
Statistics review

Semaine de pré-rentrée du master MVA

In the following list of exercises, we use the notation X> (resp. x>) to denote the transpose of the matrix
X (resp. the vector x).

Multinomial random variables

The vector (N1, . . . , NK) is said to follow a multinomial distribution M(π1, . . . , π;n) if and only for any
non-negative integers n1, . . . , nk we have

P(N1 = n1, . . . , NK = nK) =

(
n

n1, . . . , nK

) K∏
k=1

πnk

k 1{n1+...+nK=n}.

Of particular interest is the special case where n = 1 which is quite convenient to encode probability
distributions with finite discrete support.

1. Show that if Z = (Z1, . . . , ZK) ∼ M(π1, . . . , π; 1) then Z is a binary indicator vector with P(Zk =
1) = πk.

2. If Z(1), . . . , Z(n) is an i.i.d. sample from M(π1, . . . , π; 1) then defining Nk =
∑n
i=1 Z

(i)
k for all k, show

that N := (N1, . . . , NK) follows the distribution M(π1, . . . , π;n).

Method of moments vs maximum likelihood estimation

1. (?) Uniform distributions. In this exercise the Beta distribution will be useful. Remember that
the Beta-distribution with parameters α, β > 0 is the distribution on the interval [0, 1] with density
pα,β(x) ∝ xα−1(1 − x)β−1. Its mean and variance are respectively equal to α/(α + β) and αβ/[(α +
β)2(α + β + 1)]. We consider the statistical model consisting of the uniform distributions on the
interval [0, θ] for some θ > 0 and undertake to estimate θ from a sample X1, . . . , Xn drawn from such a

distribution. Since, E[Xi] = θ/2, one candidate estimator is the moment estimator θ̂MO = 2
n

∑n
i=1Xi.

(a) Show that the maximum likelihood estimator θ̂MLE exists and is unique and compute it.

(b) Show that θ̂MLE follows a Beta distribution. What are the values of the parameters of this Beta?

(c) Deduce from the previous question the variance and the bias of the estimator.

(d) What is the variance of the moment estimator?

(e) We consider the MSE E[(θ − θ̂)2] as a measure of performance of the estimator. Compare the
MSE for both estimators. Which estimator should be preferred?
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Computation of maximum likelihood estimators

1. Let x1, . . . , xn be an i.i.d. sample from a Bernoulli distribution with parameter θ.

(a) Use convexity arguments to decide if the MLE exists and whether it is unique.

(b) Compute the MLE

2. Consider the random binary indicator vector Z = (Z1, . . . , ZK) following the multinomial distribution
M(π1, . . . , πK ; 1), in other words such that P(Zk = 1) = πk. Let z(1), . . . , z(n) be a sample of such
multinomial vectors.

(a) Let Nk =
∑n
i=1 Z

(i)
k . Show that (N1, . . . , NK) is a sufficient statistic for the sample and express

the likelihood as a function of (N1, . . . , NK).

(b) Show that the MLE is the solution of a constrained convex optimization problem (in particular
argue that the MLE exists and is unique).

(c) Construct the associated Lagrangian and derive the MLE.

3. (?) Consider the multivariate Gaussian r.v. X ∼ N (µ,Σ) with µ ∈ Rd and Σ ∈ Rd×d. Assume that
Σ is positive definite (and not only semi-definite), so that the Gaussian distribution admits a density
with respect to the Lebesgue measure of the form:

p(x) =
1√

(2π)d|Σ|
exp

{
− 1

2
(x− µ)>Σ−1(x− µ)

}
.

(∗) Let A ∈ Rd×d, consider the functions f : µ 7→ u>µ and g : µ 7→ µ>Aµ. Compute the differential
1 dfµ : Rd → R of f at µ and deduce the form of the gradient ∇f(µ). Do the same for dgµ and
∇g(µ). How are these simplified if A is a symmetric matrix?

We now assume that we have an i.i.d. sample (x1, . . . ,xn) from the above-mentionned multivariate
Gaussian distribution.

(a) Show that if Σ is fixed, the MLE estimator for µ is the minimum of a quadratic form and that it
does not depend on Σ. What is the MLE equal to?

(b) Assuming now that µ is fixed show that the statistic

Σ̂ :=
1

n

n∑
i=1

(xi − µ)(xi − µ)>,

is a sufficient statistic for Σ and express the log-likelihood as a function of Σ̂ and Λ := Σ−1.

(c) Given the Frobenius inner product 〈·, ·〉F between matrices, with 〈A,B〉F = tr(A>B), remember
that for a differentiable real valued matrix function f : Rp×d → R, the gradient of f at A is
defined as the matrix ∇f(A) such that for all H ∈ Rp×d, we have

f(A+H)− f(A) = 〈∇f(A),H〉F + o(‖H‖F ).

(d) What is the gradient of the function B 7→ 〈A,B〉F ?

(e) If I is the identity matrix and if | · | denotes the determinant of a matrix, show that the differential
of the log-determinant2 at the identity is the trace, that is d| · |I(H) = tr(H). Deduce from this
the form of the differential of the log-determinant restricted to the set of symmetric matrices at a
matrix A (which we also assume symmetric), and the value of the gradient of the log-determinant
at A.

1Remember that the differential of a real valued differentiable function f at x ∈ Rm is the linear form dfx : Rm 7→ R such
that for all h ∈ Rm, we have f(x + h)− f(x) = dfx(h) + o(‖h‖).

2the logarithm of the determinant
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(f) Compute the gradient of the log-likelihood of a sample with µ fixed and compute the maximum
likelihood estimator for Λ. Deduce the MLE for Σ?

(g) Consider now the computation of the joint MLE for the pair (µ,Σ)? What changes? What

happens if Σ̂
′

:= 1
n

∑n
i=1(xi − x̄)(xi − x̄)> is not invertible?

Ridge regression and PCA

1. Moore-Penrose pseudo-inverse. The Moore-Penrose pseudo-inverse of a rectangular matrix S ∈
Rn×p that has non-zeros entries only on the diagonal is the matrix S− ∈ Rp×n which is such that
(S−)> is the matrix whose zero entries are the same as those of S and with non-zero diagonal entries
the inverses of the non-zero diagonal entries of S (note that some of the entries of the diagonal can be
equal to zero, in which case they are zero in both matrices). More generally the Moore-Penrose pseudo-
inverse of a matrix X ∈ Rn×p with singular value decomposition X = USV > (where U ∈ Rn×n and
V ∈ Rp×p are orthogonal matrices, and S ∈ Rn×p is a rectangular diagonal matrix containing the
singular values of X) is the matrix X− = V S−U>. The Moore-Penrose pseudo-inverse is often
denoted X†.

(a) Show that for any matrix X, we have XX−X = X and X−XX− = X−

(b) Show that (X>X)− = X−(X−)> and that (X>X)−X> = X−.

(c) Show that wPI := X−y is a solution to the normal equation X>Xw = X>y.

(d) Show that it is the solution of the normal equation with minimal Euclidean norm.

2. Review of PCA. For data x(1), . . . ,x(n) living in Rp, PCA defines a sequence of mutually orthogonal
vectors called principal directions (or principal factors) v1,v2, etc ∈ Rp that such that the projection
of the data on these directions have maximal variance. These directions are used to define new vari-
ables called principal variables or principal components. In particular the value of the jth principal
component for the ith datapoint x(i) is cij := 〈x(i),vj〉. The jth principal variable is represented in
the dataset by the vector cj = Xvj ∈ Rn. We will assume in this exercise that X is centered (in the
sense that each column has zero mean.)

(a) Show that the (vj)j are the right singular vectors of the design matrix.

(b) Show that the (cj)j can be retrieved from the Gram matrix K := XX> only.

(c) Show that the empirical standard deviation of the entries in cj is equal to the jth singular value
σj of X.

(d) Show that σ−1
j cj is uj the jth left singular vector of X.

3. (?) Ridge regression and PCA. Karl and Andrëı have to solve a linear regression problem and they
are debating about which method to use. Given that the amount of data is not so large as compared
to the number of covariates3 they are concerned about overfitting. They have a sample of training

data consisting of a number of pairs (x
(i)
0 , y(i)) with x

(i)
0 ∈ Rp and y(i) ∈ R. They first compute x̄0 the

empirical average of the vectors (x
(i)
0 )i, compute the centered vectors x(i) = x

(i)
0 − x̄0 and store them

in a design matrix X ∈ Rn×p where, as usual, each row corresponds to an observation x(i) and each
column to a covariate.

Andrëı is in favor of using ridge regression, which he learnt about in class, while Karl has another
idea: Karl has heard about parsimony and would prefer to reduce the number of parameters of the
regression, so that regularization is no longer necessary; to be precise, he suggests to replace the set of
initial covariates by the k first principal components of the point cloud and to construct a prediction
model based on them.

3covariates or variables in statistics, features or descriptors in ML
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The goal of the exercise is to compare the two methods. With the notation of the previous exercise,
the idea of Karl is to project the training data on the principal directions v1, . . . ,vk, to keep only
the obtained principal components c1, c2, . . . , ck and to use these as a new set of covariates to learn a
regression function without regularization. Then in order to make new prediction, the new datapoint
can be projected on the (vj) and from these projections, a prediction can be made.

(a) Denoting c
(i)
1:k := (ci1, . . . , cik), consider the estimate w̃ for the parameter vector of the regression

of the y(i)s on the c
(i)
1:ks. Show that w̃ can be expressed as a function of y = (y(1), . . . , y(n)), of

u1, . . . ,uk, the k first left singular vectors of X, and of σ1, . . . , σk, the k largest singular values
of X.

(b) Given a new datapoint x show how the linear function estimated from the principal components
translate into an affine predictor on x of the form x 7→ w>PCA(x− x̄0) where wPCA is of the form∑k
j=1 γjvj where γj ∈ R depends only on uj , y and σj .

(c) Let m = rank(X). Now, given a regularization coefficient λ, show that the predictor from ridge
regression is of the form x 7→ w>R(x − x̄0), where wR ∈ Rm is of the form

∑m
j=1 γ

′
j(λ)vj where

γj(λ) ∈ R depends only on uj , y, λ and σj .

(d) Compare wPCA with wR, in what way are they similar? In particular, given the fact that the
function ψ : z 7→ z2/(λ+ z2) is an increasing function from 0 to 1 and that ψ(

√
λ) = 0.5, explain

why keeping the k-first principal component is somewhat like choosing λ between σ2
k and σ2

k+1.

(e) If you know the Moore-Penrose pseudo-inverse or if you have done the exercise on it (see that
exercise for notations), show that denoting wPI := X>y, we have that wPCA is the projection
of wPI on the k-first right singular vectors of X and that ridge regression produces some “soft-
projection” of wPI on these vectors. To which vector does the solution of ridge regression converge
when λ→∞.

(f) Why are the two characters called Andrëı and Karl?

Sufficient statistic

Given a random variable X (which is typically a sample X = (X(1), . . . , X(n))) drawn from a a
distribution with density pθ for some θ ∈ Θ, the statistic T = T (X) is said to be a sufficient statistic
(in french statistique exhaustive) if there exist functions f and h such that for any x

pθ(x) = h(x, T (x))f(T (x); θ).

• (?) Consider the point of a view of a Bayesian statistician who treats θ as a random variable.
Assume that the joint distribution of (X, θ) has the density p(x, θ) = p(x|θ)p(θ) with p(x|θ) =
pθ(x) and with p(θ) the prior distribution. Then show that T is a sufficient statistic if and only
if θ and X are conditionally independent given T .

Bayesian estimation

(a) Bayesian estimation of a multinomial. Distributions in the Dirichlet family put mass only
on the simplex 4 := {u ∈ RK+ | u1 + . . .+ uK = 1} and they admit a density with respect to the
Lebesgue measure on the simplex of the form

p(π|α) =
Γ(α1 + . . .+ αK)∏K

k=1 Γ(αk)

K∏
k=1

παk−1
k ,
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where Γ is the usual Gamma-function defined as Γ(z) =
∫
R+
tz−1e−tdt and where αk > 0 for all

k. As a reminder, for all z > 0, the identity Γ(z + 1) = zΓ(z) holds and in particular for any
n ∈ N∗, Γ(n) = n!

We consider the Bayesian estimation of the parameters of a multinomial random variable. Assume
that we have an i.i.d. sample Z(1), . . . , Z(n) fromM(π1, . . . , π; 1) (see the exercise on multinomial
random variables for the notations) and that we consider a Dirichlet a priori distribution with
hyperparameter α ∈ RK+ for the vector of parameters (π1, . . . , πK).

i. Show that the a posteriori distribution is also a Dirichlet distribution. What are its parame-
ters?

ii. The most classical point estimator used to summarize the Bayesian a posterori given a sam-
ple Dn = {Z(1), . . . , Z(n)} is the posterior mean E[θ|Dn] =

∫
Θ
θ p(θ|Dn) dθ. Compute the

posterior mean for the Multinomial-Dirichlet model.

iii. The Bernoulli (or binomial) distribution is the a particular case of a multinomial distribution
with K = 2 in that case the Dirichlet distribution reduces to the Beta distribution. For the
hyperparameters α1 = α2 = 1 compute the mean posterior estimate for the parameter π1.
This estimator is called the smooth Laplace estimate for the Bernoulli distribution. What
are the advantages of this estimator?

(b) Conjugate priors. Given a model P = {p(x|θ) | θ ∈ Θ} a conjugate prior family is collection
of prior distributions Π = {pα(θ) | α ∈ A} such that for all pα ∈ Π we have p(θ|x;α) :=∫ p(x|θ)p(θ;α)

p(x;α) dθ satisfies p(θ|x;α) ∈ Π. What is the smallest canonical exponential family of

distribution which is a conjugate prior family for the family of Bernoulli distributions, of Poisson
distributions? What is the canonical exponential family of distribution which is a conjugate
prior family for the family of Gaussian random variables with fixed known covariance matrix and
unknown mean?

(c) (?) Bayesian estimation for the Gaussian. Let X ∼ N (µ, σ2) be a Gaussian random variable.
Consider the problem of estimation of µ in the Bayesian sense, with an a priori distribution on µ
of the form µ ∼ N (µ0, τ

2). We will call µ0 the prior mean.

i. Given an iid sample X1, . . . , Xn from the model, compute the posterior mean for µ.

ii. Show that the posterior mean µ̂PM is a convex combination of the MLE and the prior mean.

iii. Consider now the MAP estimator µ̂MAP := arg max p(X1, . . . , Xn|µ)p(µ).

iv. Show that, in this case and if µ0 = 0, the MAP estimator can be viewed as a minimizer of
the log-likelihood with some Tikhonov (or ridge) regularization.

v. Compute the MAP estimator. What is the relationship between the MAP estimator and the
mean a posteriori? Do you expect this property to hold for other situations than the Gaussian
distribution with a Gaussian prior on the mean?

vi. Show that among all Gaussian distributions with fixed variance σ2 and some mean ν, the one
that has the largest expected log-likelihood on the test random variable X ′ is the distribution
whose mean minimizes what we will call the quadratic risk4 R(ν) = EX′ [(ν −X ′)2].

vii. Show that if E[X ′] = µ, we have the bias-variance decomposition R(ν) = (µ− ν)2 + Var(X ′).
What does this prove about the minimizer? Explain why we can focus on the excess risk
E(ν) = R(ν)−R(µ).

viii. Denote by Dn = {X1, . . . , Xn} the sample previously considered and denote by µ̂ an estimator
of µ based on this sample. Show that the expected excess risk5 EDn

[E(µ̂)] can also be
decomposed in terms of bias and variance.

4Note that the notion of risk introduced here is the notion of risk used in statistical learning theory and different from the
notion of risk of an estimator associated with a contrast usually defined in classical statistics.

5Note that the quantity which is called the excess risk in statistical learning theory is in fact a contrast in the terminology
of classical statistics and that the expected excess risk is what classical statisticians call the risk. It is important not to get
confused by these different choices of terminology.
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ix. Use this last bias-variance decomposition to compute the expected excess risk of µ̂MLE and
µ̂PM . When does µ̂PM have smaller expected excess risk?

x. Given an estimator µ̂ of µ, we consider the Bayesian risk Rπ = Eµ∼πEDn [E(µ̂)], where π
denotes here the prior distribution assumed on µ namely the Gaussian distribution N (µ0, τ

2).
Note that since µ̂ is a function of the data Dn, which itself depends on µ, Rπ is not a function
of the estimator value µ̂, but characterizes the average behavior of the estimation procedure
over the a priori distribution π. Explain why one can equivalently consider Eµ∼π,Dn

[(µ̂−µ)2]?
Using the calculations of risk of µ̂MLE and µ̂PM done in the previous questions, compute the
Bayesian risks Rπ(MLE) and Rπ(PM) for these two estimation procedures.

xi. Show that with the quantities computed, Rπ(PM) < Rπ(MLE).

xii. Using the expression of the Bayesian risk given above show that, this is not a coincidence and
that in fact the Bayesian quadratic risk is minimized by the posterior mean estimator for any
prior distribution π and for any likelihood.

Bregman divergence

The concept of Bregman divergence provides a generalization of the squared Euclidean distance which
is quite relevant in statistics, optimization and machine learning. Given a continuously-differentiable
strictly convex function F , called the potential function, and defined on a closed convex set of a Hilbert
space, the associated Bregman divergence is defined as the function

DF (p, q) = F (p)− [F (q) + 〈∇F (q), p− q〉].

(a) Show that if F is the squared Euclidean norm in Rd, the associated divergence is the squared
Euclidean norm.

(b) Consider two probability distributions p = (pi)1≤i≤d and q = (qi)1≤i≤d on a finite space. We
define respectively the entropy H(p) of the distribution p and the Kullback-Leibler divergence
KL(p, q) between the distributions p and q as

H(p) = −
q∑
i=1

pi log pi and KL(p, q) =

q∑
i=1

pi log
pi
qi
,

with the conventions 0/0 = 0 and 0 log 0 = 0. Show that KL(p, q) is the Bregman divergence
DH(p, q) associated with the entropy.

(c) Let ` : (µ,X) 7→ `(µ,X) be a loss function6 and R(µ) = E[`(µ,X)] the associated risk, where the
expectation is taken w.r.t. the variable X. Denote by µ∗ the minimizer of the risk, which is often
called the target parameter, and consider the so-called excess risk E(µ) := R(µ) −R(µ∗). Show
that if the loss ` is strictly convex w.r.t. to its first argument and that R is differentiable, the
excess risk can actually be interpreted as a Bregman divergence between µ and µ∗. What is the
associated potential function ?

Area under the curve and Mann-Whitney U statistic

(?) The Mann-Whitney U -test also called Wilcoxon rank-sum test is a non parametric test to compare
(non-paired) samples from two distributions. The null hypothesis is that the two samples are from
the same distribution, and the alternative hypothesis is that the distribution differ. This test is

6A loss function is simply a function whose arguments are a parameter µ and an a random variable and which measure a
certain discrepancy between them.
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way to generalize two-sample t-test that rely on a Gaussian assumption. If the two samples are
DX = {x1, . . . , xn} and DY = {y1, . . . , ym} then we define the rank7 of xi as

ri =
∣∣{z ∈ DX ∪DY | z ≤ xi

}∣∣.
So for example if n=3,m=2 and x1 =1, x2 =4, x3 =7 and y1 =2, y2 =5 then we have r1 =1, r2 =3, r3 =5.
The U statistic is defined as

U =

n∑
i=1

ri −
n(n+ 1)

2
.

Under the null hypothesis the distribution of U does not depend on the distribution of the data, and
its quantile can be computed to define a rejection region for the test.

Consider now a classifier that produces scores s(x) for data to be classified in two classes, with the
scores from class 0 that tend to be smaller than the scores for class 1. The classification rule used is
that, if s(x) > b, then x is assigned to class 1 otherwise it is assigned to class 0. For any value of b, we
define the recall or true positive rate rTP of the classifier as the fraction of true positives (or elements
of class 1) that are predicted to be positive. We also define the false positive rate rFP of the classifier
as the fraction of true negatives (or class 0) that are predicted to be positives by the classifier. The
ROC curve is the curve that plots rFP as a function of rTP .

(a) Assuming that the fraction of positives in the testing set is π and that the testing set is very large
what is the equation of the ROC curve for scores s(x) that are produced at random following
a continuous distribution that does not depend on the value of x? What is the area under the
curve?

(b) To compare the performance of different classifiers, the area under the ROC curve called AUC is
often computed. Assuming that there are no ties, show that if the scores for the true negatives
and the scores for the true positives are considered as two samples to compare with the Mann-
Whitney test, then the AUC can be computed from the corresponding Mann-Whitney statistic.
Prove the formula that you have obtained.

7We assume that there are no ties, as the definition of the statistics is slightly more complicated if there are ties.
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