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Statistical Model

Parametric model — Definition:
Set of distributions parametrized by a vector § € © C RP

Po = {po(x) | 0 € ©}
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Statistical Model

Parametric model — Definition:
Set of distributions parametrized by a vector § € © C RP

Po = {po(x) | 0 € ©}
Bernoulli model: X ~ Ber(6) © =10,1]
po(x) = 6%(1 — )1~
Binomial model: X ~ Bin(n,0) © =10,1]
i) = (7) (1 - )0

Multinomial model: X ~ M(n, 7y, 72, ..., k) © =10,1]¥

n
)= ()
X1y Xk
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Indicator variable coding for multinomial variables

Let C a r.v. taking values in {1,..., K}, with

P(C = k) = mg.
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Indicator variable coding for multinomial variables

Let C a r.v. taking values in {1,..., K}, with
P(C = k) = mx.

We will code C with arv. Y =(Y1,..., Yk)" with

Yk = lic=x)

For example if K =5 and ¢ = 4 then y = (0,0,0,1,0)".
Soye {0,1}K with YKy = 1.

P(C=k)=P(Yi=1) and P(Y =y) Hw
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Bernoulli, Binomial, Multinomial

YNBer(W) (Yl,...,YK)NM(1,7T1,...,7TK)
ply) = (1 —m)t~Y ply) =" ... i
N1~Bin(n,7r) (Nl,...,NK)NM(H,W;[,...,’/‘['K)

o) = () @=myrn o= () el

with
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Gaussian model

Scalar Gaussian model : X ~ N (u, 0?)
X real valued r.v., and 6 = (p,0%) € © = R x R

2
Pyu,02 (x) = L exp <—;(X_“)>
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Gaussian model

Scalar Gaussian model : X ~ N (u, 0?)
X real valued r.v., and 6 = (p,0%) € © = R x R

2
Py, (x) = L exp <—;(X_“)>

Multivariate Gaussian model: X ~ N (i, X)

X r.v. taking values in RY. If kg is the set of positive definite matrices
of size d x d , and 0 = (u, ) € © = R x K.

x:;ex —Ex— Ty 1 (x—
R T (3= )
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Gaussian densities
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Sample/Training set

The data used to learn or estimate a model typically consists of a
collection of observation which can be thought of as instantiations of

random variables.
x® o x
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Sample/Training set

The data used to learn or estimate a model typically consists of a
collection of observation which can be thought of as instantiations of
random variables.

x® o x
A common assumption is that the variables are i.i.d.
o independent
o identically distributed, i.e. have the same distribution P.

This collection of observations is called
o the sample or the observations in statistics
@ the samples in engineering

o the training set in machine learning
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Maximum likelihood principle

o Let Po = {p(x;0) | 6 € ©} be a model
@ Let x be an observation
Likelihood:
L — R+
0 — p(x;0)

Maximum likelihood estimator:

Oy, = argmax (x;0) Sir Ronald Fisher
ML P (1890-1962)

Case of i.i.d data

If (xi)i<i<n is an i.i.d. sample of size n:

n n
HAML = argmax | | po(xj) = argmax log po(x;
<] [ en() = argmax ) log pn()
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The maximum likelihood estimator

The MLE

@ does not always exists
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MLE for the Bernoulli model
Let Xi, Xo,..., X, an i.i.d. sample ~ Ber(0).
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i=1 i=1

= Z (xilog 6 + (1 — x;) log(1 — 0)) = Nlog(8) + (n — N)log(1 — )
i=1

with N =37
e O+ ((0) is strongly concave = the MLE exists and is unique.

@ since / differentiable 4 strongly concave its maximizer is the unique

no
=17

stationary point

Review of Statistics 15/40



MLE for the Bernoulli model
Let X1, Xa,..., X, an i.i.d. sample ~ Ber(6). The log-likelihood is

“o) = Z log p(x;; 0) = Z log [gxi(]_ _ 9)1—)(,-]
i=1 i=1

= Z (xilog 6 + (1 — x;) log(1 — 0)) = Nlog(8) + (n — N)log(1 — )
i=1

with N =37
e O+ ((0) is strongly concave = the MLE exists and is unique.

@ since / differentiable 4 strongly concave its maximizer is the unique

no
=17

stationary point
0 N n—N

Vi) = 55U0) = 5 — T
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MLE for the Bernoulli model
Let X1, Xa,..., X, an i.i.d. sample ~ Ber(6). The log-likelihood is

“o) = Z log p(x;; 0) = Z log [gxi(]_ _ 9)1—)(,-]
i=1 i=1

= Z (xilog 6 + (1 — x;) log(1 — 0)) = Nlog(8) + (n — N)log(1 — )
i=1
with N =37 x;.
e O+ ((0) is strongly concave = the MLE exists and is unique.
@ since / differentiable 4 strongly concave its maximizer is the unique

stationary point

0 N n—N
Vﬁ(&)—%ﬁ(ﬁ)—g— R
Thus
A N xi+x2+--+x
v, = — = .
n n
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MLE for the multinomial

Done on the board.
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Method of moments (Karl Pearson, 1894)

Consider a statistical model for a univariate r.v. parameterized by
0= (1,...,0k) € R
Denote by ;X the kth moment of a random variable:
p1(0) = Eo[X], 12(0) = Eo[X?], ..., uk(6) =Ee[X"].

We have
(Ml, e .,MK) = f(0) = f((gl, oo ,HK).

Principle of the method of moments
Given a sample Xi,..., X,

. : . I R
o Estimate the pks with the empirical moments: fi, = — ZX,-k.
=
o The moment estimator is § defined as the solution to the equation
(B, i) = F(B1, .., Ok).



Method of moments: illustration
In many usual cases the moment estimator and the MLE are equal.
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Method of moments: illustration
In many usual cases the moment estimator and the MLE are equal.

Example where MME # MLE

For the family of gamma distribution

Xp—le—Ax
p(x: A, p) = W Lix>0)

the MLE is not closed-form (exercise). However
=E[X]=Xp,  p2=E[X?] = p(p+1))\?, So that

M1 p= H2 — M1
M2 — py M1

5 p:ﬂz—ﬁf

fiz — g’ fa
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Linear regression
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Design matrix

Consider a finite collection of vectors x; € RY pour i =1...n.

Design Matrix
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Design matrix

Consider a finite collection of vectors x; € RY pour i =1...n.

Design Matrix

We assume that the vectors are centered, i.e. that 27:1 x; = 0.

If x; are not centered the design matrix of centered data can be
constructed with the rows x; — x| with x = %Z,’-’:l X;.
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Linear regression

@ We consider the OLS regression for the linear hypothesis space.
o We have X = RP, Y =R and /¢ the square loss.
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@ We consider the OLS regression for the linear hypothesis space.
o We have X = RP, Y =R and /¢ the square loss.

Consider the hypothesis space:

S={fu|weRr} with fu i X = w'x

Given a training set {(x1,y1),.-.,(Xn, ¥n)} we have
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Linear regression

@ We consider the OLS regression for the linear hypothesis space.
o We have X = RP, Y =R and /¢ the square loss.

Consider the hypothesis space:

S={fu|weRr} with fu i X = w'x

Given a training set {(x1,y1),.-.,(Xn, ¥n)} we have
A~ 1
Rn(fw) = 5 Z(yi - WTxi)2 = Z”y - XWH%

with

o the vector of outputs y' = (y1,...,y,) € R"
-

o the design matrix X € R"*P whose ith row is equal to x; .
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Solving linear regression

To solve min R,(fy), we consider that
weRp

1
Ra(fw) = 5 (w X Xw —2w Xy + [y|?)

is a differentiable convex function whose minima are thus characterized
by the
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Solving linear regression

To solve min R,(fy), we consider that
weRp

1
Ra(fw) = 5 (w X Xw —2w Xy + [y|?)

is a differentiable convex function whose minima are thus characterized
by the

Normal equations

X" Xw—XTy=0

If X7 X is invertible, then f is given by:
fox o x'T(XTX)_ley.

Problem: XX is never invertible for p > n and thus the solution is not
unique.

Review of Statistics 24/40



Ridge regression

Is obtained by applying Tikhonov regularization to OLS regression.

2

@ Problem now strongly convex thus well-posed
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1
min |y — Xwl|3 + Aflw]/2

Problem now strongly convex thus well-posed

Thus with unique solution:
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Ridge regression

Is obtained by applying Tikhonov regularization to OLS regression.

2

@ Problem now strongly convex thus well-posed

@ Thus with unique solution:

w(ridge) — (XTX + )\I)—ley

@ Shrinkage effect
@ Regularization improves the conditioning number of the Hessian

= Problem now easier to solve computationally

Review of Statistics 25/40
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Principal Component Analysis (1901)

Karl Pearson (1857 - 1936)
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Empirical covariance and correlation
For centered vectors :

s _ lyo7 1¢ T
1=
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1 1w

S Ty _ T
i=1
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Empirical covariance and correlation
For centered vectors :

s _ lyo7 1¢ T
i=1
For non centered vectors :
~ 1 _ _
Y = - Z(x,- —X)(x—x)"
Another common operation is to normalize the data by dividing each
column of X by its standard deviation. This leads to the empirical

covariance matrix.

C= Diag(&)_lf Diag(5) ! avec Gi = fk,k.
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Empirical covariance and correlation
For centered vectors :

~ 1 1w
Z = ;XTX = ;ZX,‘XI-T
i=1
For non centered vectors :
~ 1 _ _
Y = - Z(x,- —X)(x; —x)"

Another common operation is to normalize the data by dividing each
column of X by its standard deviation. This leads to the empirical
covariance matrix.

C= Diag(&)_lf Diag(5) ! avec Gi = fk,k.

X — X X — X
Ckk/Z*Z('A )(’ = )
’ n Ok Ok

Normalisation is optional...
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PCA from the analysis point of view

Data vectors live in RY and one seeks a direction v in RY such that the
variance along this direction is maximal. Or

Var((v'x;)iz1..n) = %Z(VTXi)Z
i—1

1 n
= —g VTX,'X,-TV
n <
i=1
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PCA from the analysis point of view
Data vectors live in RY and one seeks a direction v in RY such that the
variance along this direction is maximal. Or

Var(vI x)iz1.n) = = (vx)?

One needs to solve
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PCA from the analysis point of view

Data vectors live in RY and one seeks a direction v in RY such that the
variance along this direction is maximal. Or

T T2
Var((v' xi)i=1..n) = - (v'x)
i=1
n
1
= — VTX,'X,'—FV
n
i=1
1 n
= vT<fE x,-x,-T)v
n
i=1
= vizvy
One needs to solve
XY,

l[vil2=1

Solution: first eigenvectors of 5 say vi.
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Deflation

What is the second best direction to project the data on in order to
maximize the variance 7
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Deflation

What is the second best direction to project the data on in order to
maximize the variance 7

One can perform a deflation

Vi, ;,' — Xj — V1(V1TX,')

Review of Statistics 30/40



Deflation
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Deflation

What is the second best direction to project the data on in order to
maximize the variance 7

One can perform a deflation
. T
Vi, Xi < xi —vi(vy x;)
Which translates at the matrix level: X < X — Xvy v

Then again find the direction of maximal variance

X 1~ ~
Yy =-X'X

n
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Then again find the direction of maximal variance

X 1~ ~
Yy =-X'X

n

One solves r”ne|1|x viTv
vl|2

Review of Statistics 30/40



Deflation
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One can perform a deflation
. T
Vi, Xi < xi —vi(vy x;)
Which translates at the matrix level: X < X — Xvy v

Then again find the direction of maximal variance

X 1~ ~
Yy =-X'X
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Deflation

What is the second best direction to project the data on in order to
maximize the variance 7

One can perform a deflation
. T
Vi, Xi < xi —vi(vy x;)
Which translates at the matrix level: X < X — Xvy v

Then again find the direction of maximal variance

X 1~ ~
Yy =-X'X

n

One solves r”ne|1|x viTv
vl|2

Or equivalently r|’|na|1|vafv tel que v L vy.
Vil2

Solution: This yields the second eigenvector of pN say v». Etc.
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Principal directions

We usually call
e principal directions (or factors) of the points cloud the vectors

Vi, Vo, ..., V.
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Principal directions

We usually call
e principal directions (or factors) of the points cloud the vectors

Vi, Vo, ..., V.

@ principal components:
the projection of the data on the k principal directions.

The principal directions are the eigenvectors of ¥ =VS2vT,

Review of Statistics 31/40



Singular value decomposition and PCA
The SVD of a matrix X € R™P with n < p is of the form X = USV'T,
avec
@ U € R™" an orthogonal basis of R"
@ S € R"*P a (rectangular) diagonal matrix .
o V € RP*P une base orthogonale de RP
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Singular value decomposition and PCA

The SVD of a matrix X € R™P with n < p is of the form X = USV'T,
avec

@ U € R™" an orthogonal basis of R"

@ S € R"*P a (rectangular) diagonal matrix .

o V € RP*P une base orthogonale de RP
Reduced SVD

The reduced SVD is more often used: If r is the rank of X then
X = USV'T with,

o U € R™" whose columns are orthonormal.
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Singular value decomposition and PCA

The SVD of a matrix X € R™P with n < p is of the form X = USV'T,
avec

@ U € R™" an orthogonal basis of R"
@ S € R"*P a (rectangular) diagonal matrix .
o V € RP*P une base orthogonale de RP

Reduced SVD

The reduced SVD is more often used: If r is the rank of X then
X = USV'T with,

e U € R™ whose columns are orthonormal.

@ S € R™" a squared diagonal matrix.

o V € R"™P whose columns are orthonormal.
If the diagonal of S is such that s; > s > ... > s, > 0 and Uy, > 0 for
all k the reduced SVD is unique. We have that

o US?UT is a (compact) diagonalisation of XX T

o VS?VT is a (compact) diagonalisation of X X
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Bayesian estimation
Bayesians treat the parameter 6 as a random variable.

A priori
The Bayesian has to specify an a priori distribution p () for the model

parameters 6, which models his prior belief of the relative plausibility of
different values of the parameter.
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Bayesian estimation
Bayesians treat the parameter 6 as a random variable.

A priori

The Bayesian has to specify an a priori distribution p () for the model
parameters 6, which models his prior belief of the relative plausibility of
different values of the parameter.

A posteriori

The observation contribute through the likelihood: p (x|6).
The a posteriori distribution on the parameters is then

p(01x) = PIDE o o i) p ).

— The Bayesian estimator is therefore a probability distribution on the
parameters.

This estimation procedure is called Bayesian inference,
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Conjugate priors

A family of prior distribution

Pa={pa(f) | a € A}

is said to be conjugate to a model Pg, if, for a sample

XWX g with g € Po,
the distribution g defined by

_ Pa(8) I1; Po (X(i))
J Pa(0)I1; po(x(V)dO

q(0) = p(O]x1Y,... . x17)

is such that
qc Pa.
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Dirichlet distribution
We say that @ = (61, ..., 60k) follows the Dirichlet distribution and note

6 ~ Dir(«)

for
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Dirichlet distribution
We say that @ = (61, ..., 60k) follows the Dirichlet distribution and note

6 ~ Dir(«)

for 8 in the simplex Ak = {u € R | 2K, ux = 1} and
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Dirichlet distribution

We say that @ = (61, ..., 60k) follows the Dirichlet distribution and note
6 ~ Dir(«)

for 6 in the simplex Ax = {u € R | S, uk = 1} and admitting the
density
r
p(0; )= —120)_gout | g

ITx (o)

with respect to the uniform measure on the simplex, where

o0
ap = Zak and T(x):= / > le tdt
k 0
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Dirichlet distribution 1l
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Dirichlet distribution 1l

ak(ag — ax)
ag(ao +1)

—Q0

and COV(Qj,gk) = m
0

E[Qk]:Z—g . Var(fy) =

with ag = >, ax.
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Bayesian estimation of a multinomial random variable

Consider the simple Bayesian Dirichlet-Multinomial model with
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Bayesian estimation of a multinomial random variable

Consider the simple Bayesian Dirichlet-Multinomial model with
@ A Dirichlet prior on the parameter of the multinomial: 8 ~ Dir()

@ A multinomial random variable z ~ M(1, 6)
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Bayesian estimation of a multinomial random variable

Consider the simple Bayesian Dirichlet-Multinomial model with
@ A Dirichlet prior on the parameter of the multinomial: 8 ~ Dir()

@ A multinomial random variable z ~ M(1, 6)

K K
p(0) o H ot and  p(z]0) = H 0.
k=1 k=1
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Bayesian estimation of a multinomial random variable

Consider the simple Bayesian Dirichlet-Multinomial model with
@ A Dirichlet prior on the parameter of the multinomial: 8 ~ Dir()

@ A multinomial random variable z ~ M(1, 6)

K K
p(0) o H ot and  p(z]0) = H 0.
k=1 k=1

Let z(M), ..., z(™) be an i.i.d. sample distributed like z.
We have

p(02Y),...,2M) =
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Bayesian estimation of a multinomial random variable

Consider the simple Bayesian Dirichlet-Multinomial model with
@ A Dirichlet prior on the parameter of the multinomial: 8 ~ Dir()

@ A multinomial random variable z ~ M(1, 6)
K

K
0)x [[ 00 and  p(z6) =[] 67
k=1

k=1

Let z(M), ..., z(™) be an i.i.d. sample distributed like z.
We have

o 0
P02, ..., 2M) = Plf(j(ll}np( . |)))
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Bayesian estimation of a multinomial random variable

Consider the simple Bayesian Dirichlet-Multinomial model with
@ A Dirichlet prior on the parameter of the multinomial: 8 ~ Dir()

@ A multinomial random variable z ~ M(1, 6)
K

K
0)x [[ 00 and  p(z6) =[] 67
k=1

k=1

Let z(M), ..., z(™) be an i.i.d. sample distributed like z.
We have

(1) )y _ P(6) HnP( )16) Ut Znk—1
p(0|z", ..., 2\") = oD, 2 o HG
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Bayesian estimation of a multinomial random variable

Consider the simple Bayesian Dirichlet-Multinomial model with
@ A Dirichlet prior on the parameter of the multinomial: 8 ~ Dir()

@ A multinomial random variable z ~ M(1, 6)
K

K
0)x [[ 00 and  p(z6) =[] 67
k=1

k=1

Let z(M), ..., z(™) be an i.i.d. sample distributed like z.
We have

(1) )y _ P(6) HnP( )16) Ut Znk—1
p(0|z", ..., 2\") = oD, 2 o HG

So that (6‘(2)) ~ Dir((oq + Ni,...,ak + NK)) with N, = Zn Znk
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Use of the posterior distribution and posterior mean

The principle of Bayesian estimation is that the prior and posterior
distribution model the uncertainty that we have in the estimation
process. As a consequence, one should always integrate over the
uncertainty. So the final estimate for a function f(0) is

/ £(0) p(0|xM ... x(M) de.
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Use of the posterior distribution and posterior mean

The principle of Bayesian estimation is that the prior and posterior
distribution model the uncertainty that we have in the estimation
process. As a consequence, one should always integrate over the
uncertainty. So the final estimate for a function f(0) is

/ £(0) p(0|xM ... x(M) de.

In particular the predictive distribution is

p(x|xM) . x(M) = /p(x'|9) p(0)xM) ... x(M) de.
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Use of the posterior distribution and posterior mean

The principle of Bayesian estimation is that the prior and posterior
distribution model the uncertainty that we have in the estimation
process. As a consequence, one should always integrate over the
uncertainty. So the final estimate for a function f(0) is

/ £(0) p(0|xM ... x(M) de.
In particular the predictive distribution is
p(x[xD), ... x(M) = /p(x/|9) p(O1xD),. .. x(M) 6.
If a point estimate is needed for @ then this should be the posterior mean

b = E[B, .. x] = [0p(6,.. x") do
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Maximum A Posteriori estimation

Often, it is too hard or too costly to compute the posterior mean

Dot = / 0 p(01xV), . x") do.
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Maximum A Posteriori estimation

Often, it is too hard or too costly to compute the posterior mean
Dot = / 0 p(01xV), . x") do.

An alternative is to compute the

posterior mode or maximum a posteriori:

Oviap = arg meaxp(9|x(1),“_’x(”))
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Maximum A Posteriori estimation

Often, it is too hard or too costly to compute the posterior mean
Dot = / 0 p(01xV), . x") do.

An alternative is to compute the

posterior mode or maximum a posteriori:

Oviap = arg meaxp(9|x(1),“_’x(”))

= argmax p(xP .. x(M)6)p(0)
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Maximum A Posteriori estimation

Often, it is too hard or too costly to compute the posterior mean
Opni = /ep(0|x(1>, x{My de.

An alternative is to compute the

posterior mode or maximum a posteriori:

Oviap = arg meax p(0|x(1), o ,x(”))
= argmaxp(xV,... x("|6)p(6)
n
= ()
arg meax; log p(x'"/]0) + log p(0)

. corresponds to a form of regularized maximum likelihood.
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