
When the Generative Lexicon meets Computational Semantics

Renaud Marlet
SIGNES group, LaBRI / INRIA

351 cours de la Libération
33405 Talence cedex

France
Renaud.Marlet@inria.fr

Abstract

Computational semantics and lexical semantics have so far mostly been studied separately. As a result,
computational semantics often constructs meanings with poor or little lexical sense, while lexical
semantics generally only apply to simple and small phrases (as opposed to complete sentences). We
present here a general framework to incorporate lexical semantics information originating from a
generative lexicon into a standard analysis of computational semantics. This framework is illustrated
on two examples, covering type coercion and selective binding. In this framework, the coupling
between the analysis and the lexicon is kept low to facilitate separate evolutions and to adapt to the
partial availability of lexical semantics information.

1 Introduction

The semantic analysis of text relies on two key issues: the syntax-semantics interface and the lexicon-
semantics interface. However, to some extent, these two issues have mostly been studied separately.

On the one hand, computational semantics (CS) proposes semantic analyses that specify how to
map a sentence, usually modeled as a syntax tree, into a meaning, commonly expressed as a log-
ical formula (Benthem and Meulen, 1997). These approaches are often based on the composition
of typedλ-terms, along the lines of Montague semantics (Montague, 1974). The range of syntactic
constructions that they cover is substantial and growing: quantifying determiners, negation, referen-
tial pronouns and ellipsis, subordinate clauses, questions, etc. Different kinds of underlying logics
are also studied, such as intensional logic to express belief, modal logic to express possibility and
necessity, temporal logic to express past and future, etc. However, these approaches generally make
little or no use of lexical semantic information. Lexemes are taken as “opaque” predicates and the
relevance of produced formulas is routinely poor because ofa lack of support for polysemy, and in
particular metonymy. For instance, analysing “John beginsa book” as∃x begin(John, x)∧book(x) is
mostly useless, if not wrong, because it tells nothing aboutthe actual action being performed (reading,
writing, etc.) nor about the nature of “book” (physical object or information).

On the other hand, the Generative Lexicon Theory (GL) provides a framework for the creative
composition of lexical meanings (Pustejovsky, 1995). Various phenomena of polysemy can be ex-
plained in this setting, as well as their contextual disambiguation. Rich lexical semantic information
and powerful composition mechanisms obviate the need to explicitly list numerous individual mean-
ings for different lexeme associations, as must be the case for “real” collocations. However, the GL
focuses on the composition of “referential” lexemes, mainly verbs, nouns and adjectives. It provides

little support for other parts of speech such as determiners, pronouns or conjunctions. As a result, it
is usually not possible to perform the semantic analysis of acomplete sentence within the GL alone.

On way to bridge the gap between these two complementary visions is to incorporate the features
of one into the other. It seems unreasonable to duplicate, within the GL, the work already done in CS.
This would be a huge task, for which the GL offers no particular advantage. The modeling of “purely
syntactic” phenomena might in fact be cluttered when forcedto be formulated with GL entities.

Conversely, it is not obvious how to integrate the GL into a CSanalysis. Indeed, the lexicon only
plays a minor role in these approaches. It is used only at the beginning of the analysis process, to
provide a basic semantic function or predicate for each lexeme in the sentence. It is totally useless
afterwards: the terms are simply composed according to their type and to the syntactic structure of the
sentence. Onlyβ-reduction delves into the basic semantic terms, but without refining their meaning.
Even if the GL can nonetheless be successfully integrated into a semantic analysis, a number of
questions are raised. Would it put constraints on the GL thatwould reduce its power and autonomy?
Would the integration be sensitive to evolutions in the GL model? Besides, as there are many proposals
for such semantic analyses, which CS approaches are best suited for a GL integration? And what
amount of work can be reused when integrating the GL into several such CS analyses?

Our goal in this paper is to present a general framework to incorporate GL-related information into
a CS analysis. We first present a typical CS analysis and illustrate cases where it does not construct
appropriate interpretations (§2). Then we describe how these cases can be fixed using GL-related
information (§3 and §4). Finally, we generalise on these examples and propose a comprehensive
framework that integrates GL compositions and CS interpretation, while limiting their coupling (§5).
Given any well-defined CS analysis and any well-defined GL entries and composition processes, this
provides an effective mechanisation1 of the semantic analysis of complete sentences that takes into
account lexical semantics.

2 Computational Semantics Interpretation

Many approaches in computational semantics define the meaning of a sentence as a type-driven com-
positional construction. Each element in the sentence is interpreted as a function, and represented by a
λ-term. These semantic functions are combined according to the (binary) tree structure of a syntactic
analysis of the sentence, and also depending on their type. Typical combination operations are func-
tional application and functional composition. At the top level, the resulting term, afterβ-reduction,
is a logical formula representing the meaning of the whole sentence, in some given logic. Let us
consider the following example.

(1) Every linguist drinks a glass.

In the Government and Binding Theory (GB) — for instance —, this sentence is given both a surface
structure and two logical forms, corresponding to two different readings (Huang, 1994). In the logical
forms, the quantified determiner phrases are moved up the syntax tree, leaving indexed tracest1 andt2,
as illustrated on Figure 1. (In the following, we only consider the interpretation where each linguist
has his/her own glass.)

1We make a difference here between formalisation and mechanisation. Formalisation often relates to the use of formal
notations as well as formal practices to provide abetter groundfor descriptive or explanatorytheories, whereas mechani-
sation refers to the specification ofwell-defined, operativeprocedures tosystematically processthe langage (although with
some approximation).

S

VP

DP

NP

glass

Det

a

V

drinks

DP

NP

linguist

Det

Every

S

S

S

S

S

VP

t2drinks

t1

Λ2

DP

glassa

Λ1

DP

linguistEvery

Figure 1: Surface structure example, as well as one of its twopossible logical forms

For any lexeme or phrasew in the logical form of the sentence,[[w]] stands for the denotation
of w, i.e., the semantic function that is the interpretation ofw. Whenw is a lexeme,[[w]] is found in
the lexicon; when it is a phrase, it is calculated from the interpretation of subphrases. The meaning
of lexemes is read from a lexicon that includes both types andfunctional values, as illustrated on
Figure 2. Following a common practice in the tradition of Montague, atomic types are just “e” (entity)

[[every]] : 〈〈e, t〉, 〈〈e, t〉, t〉〉 = λP.λQ.∀xP (x) ⇒ Q(x)

[[linguist]] : 〈e, t〉 = λx.linguist(x)

[[drinks]] : 〈e, 〈e, t〉〉 = λx.λz.∃e drink(e, z, x)

[[a]] : 〈〈e, t〉, 〈〈e, t〉, t〉〉 = λP.λQ.∃xP (x) ∧ Q(x)

[[glass]] : 〈e, t〉 = λx.glass(x)

[[ti]] : e = xi

[[Λi]] : 〈t, 〈e, t〉〉 = λP.λxi.P

Figure 2: Semantic lexicon example, with types and functional values

and “t” (truth-value)2, and functional typeσ → τ is written 〈σ, τ〉. Some traits of verbs are omitted
here, such as tense, mood, etc. Following Davidson, we also include an event argumente in the verb
predicates3 (Davidson, 1980), but we extend it to states too (e.g.,contain(e, x, y))4. Additionally,
there are specific rules to cope with referencesti and bindersΛi.

2The truth-value type “t” is not to be confused with traces “ti”.
3An event argument “e” is not to be confused with the entity type “e”.
4It is not required here that we extend it to nouns as well, e.g., glass(e, x).

The compositional meaning of sentence (1) is defined based onthe syntax tree structure (the
logical form depicted on Figure 1) as well as on the types and values listed on Figure 2. In this
particular example, all compositions happen to be functional applications from left to right, except for
the application of the VP, which is in the opposite direction:

[[every linguist drinks a glass]]

= ([[every]] [[linguist]]) ([[Λ1]] (([[a]] [[glass]]) ([[Λ2]] (([[drinks]] [[t2]]) [[t1]]))))

After β-reduction, the interpretation of sentence (1) is found to be the following.

[[every linguist drinks a glass]]

= ([[every]] [[linguist]])(λx1.([[a]] [[glass]])(λx2.(([[drinks]]x2)x1)))

= ∀x1 linguist(x1) ⇒ (∃x2 glass(x2) ∧ ∃e drink(e, x1, x2))

This interpretation is wrong5 because it does not convey the idea that the linguist drinks the contents
of the glass. It is also incorrect in the sense that “drinks” actually expects a beverage but is provided
a container. What is missing is a way to coerce the container into a beverage.

3 Supporting type coercion via the Generative Lexicon

The GL provides an account for this kind of metonymy phenomenon. Lexical entries for lexeme
drink andglass are defined below. (Only qualia and features that are relevant for what follows have
been mentioned here6.)

glass

EVENTSTR
[

E1 = e : state
]

ARGSTR

[

ARG1 = x : container

D-ARG1 = y : beverage

]

QUALIA
[

TELIC = contain(e, x, y)
]

drink

EVENTSTR
[

E1 = e : process
]

ARGSTR

[

ARG1 = x : animated

ARG2 = y : beverage

]

QUALIA
[

AGENT = drink(e, x, y)
]

When trying to compose entriesdrink andglass, there is type clash asdrink expects abeverage

but gets acontainer. The composition is enabled by thetype coercionmechanism of the GL (Godard
and Jayez, 1993), that somehow converts thecontainer into a beverage, shifting the composition
parameter from the true argument ofglass (x : container) to the default argument (y : beverage).
This results in a new lexical construction, with the following kind of structure.

5The sharp sign “#” denotes a semantically incorrect formula.
6For instance, a richer entry forglass would include anAGENT quale to express that a glass is an artefact (blown).

Also the TELIC quale could be refined into two subqualia (Bassac and Bouillon, 2007): an “agentive of the telic” quale,
expressing a precondition (the fact that somebody had to pour the beverage in the glass), and a “formal of the telic” quale,
expressing a result (the fact that the glass contains the beverage). In the following, theTELIC feature is to be understood
as the formal part of the telic quale. Besides, the telic ofglass could also include an adjunct predicatedrink(e′, z, y) to
express that the purpose of the glass is not only to contain a beverage (or liquid) but also to allow somebody to drink out
of it. As for drink, a richer entry would also include aTELIC feature to express that the purpose of drinking is (often) to
quench one’s thirst.

drink (a) glass

EVENTSTR

[

E1 = e1 : process

E2 = 1 e2 : state

]

ARGSTR

ARG1 = x1 : animated

ARG2 = 2 y : beverage

ARG3 =

glass

EVENTSTR
[

E1 = 1 e2 : state
]

ARGSTR

[

ARG1 = x2 : container

D-ARG1 = 2 y : beverage

]

QUALIA
[

TELIC = contain(e2, x2, y)
]

QUALIA
[

AGENT = drink(e1, x1, y)
]

Informally, if we omit the quantifiers, the meaning associated todrink (a) glass is thus given by the
formulaglass(x2)∧ contain(e2, x2, y)∧ drink(e1, x1, y). Alternatively, the telic quale ofglass could
have been added as adjunct to the agentive quale ofdrink, yielding a similar formula.

Now the question is whether this formula can somehow be “injected” into the CS interpretation.
More precisely, we are looking for a conversion (or coercion) function that could adapt the interpre-
tation ofglass when eventually composed with the interpretation ofdrinks. In other words, we are
looking for a functionconv such that:

conv([[a]] [[glass]]) (λx2.(([[drinks]]x2)x1))

= ∃x2 ∃y ∃e1 ∃e2 glass(x2) ∧ contain(e2, x2, y) ∧ drink(e1, x1, y)

As can be shown after a fewβ-reductions andα-renamings, one solution for this equation is:

conv = λP.λR.P (λz.∃y ∃e contain(e, z, y) ∧ R(y))

If conv is applied at the “right” time during CS interpretation, theanalysis of (1) becomes correct:

[[every linguist drinks a glass]]

= ([[every]] [[linguist]])(λx1.conv([[a]] [[glass]])(λx2.(([[drinks]]x2)x1)))

= ∀z linguist(z) ⇒ ∃x glass(x) ∧ ∃e2 ∃y contain(e2, x, y) ∧ ∃e1 drink(e1, z, y)

We can recognize as a subterm ofconv the telic quale ofglass, selected by the type coercion mecha-
nism. This actually generalizes to other common type coercions.

Interestingly, the sameconv operator also works for other quantifying determiners. Consider, for
instance, the following sentence.

(2) A linguist drinks every glass.

It has the following, correct interpretation, whenconv is “injected” at the same time as above.

[[A linguist drinks every glass]]

= ([[a]] [[linguist]])(λx1.conv([[every]] [[glass]])(λx2.(([[drinks]]x2)x1)))

= ∃z ∀x linguist(z) ∧ (glass(x) ⇒ (∃e2 ∃y contain(e2, x, y) ∧ ∃e1 drink(e1, z, y)))

The same “fixed” interpretation also works for the followingsentences:

(3) A linguist drinks a glass.

(4) Every linguist drinks every glass.

It actually is not really surprising because the quantifier applying to linguist comes into play after
the VP is fully interpreted. Knowing that the “fixed” interpretation works fordrinks a glass (1) and
drinks every glass (2), it consequently also works for (3) and (4).

4 Supporting selective binding via the Generative Lexicon

Another classical example is the “fast typist”. In a typicalCS interpretation, this phrase is analysed as
follows.

[[fast]] : 〈(〈e, t〉), (〈e, t〉)〉 = λP.λx.P (x) ∧ fast(x)

[[typist]] : 〈e, t〉 = λx.typist(x)

[[fast typist]] = [[fast]]([[typist]]) = λx.typist(x) ∧ fast(x)

This makes little sense because of a type clash:fast actually expects an event whentypist expects an
individual. Theselective bindingrule of the GL (Pustejovsky, 1995) is devised to handle such acase:
when an entryγ1 of type〈τ1, τ1〉 is combined with an entryγ2 of typeτ2, if the qualia structure ofγ2

has a qualeq that involves a typeτ1, thenγ1 andγ2 can be composed into an entry of typeτ2, based
on γ2, whereγ1 applies to qualeq. In our example, the event expected byfast can be found in the
telic quale oftypist.

typist

EVENTSTR
[

E1 = e : process
]

ARGSTR
[

ARG1 = x : human
]

QUALIA
[

TELIC = type(e, x)
]

Classically, the resulting GL composition is then as follows.

fast typist

EVENTSTR
[

E1 = e : process
]

ARGSTR
[

ARG1 = x : human
]

QUALIA
[

TELIC = type(e, x) ∧ fast(e)
]

Although the telic role expresses a persistent property, the corresponding event is only to be under-
stood as a possible (Busa, 1997), as opposed to systematic, i.e., realised in all circumstances. This cor-
responds to a modal interpretation, which may be represented by the possibility operator “♦” (Bouil-
lon, 1997). This leads to the following semantics for “fast typist”. (We omit here additional constraints
expressing thatx is human, etc.)

[[fast typist]] = λx.typist(x) ∧ ∃e♦(type(e, x) ∧ fast(e))

The question again is how to fix the wrong CS interpretation using the GL mechanism, but staying
at the CS level.

One possible answer is, like in Section 3, to apply a conversion operator before combining the
semantics of the noun with that of the adjective:

conv′ = λP.λR.λx.R(x) ∧ ∃e.♦P (λe′.type(e′, x))(e)

[[fast typist]] = (conv′[[fast]])([[typist]]) = λx.typist(x) ∧ ∃e♦(type(e, x) ∧ fast(e))

We can also recognise as a subterm ofconv′ the telic quale oftypist.
More generally, when lexicon entriesγ1 andγ2 are composed according to selective binding via

qualeq, their corresponding CS interpretation can be composed as follows.

conv′ = λP.λR.λx.R(x) ∧ ∃e (P (q(γ2)(x))(e)

[[γ1 γ2]] = (conv′[[γ1]])([[γ2]])

In the case whereq = TELIC, thenq(γ) is to be understood as the contents of the telic quale modified
by the possibility modality.

5 Synchronising the two calculi into a general framework

We now generalise on the preceding examples and define a way toassociate CS and GL. Given a CS
interpretation[[·]], as well as a lexiconL equiped with a set of GL composition mechanisms, we build a
new interpretation[[·]]mix that combines them. Intuitively, themixed interpretation[[·]]mix is constructed
as an instrumented semantics7 that modifies the CS interpretation[[·]]. The CS interpretation and the
GL compositions are “synchronised” in the sense that both processes are somehow performed in par-
allel on the same syntactic structure, synchronizing at each node level, i.e., stopping and cooperating
before pursuing. The mixed interpretation is formally defined as follows.

The domain of the mixed interpretation is the product domain: elements are pairs(ϕ, γ) where
ϕ is a semantic function in the domain of[[·]], andγ is a lexical entry inL, possibly obtained by the
GL composition of otherL entries.

The mixed interpretation works bottom up on the same syntactic tree structure as the original CS
interpretation. We assume that movements, if any, have already been performed. (The CS interpre-
tation actually does not have to be based on GB; it just has to be functional and compositional, e.g.,
based on categorial grammars.) The mixed interpretation isdefined inductively as described below.

For any leafw in the syntax tree, we define:

[[w]]mix = ([[w]], entry(w))

It is important to note that the lexicon does not have to be complete. If w is absent fromL, then
entry(w) = ⊥, where⊥ denotes an undefined entry.

For any non-leaf (binary) treew0 in the syntax tree,w0 results from the association of two sub-
termsw1 andw2, that represent subphrases, specifier, morphemes, etc. Assuming that the mixed
interpretations[[w1]]mix = (ϕ1, γ1) and[[w2]]mix = (ϕ2, γ2) have been calculated, we want to express
[[w0]]mix = (ϕ0, γ0).

As modeled and illustrated in the previous sections, the CS interpretation defines:

[[w0]] = composfunc([[w1]], [[w2]])

wherecomposfunc is some functional operation depending on the types of[[w1]] and[[w2]].

7as defined in the abstract interpretation framework used forprogramming languages (Jones and Nielson, 1994)

Regarding the GL, a lexical compositioncomposlex for L entriesγ1 andγ2 may or may not be
defined. There are thus two cases:

(a) If a compositioncomposlex(γ1, γ2) is defined inL, then the mixed interpretation[[w0]]mix =
(ϕ0, γ0) is defined as follows:

ϕ0 = composfunc(χ1(ϕ1), χ2(ϕ2))

γ0 = composlex(γ1, γ2)

χi = effecti(composlex)

whereeffecti(composlex) denotes the effect that the compositioncomposlex has on itsith argument. In
other words,ϕ1 andϕ2 are composed viacomposfunc as in the original CS interpretation, except that
they are first converted as specified byχ1 andχ2. These conversions account for the GL composition
of lexical entriesγ1 andγ2.

For instance (cf. §3), when a compositioncomposlex translates into the adjunction of some
qualeq2 of γ2 to some qualeq1 of γ1, whereq2(γ2) is expressed aspred(e, x, y) andx is the variable
denoted byγ2, then the situation is as follows.

q1(γ0) = q1(γ1) ∧ q2(γ2) and ∀ q 6= q1 q(γ0) = q1(γ1)

χ1 = λx.x

χ2 = λP.λR.P (λx.∃y ∃e q(γ2) ∧ R(y))

In other words,γ0 has the same qualia asγ1, except for the adjunction ofq2(γ2) to qualeq1. More-
over, the interpretationϕ1 is unaltered (χ1 is the identity function) whereas the interpretationϕ2 is
converted to incorporate the contents of qualeq2 of γ2, and to apply to the third argument ofq2(γ2)
rather than to the second one. The other arguments are existentially quantified.

(b) In case the lexiconL does not define entryγ1 orγ2, or if no composition mechanismcomposlex
is defined forγ1 andγ2, then the standard interpretation is used as default (χ1 andχ2 are identity
functions). Moreover, if there is an entry in the lexicon forthe lexical head of the phrase, then it is
used as a default entryγ0, which further allows possible compositions. In other words:

ϕ0 = composfunc(ϕ1, ϕ2)

γ0 = entry(lexhead(w0)) if any, otherwise⊥

It is the best that we can do given the limited available information.
For instance, an auxiliary verbw1 whose lexicon entry isγ1 can be combined with a verbw2

whose lexicon entry isγ2. In this case, the lexical head ofw0 = w1w2 is the verb:lexhead(w0) = w2.
The lexicon entry corresponding to the composition ofw1 andw2 is thenγ0 = entry(lexhead(w0)) =
entry(w2) = γ2, i.e., the lexicon entry of the verb.

Similarly, when a determiner is combined with a noun to form adeterminer phrase (DP), the
lexicon entry of the noun (lexical head of the DP) is used as the entry for the whole DP8. This is
actually used to correctly interprete example sentence (1): generative lexicons usually do not define
any entry for determinera, let alone any composition mechanism to combine an entry fora with an
entry for glass . In our setting, we thus haveγ1 = entry(a) = ⊥ andγ2 = entry(glass), as well as
composlex(γ1, γ2) = ⊥. The result is then defined asγ0 = entry(lexhead(a glass)) = entry(glass) =
glass. This allows entryglass to be appropriately combined withdrink later in the interpretation.

8As far as this mixed interpretation is concerned, we are agnostic regardind DPs and NPs: if the phrase is analysed as a
noun phrase (NP) rather than a determiner phrase, the lexical head is still the noun.

As a fallback, it is thus always possible to consider a GL composition as undefined, i.e.,γ0 = ⊥.
In the extreme case where, for all items of a given sentence, there are no applicable entriesγ in the
semantic lexicon, or no applicable composition mechanismscomposlex, the mixed interpretation[[·]]mix

coincides with the standard interpretation[[·]].

6 Conclusion

Given an arbitrary computational semantics analysis (withonly a few assumptions) and an arbitrary
generative lexicon (a subset of entries and composition mechanisms), as well as a small number of
operations to map GL composition information into CS terms,we have defined an effective, mixed
semantic analyser, that applies to the same syntactic constructs as the original CS process but produces
GL-refined analyses.

Arguably, this mixed interpretation provides in some sensethe best of both worlds: CS and GL are
both used for what they are good, i.e., respectively syntax-semantics interface and lexicon-semantics
interface. This of course does not prohibit uses of the GL to also address syntactic phenomena.

It can be noted that the coupling between CS and GL is very limited, which facilitates the separate
evolution both of CS features (support of additional syntactic constructs, refinements in the target
logics, etc.) and GL features (general model, composition mechanisms, actual lexicon entries, etc.).

In particular, the mixed interpretation is applicable evenwhen only partial information is available
from the lexicon, for instance when lexical entries or GL compositions are missing. This has two
major advantages. First, it allows the gradual addition of lexical semantics information in a semantic
analysis system. The semantic lexicon does not have to be complete before the first sentence can be
processed. Second, it also allows the gradual addition of more GL composition mechanisms. This
makes sense for parts of speech that are not (yet) supported by the GL, as well as for mechanisms that
have been described but not yet been mechanised.

Future work includes the explicit definition of more mappings from GL compositions to CS con-
versions (i.e., functionseffecti) as well as a comparison of the treatment of quantifiers for dotted types
as in (Asher and Pustejovsky, 2000) and (Jacquey, 2001).

Also interesting would be a comparison with approaches where the lexicon-semantics and syntax-
semantics interfaces are studied within the same framework, such as the Meaning-Text Theory (MTT)
(Mel’ čuk, 1988). In this theoretical framework, practical procedures have been defined to transform a
meaning, expressed as a semanteme graph, into a textual representation (Bohnet and Wanner, 2001).
Even if this differs from the above in that it addresses text generation rather than text analysis9, and
semanteme graphs rather than logical formulas, this does not preclude inspiring comparisons. The fact
is that the MTT includes a rich lexicon model, the Explanatory and Combinatorial Dictionary (ECD),
that has been formalized (Mel’čuk and Polguère, 1987) and that has computational instances (Altman
and Polguère, 1997). In this lexicon model, there is a particular emphasis on collocation information,
expressed as lexical functions, which allows in particularthe selection of appropriate lexemes and
forms when generating text (Polguère, 1998). However, it seems that phenomena like metonymy have
to be explicited for each lexeme, although polysemy templates allow for some factorisation.

9MTT equative rules can in theory also be used for analysis, but in practice this direction is not as easy and as developped
as generation is. Conversely, the Generative Lexicon theory as well as most Computational Semantics approaches are more
geared towards analysis than generation.

Acknowledgements

We wish to thank Christian Bassac for fruitful discussions and helpful comments on earlier versions
of this paper.

References

Joel Altman and Alain Polguère. 1997. La bdéf : base de définitions dérivée du dictionnaire explicatif
et combinatoire. InProceedings of the 1st International Conference on Meaning-Text Theory,
pages 43–54.

Nicholas Asher and James Pustejovsky. 2000. The metaphysics of words in context.Submitted to the
Journal of Logic, Language and Information.

Christian Bassac and Pierrette Bouillon. 2007. The telic relationship in compounds. In James Puste-
jovsky et al., editor,Generative approaches to the lexicon. Kluwer. To appear.

Johan van Benthem and Alice ter Meulen, editors. 1997.Handbook of logic and language. The MIT
Press.

Bernd Bohnet and Leo Wanner. 2001. On using a parallel graph rewriting formalism in generation.
In Proceedings of the 8th European workshop on Natural Language Generation (EWNLG’01),
pages 1–11, Morristown, NJ, USA. Association for Computational Linguistics.

Pierrette Bouillon. 1997.Polymorphie et sémantique lexicale : le cas des adjectifs. Ph.D. thesis,
Université de Paris 7.

Federica Busa. 1997. The semantics of agentive nominals in the generative lexicon. In Patrick St.
Dizier, editor,Predicative Forms in Natural Language. Kluwer.

Donald Davidson. 1980.Essays on Actions and Events. Clarendon, Oxford.
Danièle Godard and Jacques Jayez. 1993. Towards a proper treatment of coercion phenomena. In

Proceedings of the sixth conference of the European chapterof the Association for Computational
Linguistics, pages 168–177, Morristown, NJ, USA, April. ACL.

C.-T. James Huang. 1994. Logical form. In Gert Webelhuth, editor, Government and binding theory
and the minimalist program, pages 127–173. Blackwell, Oxford.

Evelyne Jacquey. 2001.Ambiguïtés lexicales et Traitement Automatique des Langues : Modélisation
de la polysémie logique et applications aux déverbaux d’action ambigus en français. Ph.D. thesis,
Université de Nancy 2, December.

Neil D. Jones and Flemming Nielson. 1994. Abstract interpretation: a semantics-based tool for pro-
gram analysis. InHandbook of Logic in Computer Science, pages 527–629. Oxford University
Press.

Igor Mel’čuk and Alain Polguère. 1987. A formal lexicon in Meaning-Text Theory (or how to do
lexica with words).Computational Linguistics, 13(3–4):261–275.

Igor Mel’čuk. 1988.Dependency Syntax: Theory and Practice. The SUNY Press.
Richard Montague. 1974.Formal Philosophy. Selected Papers of Richard Montague. Yale University

Press. Edited and with an introduction by Richmond H. Thomason.
Alain Polguère. 1998. Pour un modèle stratifié de la lexicalisation en génération de texte.Traitement

Automatique des Langues (T.A.L.), 39(2):57–76.
James Pustejovsky. 1995.The Generative Lexicon. The MIT Press.

