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In this supplementary material, we provide:

A.1. ROC-like curves showing our significant and systematic outperformance;

A.2. The detailed architecture of our network for occlusion relation estimation;

A.3. An ablation study on domain adaptation for training with synthetic images;

A.4. An ablation study about the impact of ground truth quality

A.5. An adaption of ground truth generation with noised geometry information

B.1. Detailed quantitative results on the application to depth map refinement;

B.2. An ablation study regarding variants for depth map refinement;

C. Illustration of occlusion relationship annotations in our generated datasets.

A Pixel-pair occlusion relationship estimation

A.1 ROC-like comparison to the state of the art
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Fig. 9. Oriented occlusion boundary estimation on BSDS ownership: (a) Occlusion-
Accuracy-Recall curve (AOR) [23], (b) Occlusion-Precision-Recall curve (OPR) [22].

To allow a deeper assessment of the performance of our approach, compared
to other state-of-the-art methods, we plot two graphs (cf. Fig. 9):

(a) the Occlusion Accuracy w.r.t. boundary Recall (AOR) curve, as introduced
in [23], represents accuracy as a function of recall;
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(b) the Occlusion Precision w.r.t. boundary Recall (OPR) curve, as later pro-
posed in [22], represents precision as a function of recall — a harder metric;

where:

– (R)ecall is the proportion of pixels with correct boundary detections;

– (P)recision is the proportion of pixels with correct occlusion orientation w.r.t.
all pixels detected as occlusion boundary;

– (A)ccuracy is the proportion of pixels with correct occlusion orientation
w.r.t. all pixels correctly detected as occlusion boundary.

We compared all methods using the BSDS ownership dataset. This dataset has
become a de facto standard regarding oriented occlusion boundary estimation,
despite its moderate size and its coarse manually-annotated ground truth. We use
exactly the same dataset (same training data and same test data) for all methods,
including ours, which is not trained here on the large InteriorNet-OR dataset that
we generated. On both AOR and OPR curves, we largely outperform all other
existing methods, i.e., SRF-OCC [20], DOC-DMLFOV [23], DOC-HED [23],
DOOBNet [22] and OFNet [15].

A.2 Detailed architecture of our network for occlusion estimation

On Fig. 4 of the paper and in the text, we sketched the architecture of our
network for pixel-pair occlusion relationship estimation (P2ORNet). Here we
provide additional information. The detailed architecture is depicted on Fig. 10,
while the setup of each block is presented in Tab. 3. Blocks named as “Res” are
residual convolution blocks introduced in [6] and blocks named as “Deconv” are
transposed convolution layers.

Fig. 10. Architecture of P2ORNet, for occlusion relationship estimation.

We initialize the encoder model of the occlusion estimation module with the
weights of a ResNet-50 model [6] pre-trained on ImageNet, and the remaining
layers with random values (as defined by the PyTorch default initialization). To
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Conv1 Conv2 Res1 Res2 Res3 Conv3

[7×7, 64]×1
stride 2

[
3×3, 64
3×3, 64

]
×1

3×3
maxpool, stride 2 1×1, 64

3×3, 64
1×1, 256

×3

 1×1, 128
3×3, 128
1×1, 512

×4

 1×1, 256
3×3, 256
1×1, 1024

×6

[
3×3, 512
3×3, 512

]
×1

Deconv1 Conv4 Deconv2 Conv5 Deconv3 Conv6

[3×3, 512]×1
stride 2

[
3×3, 256
3×3, 256

]
×1 [3×3, 256]×1

stride 2

[
3×3, 64
3×3, 64

]
×1 [3×3, 64]×1

stride 2

[
3×3, 64
3×3, 64

]
×1

Deconv4 Conv7 Conv h Conv v Conv d Conv a

[3×3, 64]×1
stride 2

[
3×3, 64
3×3, 64

]
×1 [1×1, 3]×1 [1×1, 3]×1 [1×1, 3]×1 [1×1, 3]×1

Table 3. Detailed architecture of P2ORNet (pixel-pair occlusion relation estimation).
For each block, as in [6], we give the kernel size and the number of output channels.
The blocks Conv1, Res1, Res2, Res3 are the first four blocks of ResNet-50 [6].

NYUv2 (adapt. & test) w/o adaptation with adaptation gain
Method \ Metric ODS OIS AP ODS OIS AP ODS OIS AP

DOOBNet* .292 .324 .204 .343 .370 .263 .051 .046 .059
OFNet* .339 .366 .255 .402 .431 .342 .063 .065 .087

baseline .394 .418 .336 .396 .428 .343 .002 .010 .007
ours (4-connectivity) .425 .446 .369 .500 .522 .477 .075 .076 .108
ours (8-connectivity) .452 .477 .424 .520 .540 .497 .068 .063 .073

Table 4. Ablation study on domain adaptation using [26] with NYUv2 [16] images as
target for training on synthetic images of InteriorNet [12] and testing on NYUv2. *Our
re-implementation (cf. footnote in Sect. 5 of the paper). In blue, the minimum gain; in
red, the maximum gain.

train the network, we use the ADAM optimizer [8] with learning rate 10−4 and
divide it by 10 when half of the total training iterations (4000, 100000, 110000
for BSDS, NYUv2-OR, iBims-1-OR respectively) is reached. The input image
size during training is 320× 320, and the mini-batch size is 8.

A.3 Ablation study on domain adaptation for synthetic images

To evaluate on NYUv2 [16] and iBims-1 [9], we train on 104 synthetic images of
InteriorNet [12] (cf. Sect. 5 and Tab. 1 of the paper). The pictures in InteriorNet
are not totally photorealistic, but still fairly good. In our experiments on iBims-
1, whose test images are of good quality, we train directly on InteriorNet images
and get good results. However, on NYUv2, the test images are of low quality,
with some amount of blur. To get better results, we adapted the InteriorNet
images using the training images of NYUv2 as target domain, using [26].

The quantitative results in Tab. 4 show that this domain adaptation is worth-
while: except for the “baseline” method, for which the gains are limited, we gain
on all other methods at least 4.6 points and up to 10.8 points, depending on the
considered metric.
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Method NYUv2-OR
Metric ODS OIS AP

ours (w/o order-1) .404 .439 .368
ours .520 .540 .497

Table 5. Ablation study on P2ORM ground truth generation.

A.4 Ablation study on ground truth generation

To illustrate the value of defining occlusion at order-1 as introduced in Sect. 5 of
the paper, here we show quantitative results where the occlusion ground truths
are generated by occlusion at order-0 definition. We train on 104 domain-adapted
images of InteriorNet [12] (cf. Sect. 5 and Tab. 1 of the paper) and evaluate on
NYUv2-OR dataset. As shown in Tab. 5, if the ground truths are generated
without considering occlusion at order-1, the performance of the model degrades
greatly due to inaccurate supervision signals.

A.5 Ground truth generation from depth acquired by laser scanner

In real datasets such as iBims-1 [9] whose depths are captured by laser scanner,
the depth estimation noise varies with both actual depth, pixel spatial location
and surface orientation due to laser scanner hardware properties. Therefore we
propose the following formula (cf. Eq. 1) to calculate possible depth estimation
error Ep relevant to pixel p considering aforementioned factors.

Ep =
η

tan (γ)
dp (1)

where η is a constant representing laser scanner estimation angular noise, γ is
the angle between ray Lp and tangent plane Πp, dp is the Euclidean distance
between surface point Xp and camera center C estimated by laser scanner. Then
the discontinuity threshold δ as introduced in Sect. 2 of the paper between a
pixel-pair p, q can be calculated with Ep, Eq and a constant Cδ that ensures a
minimum discontinuity (cf. Eq. 2).

δ = Ep + Eq + Cδ (2)

As shown in Fig. 5 of the paper, by using proposed occlusion definition and
dynamic discontinuity threshold between each pixel-pair, the generated occlusion
ground truths are accurate in the scene with a large depth range. Specifically,
for iBims-1 dataset, η = 0.005 rad in Eq. 1 and Cδ = 25mm in Eq. 2.

B Depth map refinement

Implementation details. We initialize our network layers using the ’kaiming’
initialization as in [6] and trained the network from scratch. The training set
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Depth estim. Refinement Boundaries(↓) Depth Error(↓) Depth Accuracy(↑)
method method εacc εcomp rel log10 RMSlin RMSlog σ1 σ2 σ3

Eigen et al. [3]
— 9.926 9.993 0.236 0.095 0.765 0.265 0.611 0.887 0.971

DispField [17] 2.168 8.173 0.232 0.094 0.758 0.263 0.615 0.889 0.971
ours 1.715 6.048 0.231 0.095 0.761 0.264 0.615 0.888 0.970

Laina et al. [10]
— 4.702 8.982 0.142 0.059 0.510 0.181 0.818 0.955 0.988

DispField [17] 2.372 7.041 0.140 0.059 0.509 0.180 0.819 0.956 0.989
ours 1.976 6.423 0.142 0.059 0.508 0.181 0.818 0.955 0.988

Fu et al. [4]
— 3.872 8.117 0.131 0.053 0.493 0.174 0.848 0.956 0.984

DispField [17] 3.001 7.242 0.136 0.054 0.502 0.178 0.844 0.954 0.983
ours 2.631 6.507 0.132 0.053 0.487 0.173 0.848 0.957 0.985

Ramamonjisoa — 3.041 8.692 0.116 0.053 0.448 0.163 0.853 0.970 0.993
and DispField [17] 1.838 6.730 0.117 0.054 0.457 0.165 0.848 0.970 0.993

Lepetit [18] ours 1.546 5.988 0.116 0.053 0.448 0.163 0.852 0.970 0.993

Jiao et al. [7]
— 8.730 9.864 0.093 0.043 0.356 0.134 0.908 0.981 0.995

DispField [17] 2.410 8.230 0.092 0.042 0.352 0.132 0.910 0.981 0.995
ours 1.985 6.990 0.093 0.042 0.351 0.133 0.909 0.981 0.995

Yin et al. [25]
— 1.854 7.188 0.112 0.047 0.417 0.144 0.880 0.975 0.994

DispField [17] 1.762 6.307 0.112 0.047 0.419 0.144 0.879 0.975 0.994
ours 1.544 5.453 0.113 0.047 0.421 0.145 0.878 0.975 0.994

Table 6. Evaluation of depth refinement on the output of several state-of-the-art
methods on NYUv2 [16], cropped within valid region as in [3]. Best results in bold.

contains 10k depth predictions of SharpNet [18] on the InteriorNet subset [12]
we consider, and corresponding ground-truth pixel-pair occlusion relationships
in InteriorNet-OR. We used the ADAM optimizer [8] with a fixed learning rate
of 10−5 and stopped training after 40k iterations. The size of the input depth
images size is 640× 480 and the batch size is 8 for all experiments.

B.1 Quantitative and qualitative results for depth refinement

Evaluation on NYUv2. Quantitative results of depth refinement on NYUv2
are shown in Tab. 6 for all metrics and for input depth maps obtained from a wide
range of state-of-the-art depth estimation methods. After refinement, as men-
tioned in the paper (Sect. 5), the improvement or degradation of general accuracy
metrics (i.e., “Depth Error” and “Depth Accuracy”) are negligible (≤ 0.006 dif-
ference). This result is similar to the other depth refinement method, namely
DispField [17]. However, we significantly and systematically outperform Disp-
Field on “Boundaries” metrics for the whole range of depth estimation methods.
To further validate the effectiveness of P2ORM as depth refinement guidance,
we also compare many existing methods using image intensity as guidance [21, 5,
1, 24, 19] where the initial depth prediction is given by [3]. Quantitative results
of depth refinement on NYUv2 are shown in Tab. 7, our method achieves the
best refinement results on all metrics.

Fig. 8 of the paper displays examples of refinements on iBims-1, with depth
maps from SharpNet [18] as input, which is the second best method regarding
boundary metrics εacc and εcomp. We illustrate here, on Fig. 11, examples of
refinements on NYUv2.
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Boundaries(↓) Depth Error(↓) Depth Accuracy(↑)
Method εacc εcomp rel log10 RMSlin RMSlog σ1 σ2 σ3

Initial estimation [3] 9.926 9.993 0.236 0.095 0.765 0.265 0.611 0.887 0.971
Bilateral Filter [21] 9.313 9.940 0.236 0.095 0.765 0.265 0.611 0.887 0.971

GF [5] 6.106 9.617 0.237 0.095 0.767 0.265 0.610 0.885 0.971
FBS [1] 5.428 9.454 0.236 0.095 0.765 0.264 0.611 0.887 0.971

Deep GF [24] 4.318 9.597 0.306 0.116 0.917 0.362 0.508 0.823 0.948
PACNet [19] 4.681 9.702 0.238 0.096 0.771 0.267 0.608 0.885 0.971

Ours 1.715 6.048 0.231 0.095 0.761 0.264 0.615 0.888 0.971

Table 7. Comparison with existing methods for image enhancement, adapted to the
depth map refinement problems on NYUv2 [16] where initial depth estimation is given
by [3]. Best results in bold.

Depth estimation Refinement Boundaries(↓) Depth Error(↓) Depth Accuracy(↑)
method method εacc εcomp rel log10 RMSlin σ1 σ2 σ3

Eigen et al. [3]
— 9.97 9.99 0.32 0.17 1.55 0.36 0.65 0.84

DispField 4.83 8.78 0.32 0.17 1.54 0.37 0.66 0.85
ours 2.46 5.74 0.32 0.17 1.55 0.36 0.65 0.84

Laina et al. [10]
— 6.19 9.17 0.26 0.13 1.20 0.50 0.78 0.91

DispField 3.32 7.15 0.25 0.13 1.20 0.51 0.79 0.91
ours 2.56 6.20 0.26 0.13 1.20 0.50 0.78 0.90

Liu et al. [14]
— 2.42 7.11 0.30 0.13 1.26 0.48 0.78 0.91

DispField 2.36 7.00 0.30 0.13 1.26 0.48 0.77 0.91
ours 2.37 5.91 0.30 0.13 1.26 0.48 0.78 0.91

Li et al. [11]
— 3.90 8.17 0.22 0.11 1.09 0.58 0.85 0.94

DispField 3.43 7.19 0.22 0.11 1.10 0.58 0.84 0.94
ours 2.07 5.26 0.22 0.11 1.10 0.58 0.84 0.94

Liu et al. [13]
— 4.84 8.86 0.29 0.17 1.45 0.41 0.70 0.86

DispField 2.78 7.65 0.29 0.17 1.47 0.40 0.69 0.86
ours 2.75 6.40 0.29 0.17 1.45 0.41 0.69 0.86

Ramamonjisoa — 3.69 7.82 0.27 0.11 1.08 0.59 0.83 0.93
and DispField 2.13 6.33 0.27 0.11 1.08 0.59 0.83 0.93

Lepetit [18] ours 2.16 5.82 0.27 0.11 1.08 0.59 0.83 0.93

Table 8. Evaluation of depth refinement on the output of several state-of-the-art
methods on iBims-1 [9], cropped within valid region as in [3]. Best results in bold.

Evaluation on iBims-1. We evaluate and compare our method to Disp-
Field [17] on iBims-1, in the same setting as for NYUv2 above, cf. Tab. 8. The
results are similar: after refinement, the improvement or degradation of general
accuracy metrics are negligible (≤ 0.02 difference); however, we significantly and
almost systematically outperform DispField [17] on “Boundaries” metrics for the
whole range of depth estimation methods.
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(a) (b) (c) (d)

Fig. 11. Depth refinement on dataset NYUv2: (a) input RGB image from NYUv2,
(b) ground truth depth, (c) SharpNet depth estimation [18], (d) our refined depth.

B.2 Alternative designs and ablation study for depth refinement

Many variants and alternatives are possible to exploit our pixel-pair occlusion
relationships for depth map refinement. We report here quantitative results jus-
tifying the particular choice we made in Section 4 of the paper.

To evaluate the effectiveness of different variants, we consider as input the
estimation of [7] as this method provides the depth maps with the best accuracy
on the NYUv2 dataset. But the conclusion is still valid for other methods.

Alternative network inputs. We first explore the influence of other types of
input, in place of our pixel-pair occlusion relationships: the original RGB image,
a normal map estimated using [2], and a classical occlusion edge mask (i.e., a bi-
nary map). The occlusion edge masks are created by thresholding the occlusion
boundaries derived from the estimated occlusion relationships after Non Max-
imal Suppression (NMS), as described in the paper. The network architecture
and loss function are unchanged w.r.t. our proposed method, except that the
first convolutional layer is adapted according to the number of input channels
(1 more for the RGB image and the edge map, 3 more for the normal map).

As shown in the top part of Tab. 9, using the RGB image as input (line
“RGB”) instead of our pixel-pair occlusion relationships (line “Refined (ours)”)
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Boundaries(↓) Depth error(↓) Depth accuracy(↑)
Variant εacc εcomp rel log10 RMSlin RMSlog σ1 σ2 σ3

Initial depth [7] 8.730 9.864 0.093 0.043 0.356 0.134 0.908 0.981 0.995
Refined with DispField [17] 2.410 8.230 0.092 0.042 0.352 0.132 0.910 0.981 0.995

Refined (ours) 1.985 6.990 0.093 0.042 0.351 0.133 0.909 0.981 0.995

Alternative network inputs (in addition to the rough depth map)

RGB image 8.816 9.887 0.092 0.042 0.352 0.132 0.910 0.982 0.995
Normal map 9.437 9.937 0.087 0.038 0.333 0.125 0.917 0.982 0.996
Binary edges 5.619 9.397 0.096 0.044 0.362 0.138 0.902 0.980 0.995

Different loss functions L exploiting the ground-truth depth

Lgtdepth + Lregul 8.756 9.866 0.093 0.043 0.356 0.134 0.908 0.981 0.995
Locconsist + Lgtdepth 2.778 8.006 0.092 0.042 0.356 0.133 0.909 0.981 0.995

Locconsist + Lregul + Lgtdepth 3.090 7.291 0.093 0.042 0.351 0.132 0.910 0.982 0.995

Different depth combinations used in Locconsist

dd (order-0 depth only) 2.375 7.406 0.094 0.043 0.356 0.135 0.907 0.981 0.995
DD (order-1 depth only) 2.401 7.373 0.093 0.042 0.352 0.133 0.909 0.981 0.995

Table 9. Ablation study for refined depth map estimation: (a) using alternative net-
work inputs, (b) using different loss functions exploiting the ground-truth depth, (c) us-
ing a different combination of order-0 and order-0 depth difference in Locconsist. See
details in text. Best results in bold.

hardly improves the quality of the output depth map, which is not surprising as
most the cues that can be directly exploited from the RGB image have already
been exploited by [7]. Using the normal map leads to slightly lower depth errors
but much worse depth boundaries. Last, using binary occlusion edges leads to
a slightly higher depth accuracy but poor depth boundaries too. In the end,
our estimated occlusion relationships as guidance achieves the lowest boundary
errors without a noticeable degradation or improvement of the depth error and
accuracy, which we believe is the best compromise.

Different loss functions exploiting the ground-truth depth. Then we
study variations in the loss function when adding ground-truth depth infor-
mation at training time. We introduce the loss function Lgtdepth, which is the
counterpart of Lregul using the ground-truth depth dgt instead of the rough input

depth d̃: it penalizes the difference between the refined depth d and the ground
truth depth dgt as defined in Equation (10):

Lgtdepth =
1

|P|
∑
p∈P

(
B(log dgtp , log dp) + ‖∇ log dgtp −∇ log dp‖2

)
(10)

We study different combinations of partial losses, i.e., Lgtdepth +Lregul (which
ignores occlusion information), Locconsist +Lgtdepth (which does not penalize dif-

ference between d̃ and d), and Locconsist +Lregul +Lgtdepth (which combines both
the rough input depth and ground-truth depth information), comparing to the
loss L=Locconsist +Lregul as defined in the paper (which uses only the rough input
depth), i.e., line “Refined (ours)” in the table.

As shown in the middle part of Tab. 9, Lgtdepth +Lregul does not improve or
degrade the input depth map noticeably; information about edges [17] or oc-
clusions is missing to yield any significant improvement. Replacing the rough
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input depth map by the ground truth as Locconsist +Lgtdepth significantly im-
proves εacc , slightly improves εcomp and does not affect much the general depth
error and accuracy metrics. But it is not as good as with our method. Finally,
using both the rough input depth map and the ground-truth depth map as
Locconsist +Lregul +Lgtdepth, i.e., adding ground-truth information to our setting,
is not as good either as not using it.

Different combinations or order-0 and order-1 depths. Last, we also
consider variations in the depths used in Locconsist, cf. Eq. (8) of the paper, using
either the refined order-0 depth difference dpq or the tangent-adjusted order-1
depth difference Dpq. More precisely, we consider the cases where the signed
distances in Eq. (8) are both dpq (named “dd”) or both Dpq (named “DD”),
instead of dpq then Dpq as defined in Eq. (8).

As can be seen in the bottom part of Tab. 9, the performance of both variants
is not as good as the loss function we define in the paper.

C Samples of occlusion relationship in generated datasets

As described in Section 5 and Table 1 of the paper, we generated occlusion re-
lationship annotations for three datasets, i.e., InteriorNet, iBims-1 and NYUv2.
We illustrate here a few annotation samples: from InteriorNet-OR (cf. Fig. 12),
iBims-1-OR (cf. Fig. 13) and NYUv2-OR (cf. Fig. 14).
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Fig. 12. Samples from our InteriorNet-OR dataset. For each sample, first row, left to
right: RGB image, depth map, normal map and generated occlusion boundaries; second
row, left to right: generated occlusion relationships along inclinations horizontal (i= h),
vertical (i= v), diagonal (i= d) and antidiagonal (i= a). Colors blue, white and red
respectively represent pixel-pair occlusion status r=−1, 0 or 1.
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Fig. 13. Samples from our iBims-1-OR dataset. For each sample, first row, left to right:
RGB image, depth map, normal map and generated occlusion boundaries; second row,
left to right: generated occlusion relationships along inclinations horizontal (i= h),
vertical (i= v), diagonal (i= d) and antidiagonal (i= a). Colors blue, white and red
respectively represent pixel-pair occlusion status r=−1, 0 or 1.
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Fig. 14. Samples from our NYUv2-OR dataset. For each sample, first row, left to right:
RGB image, depth map and occlusion boundaries labeled by [17]; second row, left to
right: generated occlusion relationships along inclinations horizontal (i= h), vertical
(i= v), diagonal (i= d) and antidiagonal (i= a). Colors blue, white and red respectively
represent pixel-pair occlusion status r=−1, 0 or 1.



P2ORM: Formulation, Inference & Application Supp. 13

References

1. Barron, J.T., Poole, B.: The fast bilateral solver. In: European Conference on
Computer Vision (ECCV). pp. 617–632 (2016)

2. Boulch, A., Marlet, R.: Fast and robust normal estimation for point clouds with
sharp features. Computer Graphics Forum (CGF) 31(5), 1765–1774 (2012)

3. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using
a multi-scale deep network. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems
(NeurIPS), pp. 2366–2374. Curran Associates, Inc. (2014)

4. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression
network for monocular depth estimation. In: Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 2002–2011 (2018)

5. He, K., Sun, J., Tang, X.: Guided image filtering. In: European Conference on
Computer Vision (ECCV). pp. 1–14 (2010)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Conference on Computer Vision and Pattern Recognition (CVPR). pp. 770–778
(2016)

7. Jiao, J., Cao, Y., Song, Y., Lau, R.W.H.: Look deeper into depth: Monocular
depth estimation with semantic booster and attention-driven loss. In: European
Conference on Computer Vision (ECCV) (2018)

8. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

9. Koch, T., Liebel, L., Fraundorfer, F., Körner, M.: Evaluation of cnn-based single-
image depth estimation methods. In: Leal-Taixé, L., Roth, S. (eds.) European Con-
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