
Appendix for Fast column generation for atomic norm regularization

A Proof of Proposition 1

Proposition 1. If f is assumed lower bounded by 0
and if ρ > f(0), or more generally if the level sets of
x ↦ f(x) + γA(x) are bounded and ρ is sufficiently
large, then the sequence (x̄t)t produced by the FCFW
algorithm applied to the truncated cone constrained
problem (4) and initialized at (x̄0; τ0) = (0; 0) is the
same as the sequence (xt)t produced by Algorithm (1)
initialized with x0 = 0, with equivalent sequences of
subproblems, active sets and decomposition coefficients.

Proof. We being by showing that the Frank-Wolfe direc-
tions computed for the regularized and the constrained
problems are related via a simple relation, already dis-
cussed in Yu et al. (2014); Harchaoui et al. (2015).

First note that, the set of extreme points of the trun-
cated cone {(x, τ) ∣ γA(x) ≤ τ ≤ ρ} is

Ā = {(0; 0)} ∪ {(ρa;ρ) ∣ a ∈ A}.

so that all its non zero extreme points are in bijection
with those of A. Then, for a given point x, the Frank-
Wolfe directions computed respectively by FCFW in
problems (5) and (4) are

⎧⎪⎪⎨⎪⎪⎩

a∗ ∶= arg maxa∈A ⟨∇f(x), a⟩
ā∗ ∶= arg max(ρa;ρu)∈Ā ⟨∇f(x), a⟩ + u,

and we have

ā∗ =
⎧⎪⎪⎨⎪⎪⎩

(0; 0) if γ○A(∇f(x)) ≤ 1

(ρa∗;ρ) otherwise,

which shows that unless the atom (0; 0) is selected in Ā,
it is the image of the regular FW direction mapped via
a ↦ (ρa;ρ). Note also that the atom (0; 0) is special
in Ā in that it is the only one for which the second
component is different than ρ.

We now prove, by induction on t, the following state-
ment:
Pt ∶ Letting (x̄t, Āt, c̄t) denote the triple of values of
x, the matrix of active atoms of Ā and the vector of
coefficients c̄ of decomposition of x on these atoms, all
generated by the FCFW algorithm, then (a) the first
column of Āt is a column of zeroes corresponding to
the atom (0; 0), so that we can write

Āt = (0 ρAt

0 ρut
) ∈ R(d+1)×(1+kt) and c̄t = (d

t
0

dt
) ∈ R1+kt ,

(b) setting xt ∶= x̄t, and ct = ρdt we have that
(xt,At, ct) is the t-th corresponding triple produced by
Algorithm (1) and (c) τ t = ρ(1 − dt0) < ρ so that the
truncation constraint {τ ≤ ρ} is inactive.

To prove P0, note that if (x0; τ0) = (0; 0), then we
trivially have Ā0 = (0; 0) and Ā0 has the desired form,
we have x̄0 = c00 ⋅ 0d = x0 with c̄0 = d0

0 = 1 so that c̄0

satisfies the simplex constraints; finally τ0 < ρ.

We now assume Pt−1 is true and prove that so is Pt. In
the FCFW algorithm, the new direction chosen cannot
be (0; 0) since dt−1

0 > 0, which entails this atoms is
already in the active set and because the algorithm is
fully corrective (which prevents the forward direction
to be an atom already in the active set), so that it must
be of the form (ρat, ρ) which, given that by induction
x̄t−1 = xt−1, entails that at is indeed the same direction
as the one chosen by Algorithm (1) .

Letting Āt is the matrix whose columns are the atoms
used in the expansion of xt, then x̄t = Atct and letting
xt = x̄t, then the triple (xt,At, ct) is the one generated
by Algorithm (1) . This entails that Āt is indeed of the
announced form and that the sub-matrix At is indeed
the one used by Algorithm (1) .

Now the optimization problem solved in the corrective
step of FCFW is thus

min
x,τ,d

f(x) + τ s.t.

x = ρAtd, τ = ρutd, c̄ = (c0;d) ∈ ∆kt+1,

with ut = 1⊺kt and kt the number of currently active
atoms.

Eliminating x and τ we obtain

min
d≥0

f(ρAtd) + ρ1⊺ktd s.t. 1⊺ktd ≤ 1,

and with the change of variable c = ρd, we get

min
c≥0

f(Atc) + ∥c∥1 s.t. ∥c∥1 ≤ ρ

But, since γAt(x) = inf {∥c∥1 ∣ c ∈ Rkt+ , x = Atc}, we can
rewrite the previous problem equivalently as

min
x
f(x) + γAt(x) s.t. γAt(x) ≤ ρ.

We first conclude the argument assuming f ≥ 0 and
ρ > f(0). In that case, we have

γAt(xt) ≤ f(xt) + γAt(xt) ≤ f(0) + γAt(0) = f(0) < ρ,
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so that the inequality constraint is inactive for all t at
the optimum in the two last problems above and can
be removed. We thus showed that the optimization
problem of the corrective step of the FCFW algorithm
on problem (4) is equivalent to the problem solved at
step 6 of Algorithm (1) , and that ∥ct∥1 < ρ which
entails that dt0 = 1 − ∥dt∥1 = 1 − 1

ρ
∥c∥1 > 0 and so that

the atom (0; 0) remains in Āt+1. The induction step is
completed which thus proves the result.

Now, if we do not assume that f is lower bounded,
but we assume instead that the level sets of f + γA are
bounded, then Algorithm (1) generates a sequence xt

which is bounded since the sequence (f(xt)+γAt(xt))
t

is a monotonically decreasing sequence. But since for all
x, f(x)+γAt(x) ≥ f(x)+γA(x), the monotonicity also
implies that the sequence (xt)t remains in the bounded
set {x ∣ f(x) + γA(x) ≤ f(0)}. Since f is assumed
continuous this entails that (f(xt))

t
is bounded which

entails that so is (γAt(xt))
t
so if ρ is chosen such that

ρ > supt γAt(xt) then the FCFW algorithm applied
on problem (4) will generate the same sequence as
Algorithm (1) . This value of ρ is not known a priori,
but is required by neither algorithms.

Connection with cutting plane algorithms

It is well known that the Frank-Wolfe algorithm is an
instance of a column generation algorithm (Forsgren
et al., 2015). We explain in this section how Algorithm
1 is naturally derived as such.

Column generation algorithms correspond to cutting
plane algorithms in the dual. The principle of the latter
algorithms is to solve a sequence of constrained opti-
mization problems that are relaxations of the original
problem, where the constraints introduced are gradu-
ally tightening the relaxation around the optimum. The
new constraint introduced at each iteration is called
a cut since it cuts the previous relaxed constraint set
in order to reduce it. A new cut is typically deter-
mined as a constraint of the original problem which is
violated by a current solution st to the relaxed prob-
lem. Such as new constraint is called a deep cut. For
problems of the form mins∈C○A f

∗(s) and given that
C○
A = {s ∣ ⟨s, a⟩ ≤ 1, a ∈ A}, a most violated constraint
by a dual variable s can be computed as the inequality
⟨s, a⟩ ≤ 1 for the atom a which is a conjugate direction
to s, that is a solution to maxa∈A⟨s, a⟩. Indeed, this
yields an atom a such that ⟨a, s⟩ is maximal.

After t iterations the relaxed problem to solve in the
dual is of the form

min
s

f∗(−s) s.t. ⟨ai, s⟩ ≤ 1, ∀i ∈ [[t]], (1)

for At ∶= (ai)i∈[[t]] a sequence of atoms of A.

It is immediate to check that the corresponding primal
algorithm is a version of Algorithm 1 in which all
atoms are stored. The classical constrained version of
Frank-Wolfe correspond a cutting plane algorithm in
the dual problem regularized by the dual norm, where
this regularization is reformulated as a conic constraint
like in formulation (4) in the main paper.

B Rank one updates of the Hessian
and its inverse in active-set

Let Ht be the Hessian of the quadratic prob-
lem in active-set algorithm and Bt its inverse.
Let Q be the Hessian of the quadratic function
f . We have Ht = At⊺QAt. We use the Sher-
man–Morrison–Woodbury matrix inversion formula in
the following equations.

When we add an atom at+1, we have updates

Ht+1 = [H
t v

v⊺ a⊺t+1Qat+1
]

and

Bt+1 = [B
t + αBtvv⊺Bt −αBtv
−α(Btv)⊺ α

]

where v = At⊺Qat+1 and α = (a⊺t+1Qat+1 − v⊺Bv)−1.

When removing an atom, Ht+1 is obtained re-
moving the corresponding column and row. For clarity,
let us assume that we want to remove the last atom.
We have

Ht = [H̃
t v

v⊺ ν
]

and

Bt+1 = [B̃
t w

w⊺ β
] .

Then,

Ht+1 = H̃t,

Bt+1 = B̃t

+ βB̃
tvv⊺B̃t − (w⊺v − 1)(wv⊺B̃t + B̃tvw⊺) + v⊺B̃vww⊺

(w⊺v − 1)2 − βv⊺B̃tv
.

C Additional experiments

C.1 Hierarchical sparsity

Additional plot for experiment of section Hierarchical
sparsity on simulated dataset to give a better idea of
the improvement brought over interior points methods



Figure 1 shows the number of matrix inversions per
size of the matrix. The interior point solver requires
6-7 times more matrix inversions that the active-set
algorithm for most of the iterations of the algorithm
(in particular, the ones involving larger Hessian), and
for the active-set algorithm the inverse Hessian updates
could be done in time O(k2) instead of O(k3).
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Figure 1: Number of matrix inversions for FCFW-
ip divided by the number of matrix inversions in our
method per size of the matrix (on WH simulated data).

C.2 Sparse PCA

See Figure 2 for a representation of the ground truth
matrix and the noisy covariance used in experiments.
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Figure 2: Zoom on 40 first variables of true covari-
ance(left) and empirical covariance(right) for a noise
level σ = 0.3 .
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