERy P 771’ K;
We therefore get:
1w 1
Qp(w) = max min = \le “n'k st. VACV, k(A) < F(A)
rE€RY neRL ey p ’I7p q
1 |w; 1
= min max - \le “n'k  st. VACYV, k(A) < F(A)
neR{ neRy P} q
. 1 w; p 1
= min - | p_‘l + Qo (n),
77€]R+ i€V p 772 q
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where we could exchange minimization and maximization since the function is convex-concave in
7 and k, and where we eliminated formally k by introducing the value of the dual norm Q.. (n) =

T O
maXgepp K 1.

P
Since Qo is convex, the last formulation is actually jointly convex in (w,n) since (z, z) — %!ﬂ’{ + %z

P
is convex, as (x,z) — !ﬂ’{ is the perspective function of x — ||z[|} (see Boyd and Vandenberghe,

2004, p.89).

It should be noted that the norms €2, therefore belong to the broad family of H-norms as defined”
in Bach et al. (2012, Sec. 1.4.2.) and studied by Micchelli et al. (2013).

The above result is particularly interesting if F' is submodular since € is then equal to the Lovész
extension of F' on the positive orthant (Bach, 2010). In this case in particular, it is possible, as we
will see in the next section to propose efficient algorithms to compute {2, and 7, the associated
proximal operators, and algorithms to solve learning problems regularized with €, thanks to the
above variational form.

Using the variational form to compute the proximal operator of the norm. Consider the
proximal problem min,cga %Hw — ul|3 + AQ2(w). Expressing the norm, with the variational form
(16) and minimizing with respect to w shows that the solution satisfies w} = (1 + n%)_lui, with
n* the solution of the optimization problem in which w has been eliminated and which after some
algebra takes the form

u2

min L+ Qu(n). (8
ek =1+ A () )

For submodular functions, these variational forms are also the basis for the local decomposability
result of Section 8.1 which is key to establish support recovery in Section 8.2.

6 The case of submodular penalties

In this section, we focus on the case where the combinatorial function F' is submodular.

Specifically, we will consider a function F defined on the power set 2V of V = {1,...,d}, which is
nondecreasing and submodular, meaning that it satisfies respectively

VA,B CV, AC B= F(A) < F(B),
VA,BCV, F(A)+ F(B) > F(ANB)+ F(AU B).

Moreover, we assume that F'(@) = 0. These set-functions are often referred to as polymatroid set-
functions (Edmonds, 2003; Fujishige, 2005). Also, without loss of generality, we assume that F'
is strictly positive on singletons, i.e., for all k € V, F({k}) > 0. Indeed, if F({k}) = 0, then by
submodularity and monotonicity, if A > k, F(A) = F(A\{k}) and thus we can simply consider
V\{k} instead of V.

Classical examples are the cardinality function and, given a partition of V into GiU--- UG =V,
the set-function A — F(A) which is equal to the number of groups Gi,...,G) with non empty
intersection with A, which, as mentioned in Section 2.1 leads to the grouped ¢;/¢,-norm.

6Note that H-norms are in these references defined for p = 2 and that the variational formulation proposed here
generalizes this to other values of p € (1, 00).
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With a slightly different perspective than the approach of this paper, Bach (2010) studied the special
case of the norm Qg when p = oo and F' is submodular. As mentioned previously, he showed that
in that case the norm QZ is the Lovdsz extension of the submodular function F, which is a well
studied mathematical object.

Before presenting results on ¢,-relaxations of submodular penalties, we review a certain number of
relevant properties and concepts from submodular analysis. For more details, see, e.g., Fujishige
(2005), and, for a review with proofs derived from classical convex analysis, see Bach (2013).

6.1 Review of submodular function theory

Lovasz extension. Given any set-function F', one can define its Lovdsz extension f : Ri — R, as
follows: given w € Ri, we can order the components of w in decreasing order wj;, > -+ 2 w;, > 0,
the value f(w) is then defined as

p—1

f(w) = Z(‘Tjk - mjk+1)F({j17 v ’jk}) + xij<{j17 s 7jp}) (9)

k=1

= ijk [F{d k) = F{1, - k=) (10)
k=1

We will refer to this formula as the Choquet integral form of the function. The Lovasz extension
f is always piecewise-linear, and when F' is submodular, it is also convex—see, e.g., Bach (2013);
Fujishige (2005). Moreover, for all § € {0,1}%, f(§) = F(Supp(d)) and f is in that sense an extension
of F from vectors in {0,1}¢ (which can be identified with indicator vectors of sets) to all vectors
in Ri. Moreover, it turns out that minimizing F' over subsets, i.e., minimizing f over {0, 1}d is
equivalent to minimizing f over [0,1]¢ (Edmonds, 2003).

Canonical polyhedron and norm. For consistency with notations, we denote by Pr the canon-
ical polyhedron which we define as the set of s € R% such that for all A C V, s(4) < F(A), ie.,
Pr ={s € R%, VA C V, s(A) < F(A)}, where we use the notation s(A) = >, ., sk. The sub-
modular polyhedron Pr = {s € R%, VA C V, s(A) < F(A)}, is a classical polyhedron considered
in submodular theory (Fujishige, 2005). Our canonical polyhedron is thus Pr = Pr N Ri, which
is also called the positive submodular polyhedron. One important result in submodular analysis is
that, if F'is a nondecreasing submodular function, then we have a representation of f as a maximum
of linear functions (Bach, 2013; Fujishige, 2005). In particular, for all w € Ri,

-
= . 11
flw) = max w's (11)
We recognize here that the Lovédsz extension of a submodular function F' is directly related to the
norm QF in that f(|w|) = QL (w) for all w € R?. A striking consequence of submodularity is that
the extension f can be computed in closed form (via the Choquet integral).

Greedy algorithm. Instead of solving a linear program with d + 2% constraints, a solution s to
(11) may be obtained by the following algorithm (a.k.a. “greedy algorithm”): order the components
of w in decreasing order w;, > --- > wj,, and then take for all k € V, s;, = F({j1,...,Jk}) —
F({j1,...,jr_1}). Moreover, if w € R? has some negative components, then, to obtain a solution to
maxsep w' s, we can take sj, to be simply equal to zero for all k such that wj, is negative (Edmonds,
2003).
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Contraction and restriction of a submodular function. Given a submodular function F
and a set J, two related functions, which are submodular as well, will play a crucial role both
algorithmically and for the theoretical analysis of the norm. Those are the restriction of F to a
set J, denoted F;, and the contraction of F on J, denoted F/. They are defined respectively as

Fy: A= F(ANJ) and F/:A— F(AUJ) - F(A).
Both Fj and F” are submodular if F is.

In particular the norms Qg’ : R — Ry and QII;J : R7® — R, associated respectively with F;
and F7 will be useful to “decompose” Qg in the sequel. We will denote these two norms by € ;
and Q7 for short. Note that their domains are not R¢ but the vectors with support in J and J¢
respectively.

Stable sets. Another concept which will be key in this section is that of stable set. A set A is said
stable if it cannot be augmented without increasing F', i.e., if for all sets B D A, B# A= F(B) >
F(A). If F is strictly increasing (such as for the cardinality), then all sets are stable. The set of
stable sets is closed by intersection. In the case p = oo, Bach (2013) has shown that these stable
sets were the only allowed sparsity patterns.

Separable sets. A set A is separable if we can find a partition of A into A = By U ---U By, such
that F(A) = F(B1)+---+F(By). A set Aisinseparable if it is not separable. As shown by Edmonds
(2003), the submodular polytope Pg has full dimension d as soon as F is strictly positive on all
singletons, and its faces are exactly the sets {s(A4) = F(A)} for stable and inseparable sets A. With
the terminology that we introduced in Section 2.3, this means that the core set Dp of F' is here
exactly the set of its stable and inseparable sets. The core set will clearly play a role when deriving
concentration inequalities in Section 8.2. For the cardinality function, stable and inseparable sets
are singletons.

6.2 Submodular function and lower combinatorial envelope

A few comments are in order to confront submodularity to the previously introduced notions as-
sociated with cover-sets, and lower and upper combinatorial envelopes. We have showed that
F_(A) = Qx(14). But for a submodular function Q4 (14) = f(14) = F(A) since f is the Lovéasz
extension of F. This shows that a submodular function is its own lower combinatorial envelope.
However the converse is not true: a lower combinatorial envelope is not submodular in general. E.g.,
in Example 4, we have F_({1,2}) + F_({2,3}) # F_({2}) + F_({1,2,3}).

The core set of a submodular function is the set Dg of its stable and inseparable sets, which implies
that F' can be retrieved as the value of the minimal fractional weighted set cover the sets A € Dp
with weights F'(A).

6.3 Optimization algorithms for the submodular case

In the context of sparsity and structured sparsity, prozimal methods have emerged as methods of
choice to design efficient algorithm to minimize objectives of the form f(w) + AQ,(w), where f is a
smooth function with Lipschitz gradients and €, is a proper convex function (Bach et al., 2012). In
a nutshell, their principle is to linearize f at each iteration and to solve the problem

) L
min Vf(w;) " (w — w;) + §||w — w2 + A (w),

weRd
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for some constant L. Setting \' = % This problem is a special case of the so-called proxzimal problem:
min <[|w — 2% + N, (w). (12)
weRd 2 P

The function mapping z to the solution of the above problem is called proximal operator. If this
proximal operator can be computed efficiently, then proximal algorithm provide good rates of con-
vergence especially for strongly convex objectives. We show in this section that the structure of
submodular functions can be leveraged to compute efficiently €2, €27 and the proximal operator.

Computation of 2, and Q;. A simple approach to compute the norm is to maximize in x in
the variational formulation (8). This can be done efficiently using for example a conditional gradient
algorithm, given that maximizing a linear form over the submodular polyhedron is done easily with
the greedy algorithm (see Section 6.1).

We will propose another algorithm to compute the norm based on the so-called decomposition al-
gorithm, which is a classical algorithm of the submodular analysis literature that makes it possible
to minimize a separable convex function over the submodular polytope efficiently (see, e.g., Bach,
2013, Section 8.6).

As we show in the following proposition, we can also compute 5 (s) using Algorithm 1.

Algorithm 1 Dual norm computation algorithm

1: Initialization: \p =0, t =0

2: while p(\;) # 0 do

3t Sp ¢ Argmax,cy [HSAHZ — )\tF(A)]
4 Ay < argmingycg, /(A

5 A1 & ”FSE‘J)‘I

6: t+—t+1

7: end while

8: return \;

Proposition 4. The sequence (A\;); generated by Algorithm 1 is monotonically increasing and con-
verges in a finite number of iterations to §27.

Proof. As the maximum of a finite number non-increasing linear functions of a scalar argument,
the function ¢ : A — maxacy [|[salld — AF(A)] is a non-increasing, continuous, piecewise linear
convex function. It is also non negative because |[sz||) = 0 = F(2). It is immediate to check

llsallg

that A* := min{\ | p(\) = 0} = maxgcacy Fay- At each iteration, if ©(A¢) # 0, we must have
Aty1 > At, because the function X\ — ||s4,[|d — AF(A;) is strictly positive for A = A\; and equal
to 0 for A = A\¢11. Moreover by construction, the sets A; are all distinct, as long as ¢(\;) # 0.
As a consequence we must reach ¢(Ar) = 0 after a finite number of iterations 7. At the end
of the algorithm, ¢(Ar) = 0 entails that VA C V, [[sal < ArF(A), which entails that for all
A# @, F(A) sal < Ap = F(Ap—1)""||sa,_, ||5. This shows that Ay = Q*(s). This concludes
the proof. The choice of taking the maximizer with smallest value of F(A) on line 4 of the algorithm
is not key to ensure convergence of the algorithm, but aims at (a) computing the right-derivative
which maximizes the step size in A, and simultaneously (b) obtaining a maximizing set as sparse as
possible. O

Note that this algorithm is closely related to the algorithm of Dinkelbach (1967) to maximize a ratio
of functions, and in fact applies to all functions F’; but step 3 in the algorithm requires to minimize
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a function (A +— AF(A) — [|sal/h) which can be done in polynomial time for submodular functions.
Moreover, for submodular functions, the number of iterations may be bounded by d, because the
algorithm may be reinterpreted as the divide-and-conquer algorithm for a certain separable function
(see Bach, 2013, p. 160); for the general case, it may only be bounded in general by 29.

Computation of the proximal operator. Using Eq. (8), we can reformulate problem (12) as

't 2 . 1 2 1/
Slw— 2|2+ AQ - Sl =213+ A /Y,
Join, 2Hw z||5 »(W) oin, Nerﬁ@); 2||w z||5 2 K wl

1
=  max min {(wz — 2%+ )\fzg/q|wi|}
RERLNP = wiCR 2

= max Z¢i(ﬁi),

d
RERL NP icv

with t; : Kk; — ming, egr {;(wz —2)? + )\nil/qwi}.

Thus, solving the proximal problem is equivalent to maximizing a concave separable function
> ¥i(k;) over the submodular polytope. For a submodular function, this can be solved as well
using the divide-and-conquer algorithm. More precisely, this algorithm also called decomposition
algorithm involves a sequence of submodular function minimizations (see Bach, 2013; Groenevelt,
1991). This yields an algorithm which finds a decomposition of the norm and applies recursively the
proximal algorithm to the two parts of the decomposition corresponding respectively to a restriction
and a contraction of the submodular function. We explicit this algorithm as Algorithm 2 for the
case p = 2.

Algorithm 2 Computation z = Prox,or(z)

Require: z € R, A >0

1: LetA:{j|zj7éO}
2: if A #V then
3:  Setxzyg= Prox, o ra (za)
2
4. Setza4c=0
5:  return x by concatenating x4 and  gc
6: end if )
7: Let t € RY with k; = ”jﬁF(V)
2
8: Find A minimizing the submodular function F —¢
9: if A=V then
10: reifurn z=(||z]2 — )\\/F(V))+ BB
11: end if
12: Let x4 = PTOXAQfA (z4)
13: Let x4 = Prox,ra (zac)
2
14: return z by concatenating x4 and x 4.

The derivation of this algorithm and the general form of the algorithm for the £,-case can be found
in appendix F.1. It is possible to construct a similar decomposition algorithm, namely Algorithm 5
in appendix F.2, to compute the norm itself.
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Name F(A) Norm €,

cardinality | Al Lasso (¢1)
nb of groups Y Beg L{AnB£o) Group Lasso (¢1/¢,)
max. nb of el./group maxpeg |A N B| Exclusive Lasso (¢,/01)
constant l{azey {p,-norm
sublinear f. of cardinality h(]A]), h sublinear
liazey V % k-support norm (p = 2)
concave f. of cardinality h(]Al]), h concave OWL (p = 0)

A+ 20 [() = (*F)] | OSCAR (p = 00,k =2)

Sl o1 - &) SLOPE (p = o)
chain length h(max(A)) wedge penalty
tree leaf volume Yiery fi
graphical hull volume Yicay di

Table 2: Combinatorial functions and the corresponding norms. All the norms in this table
are instances of the family of norms we study in this paper. See section 4.3 for the Exclusive lasso,
section 7.3 for functions of the cardinality, and the current section for tree and graph penalties.

7 More examples

Having presented some elements of the theory of submodular functions and presented some general
results, we are in position to develop more sophisticated examples, namely combinatorial functions
inducing hierarchical sparsity patterns and leading to norms such as the wedge penalty considered
by Micchelli et al. (2013) (see also Yan and Bien, 2015), the {.-version of the tree-structured norm
considered by Jenatton et al. (2011b); Zhao et al. (2009a) as well as tighter relaxations for the £,-case,
and more general functions of the cardinality which lead to the k-support norm of Argyriou et al.
(2012), the dual of the vector Ky-Fan k-norm, and the OWL penalties of Figueiredo and Nowak
(2014) with as particular cases the OSCAR penalty (Bondell and Reich, 2008) and the SLOPE
penalty (Bogdan et al., 2015), but also in each case to a number of new norms with algorithms to
compute them as well as the corresponding proximal operators.

7.1 Overlap count Lasso

Mairal et al. (2011) studied regularization with overlapped group ¢; /{--norms; they showed in par-
ticular that the proximal problem could be solved efficiently by reformulating it as a quadratic min-
cost flow problem and using an efficient divide-and-conquer algorithm proposed by Hochbaum and
Hong (1995) and Gallo et al. (1989). We provide an interpretation of this result in the light of the the-
ory developed in this paper. As discussion in Section 4.1, the function Frn(A) = > p.; dBl{anB+o}
is submodular as a positive combination of simple submodular functions. For any v € ]Ri, its
Lovész extension satisfies f(v) = > pcg dpmaxjepv;. The corresponding norm QL0 is thus equal
to the overlapped ¢1 /{oo-norm QL0 (w) = 37 55 dpllwplls studied by Mairal et al. (2011). How-
ever, for p < oo, Qf"(w) # Y. pcgdplwally. To work with a given submodular function it is
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key to be able to solve ming AF'(A) — s(A) for s € R, but this problem is equivalent to solving
min,,ep,17¢ Af(w) — (s, w). Yet, \f(w) = max,. g:_(x)<x (K, w) so that by duality the initial submod-
ular minimization is equivalent to

d
- i — Rj .t Q* S)\,
mp —D(mom)r st 90
with ")
% _ —1)|¢(B) _ (B) _
V() = inf { maxdy €y | » gf L (WBeg, &) =0)}.

Since s > 0, we can let k,£ > 0, and we can rewrite the previous problem as

d

o N B (B)
0?3%22%1 s(V) st Vi, Ky BZ}Q , and VB € g, szgfj <dgA.
1= 2 J

This last problem can be interpreted as a max-flow problem with the following structure: Let o and 7
be respectively a source and a sink, and consider the directed graph with nodes {o,7} U [1,dJUG
and with the following set of edges

VB € g, (0,B) with capacity dg\
VBeG,i€ B, (B,i) with unlimited capacity
Vi e [1,d], (i,7) with capacity s;.

Then 553) and k; are respectively interpreted as the flows on the edges (B,4) and (i,7), and the
previous optimization problem is equivalent to the maximization of the flow between ¢ and 7. Mairal
et al. (2011) write the counterpart of this formulation for the proximal problem of Q£ which involves
the same graph, but with additional variables u; related to the quadratic term. By reformulating
directly the submodular minimization as a max-flow problem, we can extend the results for p = co
to p < oo and compute efficiently all norms Qgﬂ (with Algorithm 5) and their proximal operators
(with e.g. Algorithm 2 for p = 2 and Algorithm 4 for general p). If some groups are nested the
max-flow formulation can be simplified to some extent: see Mairal et al. (2011) for more details. It
is interesting to note that other submodular functions such as cut functions that lead to extensions
that are variant of the total variation can take advantage of the same divide-and-conquer algorithm
with other max-flow formulations (Chambolle and Darbon, 2009; Luss and Rosset, 2014).

7.2 Hierarchical sparsity

In a number of applications, the variables or group of variables are naturally organized on a chain,
a tree or more generally a directed acyclic graph G = (V, E), in a hierarchical fashion. Obtaining
sparsity patterns that satisfy hierarchical relations is however not easy and has been the focus of a
number of papers (Bien et al., 2013; Jenatton et al., 2011b; Mairal et al., 2011; Yan and Bien, 2015;
Yuan et al., 2009; Zhao et al., 2009a).

With the usual terminology of graph theory, the variable associated to node i has therefore a set of
descendants D; (the set of nodes j such that there exists a directed path from ¢ to j, including by
convention the node ¢ itself) and ascendants A; (the set of nodes j such that i € D;). As usual, the
set of immediate descendants is called the set of children and denoted C; and the set of immediate
ancestors is called the set of parents and denoted II;. For trees, m; will denote the only parent of a
node i which is not the root. We will call the hull of B the set Ap of ancestors of B, that is the set
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Ap = U;epA;. We will call set of terminal nodes of B the set Tz of nodes of B that do not have
any descendant in B (except themselves).

In this type of setting, functions of the form F and F, are naturally associated to the graph by
choosing G to be either the collection of ancestor sets G = {A;};cv or the collection of descendant
sets G = {D, }icv. Indeed, given non-negative weights d; and f;, it is natural to define the counting

function
=Y dilpaprey = i, (13)
eV i€EAB

and the function defined as the weighted set-cover by the ancestor sets (A;);cv

Fu(B) = mf{Zfl\BCUA} (14)

el

Obviously, the role of the descendant sets and the ascendant sets in both functions can be exchanged
by considering the graph with flipped edges. Note that without loss of generality the weights f; can
be assumed non-decreasing w.r.t. to the graph (i.e., such that (j € D;) = (f; < f;) since they can
be modified to satisfy this property without changing the function F,: to see this, note that F, is a
weighted min-cover, and that j € D; is equivalent to A; C A;, therefore if f; > f;, F(A;) > F_(A;)
and so A; will never enter the cover; therefore, decreasing the value of f; to f; does not change
anything (A, is still never selected). Given this argument, using the weights f;” := minjep, f; yields
the same function Fy,. In fact, f; = Fu - (4)).

If d; = 1 for all 4, F reduces to B — |Ag]|, the size of the hull of B.
7.2.1 Special cases and comparison between F and F,.

To illustrate the relevance of combinatorial function and norms defined on a graph, we consider the
special case when the graph is either a chain or a tree.

Case of the chain. In a chain on p nodes, oriented from left to right, we have D; = [i,p],
Ap = [1,max(B)] and Tp = {max(B)}.
So that

max(B)

Z d; and FU(B) = fmax(B)~

These two functions are thus equal if and only if, for i € [1,p], d; = f; — fi—1 with fo = F(@) = 0.
The counting and set-cover functions thus define here the same family of combinatorial functions.

In the /5-case the variational form of the norm

n 2
i
shows that this norm is the wedge penalty considered by Micchelli et al. (2013). We will show in
Corollaries 5 and 6 that this norm and its proximal operators can be computed very efficiently, in
fact in linear time, usmg the PAV algorithm (Best and Chakravarti, 1990). Yan and Bien (2015)
compared the norms Q&Y with the norms Q, of Jenatton et al. (2011b) (see Sec. 4 and the next
paragraph on trees) and concluded that, even in the chain case these norms are different, and that
the norm QQ over-penalizes elements at the ends of the chain; in the light of our work, this is not
surprising since the norm €2, do not provide a tight relaxation of Fi, as opposed to Q n.
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Case of a tree. In the case of a tree, we first show that the two families of functions are not
equivalent. Indeed, consider the tree consisting of a root 1 with two children 2 and 3. F and F{,
are defined respectively as weighted intersection counts with descendants set D; and by minimum
weight set-cover by collections of ancestor sets A;, with weights associated to sets and resulting
values reported in Figure 7 below.

‘ set ‘ weight ommmeaenns . ‘ set ‘ weight
Dy =1{1,2,3} d; i A= {1} h
Fn | Dy = {2} do Elr s ~:E Fy Ay = {1,2} f2
D3 = {3} do R Az ={1,3} f2
Lo [ {2y | 8 | {2y | {13} | {23} |{1,2,3}
Fhr 0 dq dy + ds dy + ds dy + do di + ds di+2dy | di+2ds
Fy 0 f1 fa P fa P! 2fs 2f2

Figure 7: (top center) Descendant and ascendant sets defining respectively Fr, and Fj, (top left and
right) tables defining weights associated with sets, (bottom) table of values assigned by F and F
to all subsets of {1,2,3}.

For the two functions to be equal, we would need to have dy = f; = 0. This shows that the
families of functions are in general distinct for trees. Furthermore, we can only have the inequality
Fuo({1,2}) + FU({L,3}) = 2f2 > f1 + 2f2 = FU({1}) + Fu({1,2,3}) if f1 = 0 which shows that F{,
is not submodular”.

For the function Fp, we have

Q50 (w) = dillwp,
%

0o
Clearly, this norm is an instance of the weighted ¢; /¢,-norms of the form

ﬁp(w) = Zdz||wD7Hp, p € {2,00},
i€V

that were considered by Jenatton et al. (2011b). It should be noted however that Q" # (~2p for
any p € (1,00), with Qgﬁ having no simple established closed form; the only value of p for which

the two norm coincide is p = co. Note that for p = co and p = 2, the proximal operator for ﬁp
can be computed efficiently in closed form, as a composition of proximal operators for groups of
descendants starting from the leaves (Jenatton et al., 2010).

For F,, if the f; are assumed non decreasing w.r.t. to the tree (i.e. such that Vi € V| f.. < fi),
then if we call T the set of terminal nodes (or leaves) of the tree induced on a set B of nodes,
that is, the subset of nodes i of B such that D; N B = {i}, then we have I\,(B) = >, fi- In
particular, if f; = 1 for all 4, then F,(B) = |Tg|. Note however that in that last case, the only
possible supports are unions of paths from the root to a leaf of the tree: in order to obtain a penalty
that allows as possible sparsity patterns all rooted subtrees it is necessary to impose that i — f; is
strictly increasing along the graph.

7.2.2 Computations of norms and proximal operators for the hierarchical Fp,

The following lemma shows that the norms 2, can be computed in linear time and the norms (2,
and Proxq, can be computed by solving a general isotonic regression problem on the graph (V| E).

Texcept in very degenerate cases.
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Lemma 10 (Computation of €2, 27 and Proxq, for Fl,). For the function F': B — )
Ap the set of ancestors of B:

i€Ap di, with

1. When p = oo, we have Quo(w) = 3oy dil|wp, |loo s0 that Qoo (w) is computed recursively (in
reverse topological order on the graph) in linear time.

2. For any 1 < p < oo, we have V5(s) = maxpcy F(Ap)~"4|sa,llg- The norm € can be

P
computed using Algorithm 1 via a sequence of minimization of functions of the form A —
AF(A) = [[sall§-

9. When 1< p< o0, Qw) = min =% 4 13 am, at. Vi j) € B ni >

: en p < 00, = min — i S i, ] M >N
nert pyl =t q = a

4. The prozimal operator Prozq, satisfies [Prozq,(u)); = (1+ )71ui where n* is the solution

of
2
. u; .
min + d;m; s.t. Y(i,j5) € B, n; > n;. 15
miy ;ev(n+/\ n) (i, 5) m = n; (15)
Proof. 1. The form of 2, follows from the fact that F' is a counting function.

2. The form of the dual norm stems from the fact that the core set D consists of the sets that
are hulls. We discuss in section 7.2.4 that, for a tree, the minimization of A — AF(A) — s(A)
for s € R} can be done in O(n). For a more general DAG, the general max-flow formulation
of Section 7.1 can be used, but unfortunately the DAG structure cannot a priori be easily
leveraged to obtain a formulation scaling linearly with the number of nodes or edges.

3. We have for n € RL, Qu(n) = Zle d; maxjep, ;. As a consequence, using the variational
formula (6) we have

Qp(w) =

Z d; max 17]

i st Y(i,5) € B, mi >, (16)

neRd 4 772

d
nE]RJr p nz

2
where the second equality stems from the fact that n; — £ is non-increasing so that at the
optimum, we should have n; = max;cp, n; and thus n; > n; for all j € D;.

4. The proof for the proximal problem when p = 2 uses the same argument by rewriting (8).

O

Since Eq. (15) is the minimization of the separable convex function subject to isotonic constraints,
it can be solved using the divide-and-conquer algorithm for minimizing ., (nu% + dmi) + h(n),
for h(n) the Lovdsz extension h(n) = M >_; »cp(n; —n:)+ of a cut funtion, and for M sufficiently
large (Bach, 2013, Section 9.1); see also Luss and Rosset (2014).

Note that the variational formulations show clearly that the sparsity pattern obtained have a hierar-
chical structure. Indeed, the inequality constraint n; > n; for (i,j) € E enforces that if 7; = 0 then
n; = 0 for all j € D;, and since (1, = 0) = (w; = 0) this entails as well that wp, = 0. Note however,
that the norm does not impose the type of constraint |w;| > |w,| introduced in some of the previous
literature (Bien et al., 2013; Yuan et al., 2009) which imposed that the estimated coefficient where
decreasing in magnitude.
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7.2.3 Computations of norms and proximal operators for the chain case

In this section, we show that in the chain case (considered in Micchelli et al. (2013) and Yan and
Bien (2015)) the optimization problems from Lemma 10 defining respectively €2, and the proximal
operator for {25 can be both solved as a general isotonic regression problem with a total order.

Consider the following form of the classical isotonic regression with a total order

d
1 2
min 5 E_l wilz; —y)° st 1 <...<zq <D, (IRC(w, y, b))

where w; > 0 for all i € V = {1,...,d} and b € R. Note that the objective being strongly convex,
the problem has a unique solution. This optimization problem is known to be solved efficiently by
the pooled adjacent violators (PAV) algorithm (Best and Chakravarti, 1990).

Following Barlow and Brunk (1972), we show that a form of generalized isotonic regression problem
with total order can be reduced to solving a classical isotonic regression, and thus benefits also from
the efficiency of that algorithm.

Lemma 11. For c € Ri,z € R‘j_ with z1 > 0 and ¥ a nonnegative differentiable, decreasing and
strictly convex function, consider the optimization problem:

d
i (i) +zimi st W <mg<...<m. GIRC(c, 2, b’
Trlrelgigcw(n) Zini S <na < <M ( (c;2,0'))

IfYi, ¢; # 0, then if x* is the solution of IRC(w, y,b) with w; = ¢;, y; = 2 and b = —lim,_y ¢’ (1),

Cq
then the vector m* with components n} = (')~ (—x}) is the unique solution to GIRC(c,z, ). If for
some indices i, ¢; = 0, the problem reduces to the previous one after clustering or removing some of
the variables n;.

A more detailed version of this lemma and a proof are provided in appendix F.4.

Corollary 5. For a chain, problem (16) can be solved by applying Lemma 11 with

1/)(77):%771_”, V' =0,c¢=wl 2z=d;, sothat b=+oco and Vi€l w;=uwl, g, =2z w;"

and nf = x;‘_l/p, where x* is the solution of IRC(w,§, +00).

Corollary 6. For a chain, problem (15) can be solved by applying Lemma 11 with

v =m+N"HY =0, ¢; =ul, z;=d;, sothat b=\ and Yicl, w;=u?, §; = Zu; >

and n} = 2 7Y2 — X\, where z* is the solution of IRC(w,y,A\™2).

K2

As a consequence, for chains, problems (15) and (16) can be solved efficiently using the PAV algo-
rithm. Yan and Bien (2015) propose an algorithm to compute the proximal operator in the chain
case, but its complexity is quadratic in the length of the chain, while PAV is linear.

7.2.4 Computations for F on a tree

If the graph is a tree and if the nodes are indexed in topological order, Jenatton et al. (2011b) showed
that, for p € {2, 00}, the proximal operator of the norm Q, : z — >_"" | d;||zp, |, is computed as

: 1
Proxﬁp = Proxl()l) 0...0 PI‘OXI()n) with Proxz(f)(z) = arg min §||x — 2|13 + M|z, [|,-
x
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Since QI = ﬁoo, this provides an efficient algorithm to compute the proximal operator in that
case. Jenatton et al. (2011b) show (see their Lemma 7) that when p = oo this algorithm can be
implemented with a complexity of O(hn), where h is the h is the height of the tree. This suggests
that its complexity is similar to that of the divide-and-conquer algorithm (which is however likely
to be more efficient for tall thin trees).

In the case p < oo and in particular when p = 2, Qgﬁ #* ﬁp, whether it is possible to compute the
norm or the proximal operator with similar dynamic programs remains open. Nevertheless, for a
tree, the divide-and-conquer algorithms to compute the norm and the proximal operator (Alg. 2)
are efficient, because the submodular function of the form A — AF(A) — s(A) for s € R’ can be
minimized in linear time. The minimizer has to be a stable set, thus here a rooted subtree, and the
optimal one is computed by Algorithm 3 (see Appendix F.3 for a proof). Moreover the restriction
F4 and the contraction F4 are both themselves of the same form F., for a tree/forest graph: F
is of the same form on the tree induced by the restriction on A and F* is of the same form on the
forest induced on the complement of A.

Whether it is possible to leverage efficient algorithms for isotonic regression that have been proposed
for trees (Pardalos and Xue, 1999) or under other assumptions (Stout, 2013) to solve problems (16)
and (15) with more efficient algorithms for more general graphs is left open.

Algorithm 3 Minimizing AF'(A) — s(A) for s € R
Require: Nodes indexed in topological order, (m;); parents, (C;); children sets.
for i =nto 1 do
Smy & Sm t+ (si - )‘)+
u; = lgg,>a)
end for
A <rectree(l,u)
7: return A
with
1: function rectree(k,u)
Ao
if up, = 1 then
A < {k} Urectree(ji,u)U...Urectree(j,,u) with {j1,...,4.} = Ck
end if
return A

7.2.5 Computations of 2, for F, on a tree

The construction of norms associated to F, on a DAG (as defined in Equation (14)) has been
recently discussed in Yan and Bien (2015). For trees, the dual norms (€2£°)* can clearly be computed
efficiently by dynamic programming. Unfortunately, even for a tree F, is clearly not submodular
as discussed after Figure 7. It is however possible to compute efficiently the primal norm QLY with
dynamic programming.

Proposition 5. For the function F, defined as the minimal weighted set cover by the ancestor sets
(A;)iey with weights f;, if C; denotes the set of children of node i, 7; denotes the parent of node i
and with d; :== f; — fr,, the associated norm QLY is computed as

d
QY (w) = ZdiCi with  (; defined by the recursion (; = max (\wi|, Z Q).

=1 ]ECL
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Proof.

Qoo(w) = max kT w| st VieV, Z ki < fj
RERY i€EA;
= min max kT w| — Z,uj[ Z Ki — fj]
HERS, ReRY jev  iea,
= min max [’%|wi| - ( > Hj)ffi +.uifi]
nERL RERY fev j€D;

= min Zuifi st. VieV, |w] < Z 7y

neRd

+iev JED;
= > G(fi—fr) st ViV, wil <G, 6> DG
eV jeC;
Hence the result by minimizing recursively over (; in reverse topological order. O

The possibility of designing efficient optimization schemes for the computation of €2,,€27 and the
corresponding proximal operators for the case of functions F{, on a tree, let alone on a general graph,
remains an open problem.

7.3 Functions of the cardinality

Another particular instance of combinatorial functions are functions that only depend on the cardi-
nality of the set, i.e., functions of the form

d
F(A) =" fulgaj=ry- (17)
k=1

We have already discussed the cardinality function which is relaxed into the ¢;-norm and the function
B — 1{p+g}, whose £, relaxation is simply the £,-norm, but as we will see other functions are also of
interest. To consider more elaborate examples and since we are interested by the convex relaxation
of these functions, only the LCEs of this type should retain our attention. Given the interpretation
of the LCE in terms of fractional weighted set-cover, we can essentially restrict ourselves to functions
that are non-decreasing and sublinear, where sublinearity follows from the fact that for any sets A
and B, we must have F(AU B) < F(A) + F(B) which implies that fry; < fi + fi. Note that
the function k — f; is concave if and only if F' is submodular (see Bach, 2013, Section 9.1). As
illustrated by Example 4, LCEs depending only on the cardinality are not necessarily submodular.

In general the dual norm can be computed in linear time since we have

1 J
* q
(2(w)" = max, ; [51;):

Now, if F' is submodular (i.e. k — fi is the restriction of a concave function), Q, takes the very

simple form
d

Qoo (w) = D (fi = fim) [wl iy, (18)

=1
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where |w|(;) is the ith largest order statistic of the vector |w|, and with fo = 0. We thus obtain the
family of ordered weighted ¢;-norms, introduced as the ordered weighted Lasso (OWL) penalties by
Figueiredo and Nowak (2014).

Furthermore, in this submodular situation, the reformulation of the proximal problem provided
by (8) provides a way to compute the norm €, for all p € (1,00) and the proximal operator for
p € {2,00} in O(n) using the Pooled Adjacent Violators algorithm (PAV) via a reduction to the
case of the chain.

Indeed, for a function F' which depends only on the cardinality, the function f is a symmetric
function of its arguments and so for any 7 € R? and any permutation o, we have f(n) = f(n(?))
with 7](0) = (770(1), s ana(d))'
Proximal operator when F' is submodular and p = co. When p = oo, the proximal problem
takes the form: )
. 2
—lJw — AQ .
min, 2w = ul? + Ao 1)

Since the norms ), are absolute norms (Bauer et al., 1961) (i.e. Q,(w) = Q,(|w|)) we have
[Proxq, (u)]; = [Proxq, (|ul); sign(u;). Without loss of generality, we can thus assume that u € RY.
Since the norm is also symmetric, we can assume u; > ... > ugy. But because of symmetry, the

components of the solution w* of the proximal problem must then be in the same order as u: indeed,
first, if u; = u; then w = w} by symmetry, and second, since §2,(w) does not depend on the order
and since we have [(u1 — w2)? + (uz — w1)?] — [(u1 — w1)? + (uz — w2)?] = 2(w1 — wa)(uy — uz)
which is negative if u; > ug and ws > wi, the objective is decreased by any transposition which
brings {u;,u;} and {w;, w;} in the same order. So for u; > ... > ug > 0, using the Choquet integral
representation of f, the proximal problem is equivalent to

d

1
min f||w—u||2+)\2wi(fi—fi—l)7 st wp > ... > wy,
weRi 2 i1

which is a classical isotonic regression problem with total order. We recover the algorithm of Figueiredo
and Nowak (2014).

Proximal operator when F is submodular and p = 2. Consider the computation of the
proximal operator for a vector w which w.l.o.g. satisfies u1 > ... > ug; if #* is the solution of (8)
then we must have ni > ... > 7). Indeed, if this is not the case then consider the vector 7@
obtained by sorting the components of 7 in decreasing order: it leads to a smaller value of the term
involving w and does not change the value of f(n). This implies (assuming u; > ... > ug4) that (8)

is equivalent to
2

us
min L+ s.t. > >
it ; s A m M

Now, given that the order of the coefficients of 7 is fixed, by the Choquet integral representation of
f the latter is linear, the problem is thus

2
. u;
e Z [ — +ni(fi — fic1)] st om > >

d .
YIS S iev yi +A

which is the same as in the chain case and can be solved thanks to Corollary 6 using a PAV algorithm.

As in Lemma 10, similarly, for any p < oo, the computation of the norm reduces to a problem of
the form (16) which can be solved efficiently by a PAV algorithm thanks to Corollary 5.
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Computation of proximal operator when the function is not submodular. It is important
to stress that these reductions to generalized isotonic formulation is not possible when the function
is not submodular because in that case f(n) is not linear given the ordering constraints. It is
however possible to propose an efficient algorithm to compute the proximal operator for some of
these functions. The k-support norm is an example of such as case.

Illustration 1: The k-support norm and the vector Ky-Fan k-norm. One of the simplest
functions that depends only on the cardinality is the function

0 if A=o
F:A—{1 if |Al =k
0o if |A| ¢ {0,k}.

The norms 2, associated with this function are naturally of the form of a Latent group Lasso,
since the domain of F' is restricted to sets of of cardinality k& or 0. Clearly, the dual norm Q7
satisfies Q7(s) = maxa. = [|sallq- This shows first that €y is the k-support norm introduced
by Argyriou et al. (2012). It also implies that Q3 (s) = maxa. = [salli = [syl + -+ + [sa)ls

where |s(1)|,...,[s()| are the order statistics of (|si],...,[saql), so that QF is the vector Ky-Fan
k-norm®. The LCE of F is the function F_(B) = lipsgz} V %. It is immediate to check that F_

is not submodular by considering a pair of sets of cardinality k. Extensions of k-support norms
considered in McDonald et al. (2015) could also be cast in this framework.

Illustration 2: The SLOPE penalty introduced in Bogdan et al. (2015) is clearly of the form of
(18) with f; — fi_1 = @71 (1— %), where @ is the cumulative density function the standard Gaussian
distribution. Since ® in an increasing function, f; — f;_1 is positive and decreasing, which shows
that ¢ — f; an increasing concave function. It is therefore submodular and the theory develops in
this section applies. In particular it retrieves the algorithm of Bogdan et al. (2015) to compute the

proximal operator, and propose £, variants of SLOPE.

Illustration 3: The OSCAR penalty. A norm of the form w — Ai[jw[l1+A2 >, ; max (Jwi, Jw;|)
was introduced in Bondell and Reich (2008) because its non-differentiabilities when |w;| = |w;| induce
some clustering of the amplitudes of the coefficients. Clearly, the second term in the definition of
the OSCAR penalty is of the form Qo (w) = >° 4. 4/— lwallo. This is a particular instance of an
Overlap Count Lasso. The LCE of the combinatorial functions associated with {1, is the counting
(and thus submodular) function F(B) =} 4 4= l{anBe}. Clearly,

()0

F(B)=|{A:|Al=k,AZ B}

and we have

8The vector Ky-Fan k-norm is the vector counterpart of the matrix Ky-Fan norm, the latter being computed as
the k-norm of the singular values of the matrix.
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As shown in Section 6, since F' is submodular, Q, is its Lovasz extension and using the so-called
Choquet integral representation (10) of F', and since F' depends only on the cardinality, we have

d
Qoo(w) = D |wy| [FUL....1}) = F{1,...,1-1})]
=1

-yl [()-(7)]
- Seal(R)

It should be noted that essentially any submodular function of the form (17), with a sequence (fx)
that is strictly increasing can be considered as a possible alternative to the OSCAR, penalty, since
it provides, like the latter, a norm whose core set contains all the subsets of {1,...,d} and therefore
has sharp faces of dimension [ for all groups of size of coefficients with equal amplitude. Moreover
for any such norm the proximal operator is computed efficiently, as shown already by Figueiredo
and Nowak (2014).

In particular, the algorithm proposed by Zhong and Kwok (2012) to compute the proximal operator
of the OSCAR penalty is a special instance of the algorithm proposed above.

8 Statistical analysis for submodular functions

In this section, we show that two classical theoretical results that can be proved for the Lasso and
more generally for problems regularized by decomposable norms (Negahban et al., 2012), can be
extended to the family of norms we considered in this paper when the associated function F' is
submodular. Namely, if the data is generated from a sparse linear model, it is possible to show
that (a) under a generalization of the usual irrepresentability condition, the smallest stable subset
containing the true support is identified with high probability for n sufficiently large, (b) under a
generalization of the restricted eigenvalue condition the estimator is consistent in prediction error
with so-called fast rates of convergence.

8.1 Weak and local decomposability of the norm for submodular func-
tions.

The work of Negahban et al. (2012) has shown that when a norm is decomposable with respect to a pair
of subspaces A and B, meaning that for all « € A and 8 € B+ we have Q(a+ ) = Q(a) +Q(3), then
common proof schemes allows to (a) show support recovery results and (b) fast rates of convergence
in prediction error. For the norms we are considering, this type of assumption would be too strong.

However, based on a notion of weak decomposability Bach (2010), tackled the p = co. case. Weak
decomposability was also proposed in van de Geer (2014), who obtained sparsity oracle inequalities
based on an analysis that is similar to the one we develop, and applied it in particular to the norms
proposed in Micchelli et al. (2013).

For the norms we consider, we use the notions of weak and local decomposability with decompositions
that involve 7 and 7, that are respectively the norms associated with the restriction and the
contraction of the submodular function F' to or on the set J.
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with M = maxgey F({k}) and

SE

Concretely, let ¢ =

m= r}gi}? F(AU{k}) — F(A) st. F(AU{k}) > F(A).

Then we have:

Proposition 6. (Weak and local decomposability)

Weak decomposability. For any set J and any w € R?, we have

Qw) > Qy(wy) + Q7 (wye).

Local decomposability. Let K = Supp(w) and J the smallest stable set containing K, if ||wye||, <
Cl/p minieK |wi|, then

Qw) = Qy(wy) + Q7 (wye).

Note that when p = oo, if J = K, the condition becomes min;e ; |w;| = max;¢ je |w;|, and we recover
exactly the corresponding result from Bach (2010).

This proposition shows that a sort of reverse triangular inequality involving the norms €2, ; and
Q7 always holds and that if there is a sufficiently large positive gap between the values of w on .J
and on its complement then 2 can be written as a separable function on J and J¢.

8.2 Theoretical analysis for submodular functions

In this section, we consider a fixed design matrix X € R"*P and y € R™ a vector of random responses.
Given A > 0, we define w as a minimizer of the regularized least-squares cost:

i ez 21y — X3 +AQ(w). (19)

We study the sparsity-inducing properties of solutions of (19), i.e., we determine which patterns are
allowed and which sufficient conditions lead to correct estimation.

We assume that the linear model is well-specified and extend results from Zhao and Yu (2006) for
sufficient support recovery conditions and from Negahban et al. (2012) for estimation consistency,
which were already derived by Bach (2010) for p = oo. The following propositions allow us to
retrieve and extend well-known results for the ¢;-norm.

Denote by p the following constant:

min

= )~ 1].
P ACB,F(B)>F(A) F(B\A) € (0.1]

The following proposition extends results based on support recovery conditions (Zhao and Yu, 2006):

Proposition 7 (Support recovery). Assume that y = Xw* + oe, where ¢ is a standard multi-
variate normal vector. Let Q = %XTX € R4 Denote by J the smallest stable set containing the
support Supp(w*) of w*. Define v = minj,,» 0 [w}| > 0 and assume £ = Amin(Qs) > 0.

If the following generalized Irrepresentability Condition holds:

>0, (@) (((Q7Qu)) ep) <1,

then, if A < 175, the minimizer W is unique and has support equal to J, with probability

2\J\1/p‘52’.1)
larger than 1 — 3]P’(Q*(z) > W), where z is a multivariate normal with covariance matriz Q.
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In terms of prediction error the next proposition extends results based on restricted eigenvalue
conditions (see, e.g. Negahban et al., 2012).

Proposition 8 (Consistency). Assume that y = Xw* + oe, where ¢ is a standard multivariate
normal vector. Let (Q = %XTX € R¥¥4. Denote by J the smallest stable set containing the support
Supp(w*) of w*.

If the following Q) ;- Restricted Eigenvalue condition holds:

VA € R, (Q(A) <3(A))) = (ATQA=rQ(A))?),

then we have

242\ 1 A2
and 7||X’LZ)*XU)*H§<£
n K

Qi — w*) <
(b — w*) e

with probability larger than 1 — P(Q*(z) > )";f) where z is a multivariate normal with covariance
matriz Q.

The concentration of the values of Q*(z) for z is a multivariate normal with covariance matrix ) can
be controlled via the following result that implies that if X is larger then a constant times /log |Dg|,
then the probability in the proposition is close to one. We thus recover known results for the Lasso
(where |Dp| = d) and the group Lasso (Negahban and Wainwright, 2008).

Proposition 9. Let z be a normal variable with covariance matriz ) that has unit diagonal. Let
Dpr be the set of stable inseparable sets. Then

e i/ 5 |A‘1/q |A‘(1/q—1/2)+ 22
*(2) = 44/ e ) e /2
( (2) 2 4V alog2(Drl) max T v 0~ F Ay ) ‘ (20)

9 Experiments

We illustrate the use of the theory presented in this paper by an application to the estimation of the
parameter vector of linear least-squares regression, when this parameter vector is either supported
on an interval on or a rectangular region in a two dimensional grid. In particular, we compare
the performance on synthetic data of the estimators obtained, using different norms either classical
or particularly tailored to the problem considered, both in terms of error in support estimation in
Hamming distance and in ¢s-error.

9.1 Setting

To illustrate the results presented in this paper we consider the problem of estimating the support
of a parameter vector w € R%, when its support is assumed either
(i) to form an interval in [1,d], or

(i) to form a rectangle [kmin, kmax] % [k L) C [1,d1] x [1,ds], with d = dyda.

min’ Vmax
These two settings were considered by Jenatton et al. (2011a). These authors showed that, for both

types of supports, it was possible to construct an ¢; /fo-norm with overlap based on a well-chosen
collection of overlapping groups, so that the obtained estimators almost surely have a support of
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Figure 8: Set G of overlapping groups defining the norm proposed by Jenatton et al. (2011a) (set in
blue or green and their complements) and an example of corresponding induced sparsity patterns (in red),
respectively for interval patterns in 1D (left) and for rectangular patterns in 2D (right).
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Figure 9: Examples of the shape of the signals used to define the amplitude of the coefficients of w on the
support. Each plot represents the value of w; as a function of ¢. The first (w constant on the support), third
(wi = g(ci) with g : z — |sin(z)sin(5z)|) and last signal (w; "= N(0,1)) are the ones used in reported
results.

the correct form. Specifically, it was shown in Jenatton et al. (2011a) that norms of the form
w = Y peg lwall2 induce sparsity patterns that are exactly intervals of V= {1,...,p} if

G={[Lk[1<k<p}u{lk,p]|1<Ek<p}
and induce rectangular supports on V =V x Vo with V4 :={1,...,p1} and Vo :={1,...,pa} if

g = {[LkxVall<k<pyU{[k,m] xVa|1<k<pi}
U{Vi x [1LA] |1 <k <pa} U{Vi x [k, pa]} [ 1 <k < pa}.

These sets of groups are illustrated on Figure 8, and, for the first case, the set G has already discussed
in Example 6 to define a modified range function which is submodular.

Moreover, the authors showed that with a weighting scheme introduced inside the groups and leading
to a norm of the form w — " 5g lwp o d®||, where o denotes the Hadamard product and d® € R%
is a certain vector of weights designed specifically for these case’ it is possible to obtain compelling
empirical results in terms of support recovery, especially in the 1D case.

Interval supports. From the point of view of our work, that is, approaching the problem in terms
of combinatorial functions, for supports constrained to be intervals, it is natural to consider the
range function as a possible form of penalty: Fy(A) := range(A4) = imax(A) — imin(A) + 1. Indeed
the range function assigns the same penalty to sets with the same range, regardless of whether these
sets are connected or have “holes”; this clearly favors intervals since they are exactly the sets with

9We refer the reader to the paper for the details.
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the largest support for a given value of the penalty. Unfortunately, as discussed in the Example 2
of Section 2.2, the combinatorial lower envelope of the range function is A — |A|, the cardinality
function, which implies that (250 is just the /1-norm: in this case, the structure implicitly encoded
in Fj is lost through the convex relaxation.

However, as mentioned by Bach (2010) and discussed in Example 6 the function F, defined by
F,(A) = d—1+range(A) for A # @ and F(@) = 0 is submodular, which means that Q" is a tight
relaxation and that regularizing with it leads to tractable convex optimization problems.

Rectangular supports. For the case of rectangles on the grid, a good candidate is the function
Fy with Fy(A) = F,.(I1;(A)) + F,(II3(A)) with II;(A) the projection of the set A along the ith axis
of the grid.

This makes of QgT and 952 two good candidates to estimate a vector w whose support matches
respectively the two described a priori.

9.2 Methodology

We consider a simple regression setting in which w € R? is a vector such that Supp(w) is either an
interval on [1, d] or a rectangle on a fixed 2D grid. We draw the design matrix X € R"*? and a noise
vector € € R™ both with i.i.d. standard Gaussian entries and compute y = Xw + ¢. We then solve
problem (19), with € chosen in turn to be the ¢;-norm (Lasso), the elastic net, the norms QI for
p € {2,00} and F chosen to be F,. or F, in 1D and 2D respectively; we consider also the overlapping
{1 /¢o-norm proposed by Jenatton et al. (2011a) and the weighted overlapping ¢; /¢3-norm proposed
by the same authors, i.c., Qw) =Y zcg |lwp o dP||2 with the same notations as before'”.

We assess the estimators obtained through the different regularizers both in terms of support recovery
and in terms of mean-squared error in the following way: assuming that held out data permits to
choose an optimal point on the regularization path obtained with each norm, we determine along
each such path, the solution which either has a support with minimal Hamming distance to the true
support or the solution which as the best {5 distance, and we report the corresponding distances as
a function the sample size on Figures 10 and 11 respectively for the 1D and the 2D case.

Finally, we assess the incidence of the fluctuation in amplitude of the coefficients in the vector w
generating the data: we consider different cases among which:

(i) the case where w has a constant value on the support,

(ii) the case where w; varies as a modulated cosine, with w; = g(c¢- 7) for ¢ a constant scaling and
g :x —|cos(z) cos(bx)]

(iii) the case where w; is drawn i.i.d. from a standard normal distribution.

These cases (and two others for which we do not report results) are illustrated on Figure 9.

9.3 Results

Results reported for the Hamming distances in the left columns of Figures 10 and 11 show that
the norms Qg " and Qg 2 perform quite well for support recovery overall and tend to outperform

10Note that we do not need to compare with an £;n fty counterpart of the unweighted norm considered by Jenatton
et al. (2011a) since for p = oo the unweighted ¢1 /¢ norm defined with the same collection G is exactly the norm
QOFOT: this follows from the form of F as defined in Example 6 and the preceding discussion.
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significantly their /., counterpart in most cases. In 1D, several norms achieve reasonably small
Hamming distance, including the ¢;-norm, the norm QQF " and the weighted overlapping ¢; /¢s-norm
although the latter clearly dominates for small values of n.

In 2D, Qg 2 leads clearly to smaller Hamming distances than other norms for the larger values of n,
while is outperformed by the ¢;-norm for small sample sizes. It should be noted that neither Q2
nor the weighted overlapping ¢ /¢s-norm that performed so well in 1D achieve good results.

The performance of the /5-relaxation tends to be comparatively better when the vector of parameter
w has entries that vary a lot, especially when compared to the £, -relaxation. Indeed, the choice
of the value of p for the relaxation can be interpreted as encoding a prior on the joint distribution
of the amplitudes of the w;: as discussed before, and as illustrated in Bach (2010) the unit balls
for the ¢, relaxations display additional “edges and corners” that lead to estimates with clustered
values of |w;|, corresponding to an priori that many entries in w have identical amplitudes. More
generally, large values of p correspond to the prior that the amplitude varies little while their vary
more significantly for small p.

The effect of this other type of a priori encoded in the regularization is visible when considering
the performance in terms of ¢ error. Overall, both in 1D and 2D all methods perform similarly in
{y-error, except that when w is constant on the support, the /o -relaxations QX and Q2 perform
significantly better, and this is the case most likely because the additional “corners” of these norms
induce some pooling of the estimates of the value of the w;, which improves their estimation. By
contrast it can be noted that when w is far from constant the ¢-relaxations tend to have slightly
larger least-square errors, while, on contrary, the ¢;-regularisation tends to be among the better
performing methods.

10 Conclusion

We proposed a family of convex norms defined as relaxations of penalizations that combine a com-
binatorial set-function with an £,-norm. Our formulation allows to recover in a principled way a
number of sparsity inducing regularizations that have appeared in the literature such as the £;-norm,
the group Lasso, the exclusive Lasso, the k-support norm, the OWL penalties (including OSCAR
and SLOPE penalties), that are all specific instances. In addition, this formulation establishes that
the latent group Lasso is the tightest relaxation of block-coding penalties. We discuss the use of
the proposed formulation for the construction of relaxation for different hierarchical penalties on a
DAG, and recover both new and existing norms.

There are several directions for future research. First, it would be of interest to determine for which
combinatorial functions beyond submodular ones, efficient algorithms and consistency results can
be established. Then a sharper analysis of the relative performance of the estimators using different
levels of a priori would be needed to answer question such as: When is using a structured a priori
likely to yield better estimators? When could it degrade the performance? What is the relation to
the performance of an oracle given a specified structured a priori?
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Figure 10: Best Hamming distance (left column) and best least square error (right column) to the
true parameter vector w*, among all vectors along the regularization path of a least square regression
regularized with a given norm, for different patterns of values of w*. The different regularizers
compared include the Lasso (L1), Ridge (L2), the elastic net (EN), the unweighted (GL) and weighted
(GL+w) f1 /05 regularizations proposed by Jenatton et al. (2011a), the norms Q%" (Sub p = 2) and
QL (Sub p = 00) for a specified function F. (first row) Constant signal supported on an interval,
with an a priori encoded by the combinatorial function F' : A — d — 1 + range(A4). (second row)
Same setting with a signal w* supported by an interval consisting of coefficients w; drawn from a
standard Gaussian distribution. In each case, the dimension is d = 256, the size of the true support
is k = 160 , the noise level is ¢ = 0.5 and signal amplitude ||w|/s = 1.
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Figure 11: Best Hamming distance (left column) and best least square error (right column) to the true
parameter vector w*, among all vectors along the regularization path of a least square regression regularized
with a given norm, for different patterns of values of w*. The regularizations compared include the Lasso
(L1), Ridge (L2), the elastic net (EN), the unweighted (GL) and weighted (GL+w) £1/¢> regularizations
proposed by Jenatton et al. (2011a), the norms Q2 (Sub p = 2) and QL (Sub p = co) for a specified function
F. Parameter vectors w™ considered here have coefficients that are supported by a rectangle on a grid with
size d1 X d2 with d = didz2. (first row) Constant signal supported on a rectangle with an a priori encoded
by the combinatorial function F' : A — di + d2 — 4 4 range(II;(A)) + range(II2(A)). (second row) Same
setting with coefficients of w on the support given as wy,;,, = g(ci1)g(ciz) for ¢ a positive constant and
g : @ — |cos(x)cos(bx)|. (third row) Same setting with coefficients w;,;, drawn from a standard Gaussian
distribution. In each case, the dimension is d = 256, the size of the true support is k& = 160 , the noise level
is 0 = 1 and signal amplitude ||w||e = 1.
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A Form of primal norm

We provide here a proof of lemma 7 which we first recall:

Lemma (7). Q, and 0 are dual to each other.

Proof. Let wi' be the function'' defined by wi(w) = F(A)Y [wallp t{o|Supp(v)c a} (w) with ¢p the
indicator function taking the value 0 on B and oo on B®. Let K;' be the set K = {s | ||sAHq <
F(A)}. By construction, w' is the support function of K;! (See Rockafellar, 1970 sec.13), i
A

wy' (w) = max,epa w's. By construction we have {s | (s ) <1} = ﬁACvK;;‘. But this 1mphes

that Lsls(s)<1} = Yacy LKA Finally, by definition of Fenchel-Legendre duality,

Q,(w) = ma)gw s — E Lgals
R
we Acv

or in words (2, is the Fenchel-Legendre dual to the sum of the indicator functions ¢ KA- But since
the Fenchel-Legendre dual of a sum of functions is the infimal convolution of the duals of these
functions (see Rockafellar, 1970, Thm. 16.4 and Corr. 16.4.1, pp. 145-146), and since by definition
of a support function (LK;x)* = wl’,“, then Q,, is the infimal convolution of the functions w;‘, ie.

Q,(w) = inf wA (vA s.t. w= v,
o= g S e >

which is equivalent to formulation (3). See Obozinski et al. (2011) for a more elementary proof of
this result. O

110r gauge function to be more precise.

44



B Relation between different norms

Proposition 10. The functions

Q:wrs d 9w and Q°:s+ inf ma 1251lq
BE:eg B llws] 2eV(s,G) B djlg/q

are norms and polar to each other.
Proof. Tt is clear that € is a norm since Jgcg B = {1, ...,d}. Then Q° is a convex function because

0(s) = il wls2) with @ (s,2) o maxdpllg + gy -0y,

and (s, z) is a proper, l.s.c., jointly convex function in (s, z). Moreover, since 2° is also symmetric,
homogeneous, everywhere finite and satisfies (2°(s) = 0) = (s = 0), then Q° is a norm. Finally,

max (w,s) = max{ Z(w,28> |VB e g, |27, < d}g/q, 2B = } = Z dquwBHm
5:Q0°(s)<1 z Beg Beg

which shows that ) is the Fenchel conjugate of s — t{go(y<1}. Since 2 and ° are norms this
establishes that they are polar to each other. O

C Example of the Exclusive Lasso

We showed in Section 4.3 that the ¢, exclusive Lasso norm, also called £, /¢;-norm, defined by the

1/p
mapping w (ZGGQ ng||11’> , for some partition G, is a norm Qg providing the ¢, tightest
convex p.h. relaxation in the sense defined in this paper of a certain combinatorial function F. A
computation of the lower combinatorial envelope of that function F' yields the function F_ : A —
maxgeg |[ANG].

This last function is also a natural combinatorial function to consider and by the properties of a
LCE it has the same convex relaxation. It should be noted that it is however less obvious to show
directly that (25* is the ¢,/¢; norm...

We thus show a direct proof of that result since it illustrates how the results on LCE and UCE can
be used to analyze norms and derive such results.

Lemma 12. Let G = {Gy,...,Gy} be a partition of V. For F : A — maxgeg |AN G|, we have
QL (w) = maxgeg [wel)r-

Proof. Consider the function f : w — maxgeg ||we|1 and the set function Fy : A — f(14). We
have Fy(A) = maxgeg ||[1lanc|li = F(A). But by Lemma 8, this implies that f(w) < QL (w) since
f = f(]-|) is convex positively homogeneous and coordinatewise non-decreasing on R%. We could
remark first that since F(A) = f(14) < QF (14) < F(A), this shows that F = F_ is a lower
combinatorial envelope. Now note that

OF V() — - lsall o -y =3 .
(£220)"(s) ACVA%o Geg [ANG| ~ acv, IAIrrwlgT{:LGGQHSAlll Geg%aglsz‘ Geg el

This shows that (Q5))*(s) > Y ;g llsalleo, which implies for dual norms that QX (w) < f(w).
Finally, since we showed above the opposite inequality QL = f which shows the result. O
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D Properties of the norm Qg when [’ is submodular

In this section, we first derive upper bounds and lower bounds for our norms, as well as a local
formulation as a sum of £,-norms on subsets of indices.

D.1 Some important inequalities.

We now derive inequalities which will be useful later in the theoretical analysis. By definition, the
dual norm satisfies the following inequalities:

S
Islle < o Jotlle gy — e Bsally lsls  _lsle gy

Mi TRV F({k})a U ACV.AZE F(A)T T minacyaze F(A)T | ma

form = mingey F({k}) and M = maxgey F({k}). These inequalities imply immediately inequalities
for €, (and therefore for f since for n € R, f(n) = Qeo(n)):

m! 4wl < Qp(w) < MY wl;.
We also have Q,(w) < F(V)Y4||w||,, using the following lower bound for the dual norm: Qy(s) >

lIsllp
F(V)i/a-

Since by submodularity, we in fact have M = maxy p¢a F(A U {k}) — F(A), it makes sense to
introduce m = ming  paur)>ra) F(AU{k}) — F(A) < m. Indeed, we consider in Section 8.2
the norm €2, ; (resp. ) associated with restrictions of F' to J (resp. contractions of I on J) and
it follows from the previous inequalities that for all J C V, we have:

mwll, < m'wlly < Qp(w) <MYl and @Yl < Q) (w) < MY fw]);.

D.2 Some optimality conditions for 7.

While exact necessary and sufficient conditions for n to be a solution of Eq. (8) would be tedious
to formulate precisely, we provide three necessary and two sufficient conditions, which together
characterize a non-trivial subset of the solutions, which will be useful in the subsequent analysis.

Proposition 11 (Optimality conditions for ). Let F' be a non-increasing submodular function. Let
p>1andw e R, K = Supp(w) and J the smallest stable set containing K. Let H(w) the set of
minimizers of Eq. (8). Then,

(a) the set {nx, n € H(w)} is a singleton with strictly positive components, which we denote
{nK(w)}, i.e., Eq. (8) uniquely determines 1.

(b) For allm € H(w), then nje = 0.

(¢) If Ay U---U A, are the ordered level sets of g, i.e., n is constant on each A; and the values
on A; form a strictly decreasing sequence, then F(A;U---UA;) — F(A1U---UA;_1) >0 and the

llwa lp
A1U-UA;)—F(A1U--UA;_q)]1/P"

value on Aj; is equal to ni (w) = T

(d) If n is equal to i (w), maxye p\ g Mk < Mingeg Mr(w), and nye =0, then n € H(w).

llwllp
ml/P N

(e) There exists n € H(w) such that %W <minjeyn; < maxjeyn; <

Proof. (a) Since f is non-decreasing with respect to each of its argument, for any n € H(w), we have
7' € H(w) for ' defined through n% = nx and nxe = 0. The set of values of nx for n € H(w) is
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therefore the set of solutions problem (8) restricted to K. The latter problem has a unique solution
L |P
J

as a consequence of the strict convexity on R of n; —

(b) If there is j € J° such that n € H(w) and n; # 0, then (since w; = 0) because f is non-
decreasing with respect to each of its arguments, we may take n; infinitesimally small and all other
n, for k € K° equal to zero, and we have f(n) = fx(nx(w)) + n;[F(K U {j}) — F(X)]. Since
F(KU{j}) - F(K) > F(JU{j}) — F(J) > 0 (because J is stable), we have f(n) > fi(nkx(w)),
which is a contradiction.

(c¢) Given the ordered level sets, we have f(n) = Z;’L:l 5 [F(AL U+ U Ay) — F(Ay U= U A; 1)),
HUJAJ'HP
[F(A1U-UA;) = F (AU UA; 1)1 /P If F(AyU---U

Aj) = F(A1U---UA;_1) =0, since [|wa, |, > 0, we have n¥i as large as possible, i.e., it has to be
equal to ni-1, thus it is not a possible ordered partition.

which leads to a closed-form expression 7% (w) =

(d) With our particular choice for 7, we have ». %:ﬁ,lf + éf(r]) = Qi (wg). Since we always
have Q(w) > Qk(wk), then 7 is optimal in Eq. (8). l
(e) We take the largest elements from (d) and bounds the components of nx using (c). O

Note that from property (c), we can explicit the value of the norm as:

k
Qp(w) =D (F(A U...UAj) = F(AyU...UA; 1)) |wapa,_,llp (22)
j=1
r A
= Qpa, (wa,) + Q% (wapa,_,) (23)
j=2

where Qﬁ g is the norm associated with the contraction on A of F' restricted to B.

E Proof of Proposition 6 (Decomposability)

Concretely, let ¢ = 2 with M = maxgey F({k}) and

i =min F(AU{k}) = F(4) st. F(AU{k}) > F(4)

Proposition (6. Weak and local Decomposability). (a) For any set J and any w € R, we have
Q(w) > QJ(IUJ) + QJ(ch).

(b) Assume that J is stable, and ||w e, < c/P min;e s [w;], then Qw) = Qy(wy) + Q7 (wye).
(c) Assume that K is non stable and J is the smallest stable set containing K, and that |w ||, <
/P minge g |wi|, then Q(w) = Qy(wy) + Q7 (wye).

Proof. We first prove the first statement (a): If |san s[5 < F(ANJ) and [|sanse|lh < F(AUJ)—F(J)
then by submodularity we have |sallh < F(ANJ)+ F(AUJ) — F(J) < F(A). The canonical
polyhedra associated with F; and F” are respectively defined by

P(F;) = {s € RL, Supp(s) C J, s(A) < F(A), AC J} and

P(F7) = {s € R%, Supp(s) C J¢, s(A) < F(AUJ) - F(J)}
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Denoting s°F := (sf, ..., sh), we therefore have

Qw) = max s |w| > max s w| = Qr(wy) + Q7 (wye).
{s°rePr} {sPe P(Fy), sSEEP(F7)}

In order to prove (b), we consider an optimal 77 for w; and ©; and an optimal 7. for Q7. Because
of our inequalities, and because we have assume that .J is stable (so that the value m for Q7 is
indeed lower bounded by 1), we have ||1¢||o0 < % %W
(inequality proved in the main paper). Thus when concatenating 1y and 7. we obtain an optimal 7

for w (since then the Lovész extension decomposes as a sum of two terms), hence the desired result.

. Moreover, we have min;eyn; >

In order to prove (c), we simply notice that since F'(J) = F(K), the value of 1\ i is irrelevant (the

variational formulation does not depend on it), and we may take it equal to the largest known possible
minge s |w;]

Ari7s > and the same reasoning than for (b) applies. O

value, i.e., one which is largest than

Note that when p = oo, the condition in (b) becomes min;e s |w;| > max;e je |w;|, and we recover
exactly the corresponding result from Bach (2010).

F Algorithmic results

F.1 Proximal operator of the norm Qg and proof of Algorithm 2.

We provide in this section the decomposition algorithm presented as Algorithm 4 to compute the
proximal operator of a norm Qg , for any value of p € (1, 00], when F is submodular. Algorithm 2 is
the particular instance of that algorithm where all steps are closed form and other simplifications can
be made. Algorithm 4 is a particular instance of the decomposition algorithm for the optimization
of a convex function over the canonical polyhedron'” (see e.g. section 8.4 and 9.1 of Bach (2013)).

Indeed, denoting v;(r;) = ming, er 3 (z; — 2)* + )\F;il/q‘l'i‘, the computation of the proximal operator
amounts to solving in x the problem
max Y (k).

KEP
Fiev

Following the decomposition algorithm, one has to solve first
/?el?é Z Yi(Kki) st Z ki < F(V)
i€V i€V
. 1 2 1/
= min max —|lz — z||5 + A K, x| st ki < F(V
i ma ke =21 + 3 3 e > i < FY)

.1
= min o [le = 23 + APV ja]lp,

where the last equation is obtained by solving the maximization problem in . Let x* denote the
solution to the above problem.

We consider first the case p < oo.

If z* # 0, then ), ﬁi/q|xj\ = F(V)||z*||, so that we must have k; = 2z 1"

BRENE

given that =} = (z; — )\/f;;l/q)Jr, we must also have z; — )\Ii,}/q < 0, which entails k; > (%)q But if

F(V). If * = 0, then,

12There are different variants of the decomposition algorithm using different constraint sets: the canonical polyhe-
dron or the base polyhedron defined as Br = Pr N {s € R? | s(V) = F(V)} (see Bach, 2013, Sec. 8.4 for details.)
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BN

x* = 0, then we must have ||z||, < AF(V)¥4. So that if we set r; = 5

and k; > (%)q

F(V), then x(V) = F(V)

Q9

In particular, when p = 2, we have z* = (||z||2 — /\\/F(V))+m if z%# 0 and z* = 0 else. And

2

since * « z, then k; = F(V) HZF is always a solution, which explains the simplification made in
2

Algorithm 2.

When p = oo, if 2* # 0, we have )", k;|zf| = F(V)|2*||~ so that with the constraint x(V) = F(V)
we must have K; = 1{|z5|=|jz% ||} F'(V). The case 2" = 0 is the same as for p < oco.

Following the decomposition algorithm, one then has to find the minimizer of the submodular
function A +— F(A) — k(A). Then one needs to solve

max Z ¥i(Ki) and max E Yi(Ki).
‘A A
KAGRL lﬂP(FA) icA Ky A E]RLV\ ‘ﬂP(FA) ieV\A

Using the expression of 1; and exchanging as above the minimization in w and the maximization in

K, one obtains directly that these two problems correspond respectively to the computation of the
A

proximal operators of Q4 on z4 and of the proximal operator of Qf" on 2V\A-

The decomposition algorithm used here is proved to be correct in section 8.4 of Bach (2013) under
the assumption that k; — t(k;) is a strictly convex function. The functions we consider here are
not strongly convex, and in particular, as mentioned above the solution in k is not unique in case
w* = 0. The proof of Bach (2013) however goes through using any solution of the maximization
problem in x.

Algorithm 4 Computation z = Prox\or (2)

Require: z € R A >0

1: LetA:{j|zj7é()}

2: if A#V then

3. Set x4 = Prox,,r(24)

P

4:  Set xpc =0

5:  return x by concatenating x4 and x4

6: end if

7: Let o = argmin, 2|y — 2[5 + AF (V) lyll,

8 if © # 0 then

9: Let x € RY with K; = %F(V) if p<ooand k; = 1{\x1|:||w\|oo}F(V) for p = o0
10: else ’
11: Let x € RY with ; = {2 F(V)
12: end if ’
13: Find A minimizing the submodular function F' — k
14: if A=V then
15:  return x
16: end if
17: Let 14 = Prox)\Q;vA (z4)
18: Let xac = Prox/\QEA (za¢)
19: return x by concatenating x4 and x 4
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F.2 Decomposition algorithm to compute the norm

By Equation (6), for p € [1,00), the computation of the norm Q['(z) can be formulated as well as
the maximization of a separable concave function over the canonical polytope: max,cp, Y, ¥i(k;)

with v;(ki) = K |2z;|. We can therefore apply the same decomposition algorithm of Bach (2013,
Sec. 9.1). This yields Algorithm 5.

Algorithm 5 Computation of QF(z)

Require: z € R%.
: Let A= {j |z #0}.
if A#V then

return Q54 (z,4)
end if
Let x € RY with r; = £ F(V)
Find A minimizing the submodular function F — &
if A=V then

return F(V)4||z|,
else

return Q74 (z4) + QEA (z4¢)
: end if

— =
= O

The derivation of this algorithm is essentially identical to the derivation of Algorithm 2: in the
first step of the divide-and-conquer algorithm described, solving max,vy<pv)D_; 1/11(/12) leads to

|Zz|q

ki = :‘Z;l‘;F(V) Finally, then either x is optimal and the objective equals F(V ) > =T

F(V)4||z||p, or solving the two subproblems of steps (4) and (5) corresponds to computing the
s O Fa FA . . 5 3
norms Qp and Qp on the two subvectors z4 and z4c and summing them.

F.3 Proof of Algorithm 3

Proof. The algorithm is a recursive algorithm, whose principle is to remove a leaf of the tree, to
then compute the set A minimizing a new objective G’ defined on the resulting reduced tree and to
construct the minimizer of G(B) = AF(B) — s(B) from A by possibly adding the removed leaf. To
define G’, assume that the nodes are indexed in topological order, that the algorithm first removes
the node n, and let s’ € R"~! be defined as

S;r,,, =8z, + (50 — Ay,
st =s;, VYjeV\{m,n}

Then let G’ : 2V M7} - R be defined by G'(A) = AF(A) — s'(A). For any A C V we have

G'(A) = min (G(A), G(AU{n})) ifm, € 4,
G else,

because if 7, € A, then G(AU {n}) = G(A) — (s, — A). It is therefore clear that A is a minimizer
of G'(A) if and only if either A # 7, and A is a minimizer of G(A), or s, < A and A is a minimizer
of G(A), or s, > X and AU {n} is a minimizer of G. If V = &, the algorithm returns A = &, which
is indeed the unique minimizer, so that the algorithm is correct for a tree with n = 0 nodes. Then
by the argument above, if the algorithm is correct for a tree with n — 1 nodes it is also correct for a
tree with n nodes. By induction, this proves the correctness of the algorithm. O
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F.4 Proof of lemma 11

We first state a full version of the lemma that covers explicitly the case where 1€ # @.

Lemma. Force Ri, z € Ri with z1 > 0 and ¢ a nonnegative differentiable, decreasing and strictly
convex function, consider the optimization problem:

d
i b (n; i st b <ng<... <. GIRC(c, 2, b’
71;2%%;01&(77)+Z77 S S Nd < =M ( (c;2,0))

Let I :={i|c; #0}, I.:={i| 2z =¢; =0}.

o IfI° = & then if x* is the solution of IRC(w,y,b) withw; = ¢;, y; = 2 and b = —lim, i ¥'(n),

(&3
) is the unique solution to GIRC(c, z, ).

*

then the vector n* with components n} = (')~ (—x}

o If I. = O, then the solution is unique and obtained as follows: Write I = {i1,...,ix} with
i1 < ... < ig, define for all k the set J;, = {j | ix—1 < j < ir} with ip := 0 and define
Jy ={j|j>ix}. Then at the optimum n*, (a) Vi € I,¥j € Ji, nj =n;, (b)Vj€ Jy,n; =V
and (c) if, for any i € I, we let z; = 3 c; zj, then (n])ier is the unique solution of the
problem GIRC((c;)icr, (Zi)ier, V'), for which the previous case applies.

o IfI.#3, then foranyj €V, let jy =min{i > j|i ¢ I .} and j- =max{i < j|i ¢ I.} if

(0} )iere is the unique solution of GIRC(¢,Z,b") where ¢ and Z are respectively the restrictions
of ¢ and z on IS, then the set of solutions is {n € R? | V7, ni, =nj =0}

Proof. First, note that the limit lim, ;v ¢’(n) exists in R since v is strictly convex which entails
that ¢’ is an increasing function.

e When I¢ = @, a similar result was shown by Barlow and Brunk (1972) but under es-
sentially more restrictive conditions. With the assumptions of the stated lemma, we have
min(ny,...,nq) > b > —oo, and the value of the objective is lower bounded by z17;, so that

at the optimum 70} <7 < %?) Zz ¢;. This shows that the infimum is attained on a compact
set. Given that ¢; > 0 for all i, the objective is strictly convex, which shows that the minimum
exists and is unique. It is characterized by the KKT conditions. The KKT conditions for
problem GIRC(c, z,0’) are that any primal-dual optimal pair (n, \) must satisfy the primal
feasibility condition b < ng < ... < as well as Lagrangian stationarity, dual feasibility and
complementary slackness as follows:

i, e’ (mi) + 2 — N + X1 =0, Ai >0, Ai(ni —nig1) =0,

with g := 0 and 7441 := b’. Similarly, the KKT conditions for problem IRC(w,y,b) are that
any primal-dual optimal pair (x, x) must satisfy z; < ... < x4 < b and

Vi, —(wimi — wiys + pi — pi—1) =0, pi >0, pi(ri — xip1) =0,

with po := 0 and x441 :=b.

Consider (z*, u*) the unique pair of primal dual solutions to the KKT equations for IRC(w, y, b)
and (n*, \*) the unique pair of primal dual solutions to the KKT equations for GIRC(c, z, ).
The pairs are unique because both primal and dual problems are strongly convex (the objectives
are differentiable and strictly convex). Now it is easily seen that, if one sets Z; := —v¢’'(n})
and fi; = A; for all ¢, then the pair (, 1) satisfies the KKT conditions for IRC(w, y, b), which

proves by uniqueness that (%, i) = (z*, u*). So in particular, we have n} = (¢')~1(—x}).
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e When I, = @, then the partial minimization with respect to the variables 7; indexed by
J € Ji\{i} is obtained in closed form: since I, = @, all coefficients (z;);c,\{i} are strictly
positive which shows that the 7; are equal to their lower bound 7;. The argument for J, is
the same. Eliminating the variables indexed by I. from the problem, yields a problem which
satisfies the assumption that I = & and the result follows.

e When I, # @, the variables z; for j € I do not appear in the objective. At the optimum they
must therefore simply satisfy the primal inequality constraints, and eliminating them from the
objective yields a problem GIRC(¢, Z, b) satisfying the previous assumptions.

G Theoretical Results

In this section, we prove the propositions on consistency, support recovery and the concentration
result of Section 8.2. As there, we consider a fixed design matrix X € R"*?P and y € R™ a vector of
random responses. Given A > 0, we define w as a minimizer of the regularized least-squares cost:

3 lly = Xwl[3 + AQ(w). (24)

min,,cgd

G.1 Proof of Proposition 7 (Support recovery)

Proof. We follow the proof of the case p = oo from Bach (2010). Let r = %XTE € R?, which is
normal with mean zero and covariance matrix 02Q/n. We have for any w € RP,

Qw) = Q(wy) + Q7 (wye) = Qu(wy) + pQye(wye) = pQw).
This implies that Q*(r) > pmax{Q%(r,), (27)*(rse)}.

Moreover, 7jc — Q je JQ;}T.] is normal with covariance matrix
2
g -1 2
;(QJCJC —QegQ5;Qrse) < 0°/nQ e ge.
This implies that with probability larger than 1 — 3P(22*(r) > Apn/2), we have

Qy(ry)<A/2 and (1) (rse — QuesQyrs) < An/2.

We denote by @ the unique (because @ is invertible) minimum of 3-|ly — Xw||3 + AQ(w), subject
to wye = 0. Wy is defined through Q;(w;—w;*) —r; = —As; where s; € 9Q;(w;) (which implies
that Q%(sy) < 1), ie., Wy —wh = Q;5(r; — Asy). We have:

Iy =il < max|of Q7}(rs = Asy)|

< rjnea}QJ(Q}}%)Q?(m — Asg)|

< max 1Q7 705 1, F () /P15 (r ) + A5 (5]

< mea}'f_l|J|1/pF(J)1_1/p[Q§(7“J) + A5 (s5)] < gA|J|1/pF(J)1_1/pﬁ_l~
J

Thus if 2X|J|VPF(J)1 =1k~ < v, then ||[@ — w*||oo < 2%, which implies Supp(@) D Supp(w*).
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In the neighborhood of w, we have an exact decomposition of the norm, hence, to show that w is the
unique global minimum, we simply need to show that since we have (27)*(r s« —QJcJQ;}rJ) < An/2,
 is the unique minimizer of Eq. (19). For that it suffices to show that (Q7)*(Q jes(Ws—w%)—rye) <
A. We have:

Q) (Ques(y —wy) —rye) = () (QesQyy(rs — Asy) —rye)
< Q) (QuresQyyrs — 1) + M) (QuesQF)s.)
< (Q)(QuesQyry —rye) + M) [(2(Q11Qu5)) e e
< A2+ A1 —1n) < A,
which leads to the desired result. O

G.2 Proof of proposition 8 (Consistency)

Proof. Like for the proof of Proposition 7, we have
Qz) = Qu(xs) + Q7 (@5e) = Q(xs) + pQue(ase) 2 pQ2).
Thus, if we assume Q*(q) < Ap/2, then Q%(gs) < A\/2 and (27)*(gse) < A/2. Let A = — w*.
We follow the proof from Bickel et al. (2009) by using the decomposition property of the norm Q.
We have, by optimality of w:
%ATQA +FAQw* 4+ A) + ¢ A < AQUw* +A) +qT A < AQw”)
Using the decomposition property,
A (w* 4+ A) g) + 27 (w* + A)ge) + ) Ay + qJeAge < A2 (w5),
A7 (A ge) KAy (wh) = A (wh + Ag) + Q5 (0)2(A)) + (27)(¢50)Q7 (A ye),  and
(A = (1) (@77 (Age) < A+ Q5(a0)2(Ay).

Thus Q7 (Aje) < 3Q5(Ay), which implies ATQA > k[|As||3 (by our assumption which generalizes
the usual ¢;-restricted eigenvalue condition). Moreover, we have:

ATQA = AT(QA) <A)Q(QA)

< QA)@(g) +A) < 2NA) by optimality of
QA) < QA+ p Q7 (A)
1 4

This implies that kQ;(A)? < ATQA < %QJ(AJ), and thus Q;(Ay) < %, which leads to the
desired result, given the previous inequalities.

O

G.3 Proof of proposition 9

Proof. We have Q*(z) = maxaep, Al(%ll“}q. Thus, from the union bound, we get

P(Q"(2) > ) < Y P(lzall > t1F(4)).
A€eDp
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We can then derive concentration inequalities. We have E|zall, < (E[zal|9)"/7 = (JA[E[g|9)"/7 <
2|A|Y/9¢'/2, where ¢ is a standard normal random variable. Moreover, |zal, < [zall2 for ¢ > 2,
and [|zalq < |A]Y971/2||z4]|2 for ¢ < 2. We can thus use the concentration of Lipschitz-continuous
functions of Gaussian variables, to get for p > 2 and u > 0,

P(HZAHq > 2|A|1/q\/§+u) < e—u2/2.
For p <2 (i.e., ¢ > 2), we obtain
P(|lzally > 2|A1Y0/g +u) < em A2,

We can also bound the expected norm E[Q*(z)], as

E[Q 44/ ql Dr|) m 7| ‘1/(1
* < ‘1 )

A‘(l/q—1/2)+

Together with Q*(z) < ||z]|2 maxaep, FATT

, we get

0 |A‘1/q |A‘(1/q—1/2)+ s
P( (Z)>4vq10g(2‘DF|)£%};W+uﬁ%§ F(A)l/q) <e .
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