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Review: convex analysis

Convex function

∀λ ∈ [0, 1], f(λx + (1− λ)y) ≤ λ f(x) + (1− λ) f(y)

Strictly convex function

∀λ ∈ ]0, 1[, f(λx + (1− λ)y) < λf(x) + (1− λ) f(y)

Strongly convex function

∃µ > 0, s.t. x 7→ f(x)− µ‖x‖2 is convex

Equivalently:

∀λ ∈ [0, 1], f(λx+(1−λ)y) ≤ λ f(x)+(1−λ) f(y)−µλ(1−λ)‖x−y‖2

The largest possible µ is called the strong convexity constant.
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Minima of convex functions

Proposition (Supporting hyperplane)

If f is convex and differentiable at x then

f(y) ≥ f(x) +∇f(x)>(y − x)

Convex function
All local minima are global minima.

Strictly convex function
If there is a local minimum, then it is unique and global.

Strongly convex function
There exists a unique local minimum which is also global.
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Minima and stationary points of differentiable functions

Definition (Stationary point)

For f differentiable, we say that x is a stationary point if ∇f(x) = 0.

Theorem (Fermat)

If f is differentiable at x and x is a local minimum, then x is
stationary.

Theorem (Stationary point of a convex differentiable function)

If f is convex and differentiable at x and x is stationary then x is a
minimum.

Theorem (Stationary points of a twice differentiable functions)

For f twice differentiable at x

if x is a local minimum then ∇f(x) = 0 and ∇2f(x) � 0.

conversely if ∇f(x) = 0 and ∇2f(x)� 0 then x is a strict local
minimum.
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Brief review of Lagrange duality

Convex optimization problem with linear constraints

For

f a convex function,

X ⊂ Rp a convex set included in the domain of f ,

A ∈ Rn×p, b ∈ Rn,

min
x∈X

f(x) subject to Ax = b (P )

Lagrangian

L(x,λ) = f(x) + λT (Ax− b)

with λ ∈ Rn the Lagrange multiplier.
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Properties of the Lagrangian

Link between primal and Lagrangian

max
λ∈Rn

L(x,λ) =

{
f(x) if Ax = b

+∞ otherwise.

So that
min

x∈X :Ax=b
f(x) = min

x∈X
max
λ∈Rn

L(x,λ)

Lagrangian dual objective function

g(λ) = min
x∈X

L(x,λ)

Dual optimization problem

max
λ∈Rn

g(λ) = max
λ∈Rn

min
x∈X

L(x,λ) (D)
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Maxmin-minmax inequality, weak and strong duality

For any f : Rn × Rm and any w ∈ Rn and z ∈ Rm, we have

max
z∈Z

min
w∈W

f(w, z) ≤ min
w∈W

max
z∈Z

f(w, z).

Weak duality

d∗ := max
λ∈Rn

g(λ) = max
λ

min
x∈X

L(x,λ) ≤ min
xx∈X

max
λ∈Rn

L(x,λ) = min
x∈X

f(x) =: p∗

So that in general, we have d∗ ≤ p∗. This is called weak duality

Strong duality

In some cases, we have strong duality:

d∗ = p∗

Solutions to (P ) and (D) are the same
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Slater’s qualification condition

Slater’s qualification condition is a condition on the constraints of a
convex optimization problem that guarantees that strong duality
holds.

For linear constraints, Slater’s condition is very simple:

Slater’s condition for a cvx opt. pb with lin. constraints

If there exists an x in the relative interior of X ∩ {Ax = b} then
strong duality holds.
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