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In this document, we supplement the paper (published
in 3DV 2017) with complementary experimental data and
technical details.

Section 1 provides statistics regarding the experiments
on real data presented in the paper. It also details the re-
construction of planes, as shown on Fig. 1 of the paper,
and displays additional reconstructions. Section 2 studies
on synthetic data the behavior of coplanar constraints and
compares the different kinds of features. Section 3 analyzes
the degenerate cases evoked in Sections 4 and 5 of the paper.
Section 4 discusses alternatives in our method and provides
additionnal justifications for our choices. Finally, we de-
scribe in Section 5 a simple line match refinement that we
use before bundle adjustment.

1. Experiments on real data
1.1. Statistics on feature detection, matching and

calibration inliers

Table 1 below summarizes statistics concerning the de-
tection and matching of features in the various real datasets
that we used in our experiments, as well as the inliers we
found after estimating the scale ratio in each image triplet.

For each kind of feature (point or line), we display the
average number of detections per image, the average num-
ber of matched features per image pair, and the average
number of features matched across image triplets. Note
that, in the case of indoor datasets, there is a huge disparity
across the images because tens of thousands of points are
detected on the door and on the grids of the suspended ceil-
ing, whereas some other views show textureless parts of the
room with practically no point detections.

Each point and line triplet yields a (simplified) trifocal
constraint. We also display the average number of con-
straints corresponding to the hypotheses of coplanar line
pairs (per image). Additionally, for each kind of constraint
(trifocal point, trifocal line, or coplanar line pair), we dis-
play the average number of inliers found after scale ratio
estimation, and for readability, the corresponding percent-
age w.r.t. the average number of candidate inliers.

Finally, for point and line features, we record under

Scene
Constraint type Point Line Copl.

triplet triplet line pair
Office P19 41 % 12 % 47 %

Meeting P31 21 % 17 % 62 %
Trapezoid P17 40 % 0 % 60 %

Castle P19 71 % 0 % 29 %
Castle P30 86 % 0 % 14 %
Entry P10 100 % 0 % 0 %

Fountain P11 100 % 0 % 0 %
Herz-Jesu P8 100 % 0 % 0 %

Herz-Jesu P25 87 % 0 % 13 %

Table 2. When selecting a scale ratio, % of best hypotheses origi-
nating from each constraint type, across all image triplets of each.

“Jumps” the total number of image triplets with absolutely
no trifocal feature match. These triplets absolutely need
coplanarity constraints to be calibrated.

1.2. Statistics on the type of constraint used for scale
ratio estimation

In our method, we use three kinds of constraints (copla-
nar line pair, trifocal point, trifocal line) and all of them
impact the choice of a best scale ratio via their contribution
to the NFA (see Section 7 of the paper). To compare their
relative influence, we consider the scale ratio hypotheses
that were retained because they were found with the low-
est NFA, and we measure the percentage of constraint types
that these (best) hypotheses originate from, across all image
triplets of each dataset. These statistics are presented in Ta-
ble 2. (Recall that the number of candidate constraints and
inliers are shown in Table 1.)

In practice, the total number of features (hypothesized
coplanar line pairs, trifocal points, trifocal lines) is low
enough (typically less than 10,000) for all features to be
tried rather than sampled. The results here are thus deter-
ministic: our algorithm produces exactly the same result
each time we run it. Yet, for cases where speed is a con-
cern, we can randomly sample features up to a maximum
number of features.

In Strecha et al.’s datasets [2], the number of point con-
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Office P19 8592 156 44 42 95.0 1 199 20 6 5 80.2 2 165 34 20.6
Meeting P31 14110 290 76 70 91.7 0 335 45 82 14 17 0 403 63 15.7

Trapezoid P17 10420 265 34 31 90 0 216 27 50 5.5 11 0 219 22 10
Castle P19 16586 2440 1123 1078 96.0 0 682 148 41 38 91.5 0 1275 357 28.4
Castle P30 16535 3082 1635 1573 96.0 0 680 167 28 27 94.4 0 1327 383 28.9
Entry P10 17348 4523 2368 2291 96.8 0 1621 319 83 77 92.2 0 2216 892 40.3

Fountain P11 28192 9930 6083 5877 96.6 0 746 149 35 33 92.5 0 1080 252 23.3
Herz-Jesu P8 27073 6258 3289 3157 95.9 0 751 154 52 48 92.9 0 1092 401 36.7
Herz-Jesu P25 26175 4200 1709 1647 96.4 0 771 123 35 32 91.0 0 1059 291 27.5

Table 1. Statistics on the number of feature detection, matching and calibration inliers per image, for different kinds of feature constraints
and for each dataset. “Jumps” counts the total number of image triplets with absolutely no trifocal feature match.

straints (# point triplets) is much larger than the number of
line constraints (# line triplets). Considering only inliers,
the number of point constraints is also much larger than the
number of line coplanarity constraints. It explains why, in
this textured dataset, so many scale ratios are decided by
point constraints.

In the indoor datasets, the statistics is more balanced be-
cause the number of inlier constraints is comparable for tri-
focal points and coplanar line pairs, with a low but non neg-
ligible number of inliers for trifocal lines.

From these statistics, we can say that although copla-
narity constraints and trifocal line constraints are generally
less accurate than trifocal point constraints (see Section 2
above), they are useful to obtain more accurate results, es-
pecially in scenes with little texture. They are not “just”
useful for robustness in case points are missing.

1.3. Plane clustering

Every inlier line pair of a triplet of cameras is composed
of coplanar lines by hypothesis. To get an idea of the planes
that are present in the scene, we may combine coplanarity
constraints and define global planes.

To this end, we greedily cluster the coplanar pairs, first at
the three-view stage, and then at a global stage. Concretely,
for each triplet of cameras, we cluster coplanar pairs that
share a common line and have a similar normal (we use a
threshold of 15◦). Once clustered, we compute an average
plane position and center. Then, at a global scale, we per-
form a similar clustering for planes that have close normal
and close centers. The angular threshold is the same as pre-
viously, and the distance threshold is defined as a portion of
the scene scale (we use 25% of the scene scale).

The planes obtained this way do not always correspond
to “real” planes, such as walls, floors, windows, doors, but

Figure 1. Cluster of segments belonging to the same 3D plane,
represented with the same color. If a segment belongs to several
clusters, although it appears in only one color, it is linked to its
clusters through thin lines with the cluster color.

they correspond at least to virtual planes, e.g., accidental
alignment of the door with the whiteboard edge, or aligned
step edges of a stairway, as in Fig. 1, where they are rep-
resented by similar colors. Yet, these global planes pro-
vide information about the scene that could be used to help
a dense reconstruction algorithm, especially in low texture
scenes, as illustrated in Fig. 1 of the paper and in Figs. 2
and 3 of this supplementary material, where planes are rep-
resented by their bounding box (which is not forced here to
be vertically aligned).

1.4. Visual results

An example for reconstructed structure for the Strecha
outdoor dataset is given on Fig. 2.

For indoor datasets, which do not have a ground truth,
we however provided a quantitative result that corresponds
to the reprojection error of points (cf. Table 3 of the paper).
Yet, if this error says a lot about the calibration accuracy,
visual results are also worth of interest.

For each indoor dataset, we show in Fig. 3 the 3D re-
construction based on points, lines and planes. Planes cor-
respond to the aggregation of coplanar constraints as ex-



Figure 2. Reconstructed structure of Castle-P30: points (left), lines (middle), bounding boxes of coplanarity planes after BA (right).

plained in previous section.

2. Experiments on synthetic data
We made synthetic experiments to study the behavior of

our coplanarity-based method when the main scene parame-
ters vary: number of planes in the scene, number of detected
lines, amount of noise in detections, degree of planarity. As
shown below, the coplanarity constraints degrade smoothly
when the setting becomes harder.

Synthetic setting. Although the dataset is synthetic, we
used realistic camera and scene parameters, that are actu-
ally close to the configuration of the Office-P19 dataset (see
below) and also provide a metric assessment. We consider
the following setting:

• 3 cameras on a plane, pointing toward a scene, with
camera i at 15◦+random[0, 15◦] from camera i+1,

• scene of size 2m, at distance of 3m from the cameras,
• cameras with focal length 20mm and resolution of
4000× 4000 pixels.

In each experiment we generate random planes, and random
lines in each plane. Half of the lines are only seen in cam-
eras 1 and 2, and the other half only in cameras 2 and 3, as
in Fig. 2 of the paper. We consider 4 scene configurations,
that generate a number of constraints that is similar to what
we observe in a real dataset such as Office-P19:

• 2 planes with 10 lines in each plane, generating an av-
erage of 90 coplanar constraints,

• 2 planes with 20 lines in each plane, generating an av-
erage of 200 coplanar constraints,

• 3 planes with 10 lines in each plane, generating an av-
erage of 150 coplanar constraints,

• 3 planes with 20 lines in each plane, generating an av-
erage of 300 coplanar constraints.

Note that using at least 2 planes and 10 lines in the syn-
thetic experiments is not a minimal requirement; it just cor-
responds to practical indoor situations with little data.

Note also that the number of constraints that are actually
used varies: it depends on the number of line pairs that are
discarded because they are below the angular threshold for
near parallelism (cf. Sect. 6 of paper).

Last, we use a Gaussian noise to model inaccuracy in
line detection as a “reprojection error” with a given stan-
dard deviation σdetect (in pixels), perturbing both segment
extremities, and also a Gaussian noise to model planarity
error, to deviate lines from their plane with a given standard
deviation σplanar (expressed in mm).

For each scene configuration and each parameter value,
we generate 500 random scenes and average the error mea-
sure ε(τ) = |τ−τGT |/|τGT |, where τ is the estimated scale
ratio, and τgt is the ground-truth scale ratio.

2.1. Coplanar constraints

We first study the sensitivity of coplanar constraints with
respect to reprojection error and planarity error.

Sensitivity to detection inaccuracy. As seen from
Fig. 4, when we vary the inaccuracy of line segment detec-
tion from σdetect = 0 to 5 pixels, keeping the planarity noise
at σplanar = 0 and 20mm, the error of scale ratio estimation
degrades smoothly.

Sensitivity to the degree of planarity. As seen from
Fig. 5, when we vary the planarity level from σplanar = 0 to
50mm, keeping the inaccuracy of line segment detection at
σdetect = 0 and 2 pixels, the error of scale ratio estimation
also degrades smoothly.

Sensitivity to the number of lines. We can also observe
from Fig. 4 and 5 that the more lines a plane contains, the
lower the error. The reason is that the error is better aver-
aged and smoothed with more features.

Sensitivity to the number of planes. The same figures
show that a larger number of planes (and thus a larger num-
ber of associated lines) increases the number of constraints
but also increases the resulting error, except in the absence
of planarity noise. The reason is that non-perfect planes also
introduce many outliers.

2.2. Features comparison

We provide here synthetic experiments illustrating the
sensitivity to detection inaccuracy for the different kinds of
constraints, i.e., trifocal points, trifocal lines, and pairs of
lines hypothesized as coplanar.
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Figure 3. 3D reconstruction of indoor scenes, showing separately points (left), lines (middle) and coplanar features (right). Images of the
same area in the dataset are shown in the following row.



Figure 4. Sensitivity of scale ratio estimation when line segment detection inaccuracy increases. On the left with no planarity noise, on the
right with a planarity noise of standard deviation σplanar = 20mm.

Figure 5. Sensitivity of scale ratio estimation as planarity degrades. On the left with no reprojection noise, on the right with a reprojection
noise of standard deviation σdetect = 2 pixels.

Figure 6. Sensitivity of scale ratio estimation when feature detection inaccuracy increases, for the different kinds of considered constraints:
trifocal points, trifocal lines, and pairs of lines hypothesized as coplanar (for different values of coplanarity noise). On the left, configuration
with 2 planes and on the right, configuration with 3 planes.



We use a 3-camera synthetic setting, and we consider the
following scene configurations:
• 2 planes with 10 points and 10 lines in each plane, seen

in all 3 cameras, resulting in npt = 20 point triplets,
nseg = 20 line triplets and an average of nco = 200
coplanar line pairs (considering all line pairs originat-
ing from matches in cameras 1-2 and cameras 2-3).

• 3 planes with 10 points and 10 lines in each plane, seen
in all 3 cameras, resulting in npt = 30 point triplets,
nseg = 30 line triplets and an average of nco = 300
coplanar line pairs (considering all line pairs originat-
ing from matches in cameras 1-2 and cameras 2-3).

Points and lines are perfectly matched. It means that point
and line triplets (tracks of length 3) do not contain any out-
lier. However, for coplanarity hypotheses, we consider all
combinations of a line pair in cameras 1-2 with a line pair
in cameras 2-3, which contain a large number of outliers
(false hypotheses). For 2 planes, about 1

2 of the hypotheses
are outliers, and for 3 planes, about 2

3 of the hypotheses are
outliers.

We measure the scale ratio error as a function of the in-
accuracy in feature detection, modeled as a Gaussian noise
with a given standard deviation σdetect (in pixels). In case of
a line segment, we perturb both extremities in each camera.
In case of a point feature, we perturb its reprojection loca-
tion in each camera. Results are pictured in Fig. 6, where
the noise σdetect is labeled as a “reprojection error”.

Note that, although we plot them on the same graph,
we cannot really compare the resulting inaccuracy of line
triplets vs point triplets. The reason is that neither the error
model nor the noise levels for representing the inaccuracy
of line and point detections are a priori comparable. Only
the general behavior of both kinds of trifocal constraints is
meaningful here.

Imperfection is also introduced in plane planarity, as a
Gaussian noise deviating lines off their plane with a given
standard deviation σplanar (expressed in mm, given the set-
ting in Section 2 above). We consider different noise levels,
with σplanar ∈ {0mm, 15mm, 30mm, 45mm}. As trifocal
lines and points are not sensitive to planarity noise, we only
plot one curve for them.

3. Degenerate cases
Our constraints (based on coplanar lines or on trifocal

features) have singular cases. We detail here these cases and
show that a minimum angle between two vectors is enough
to discard degenerated configurations.

3.1. Coplanar lines

Coplanar constraints generate an equation of the form:

λ23
λ21

=
(l3b · (R23p

2
b))(nP · (R>2 p2a))(l1a · t21)

(l1a · (R21p2a))(nP · (R>2 p2b))(l3b · t23)
(10)

Degenerate cases can then occur when either the denomina-
tor or the numerator vanishes, meaning one of the dot prod-
ucts is null. There are 6 different cases than can be split in
2 groups of symmetric cases. For clarity we only study the
case that concerns line La:

• l1a · (R21p
2
a) = 0 implies that the plane (C2l

2
a) is paral-

lel to the plane (C1l
1
a). It means that line La cannot be

determined by the observations on cameras 1 and 2.

• nP · (R>2 p2a) = 0 implies that whatever the scale ratio,
La is at a constant distance of the plane of normal nP
that contains Lb.

• l1a·t21 = 0 implies that the lineLa is constant whatever
the scale ratio is.

These degenerate cases do not allow the computation of
a scale ratio candidate. Moreover, they cannot measure if
a given candidate is a good one. Thus, when we compute
the coplanar pairs, we select all the possible pairs but ig-
nore the ones that are degenerate. Note that these tests are
performed without knowledge of the camera positions, only
global rotations and translation directions are required.

3.2. Trifocal features

Trifocal features generate an equation of the form:

λ23 = argmin
λ∈R

‖u× (v + λw)‖
‖u‖ ‖v + λw‖

, (11)

Degenerate cases occur when the vector family (u,w, v×w)
is not a basis of R3. These cases correspond to specific
geometric configurations that depends on the nature of the
features.

For points, the equation becomes :

argmin
λ23∈R

‖p3 × (R3(P̃ − C2)− λ23t23)‖
‖p3‖ ‖R3(P̃ − C2)− λ23t23‖

, (12)

The degenerate cases correspond to linear combinations
of the following two cases:

• C2, C3 and p3 are aligned, meaning that whatever λ,
the point cannot be triangulated from cameras 2 and 3.

• C3p3 is orthogonal to the plane (C2, C3, P̃ ), meaning
that whatever λ, it is not possible to intersectC3P3 and
C2P̃ and thus there is no constraint.

Note that these degenerate cases may also occur for cameras
1 and 2.

For lines, the equation (11) becomes:

argmin
λ23∈R

‖l3 × (R3[dL̃×(P̃−C2)]− λ23R3[dL̃×t23])‖
‖l3‖ ‖R3[dL̃×(P̃−C2)]− λ23R3[dL̃×t23]‖

(13)
The degenerate cases correspond to linear combinations

of the following two cases:



• l3 ⊥ t23 and l3 ⊥ dL̃, which means that the plane
(C3l3) is constant whatever λ.

• l3 ‖ (dL̃× (P̃−C2))× (dL̃× t23), then the distance is
constant whatever λ.

Note that all these degenerate cases correspond to spe-
cific geometric configuration that do not occur frequently.
Moreover, they can be avoided by testing a triplet before
using it to generate a candidate λ or check its validity.

4. Alternative choices
4.1. Coplanar line distance

We measure the coplanarity discrepancy of two lines
based on the projection on the central image of their closest
points in 3D (see Sect. 6 of the paper).

Considering p̃2ab, p̃
2
ba rather than Pab, Pba removes one

dimension of error, along the direction of C2, possibly con-
straining λ less. But positioning by triangulation along this
direction is generally less accurate and thus less meaning-
ful, leading most methods to use reprojected distances (e.g.,
epipolar distance) and rely on other views to capture any
error along this direction.

We tried a number of alternatives to measure coplanarity.
The 3D distance is difficult to threshold or compare with
as it is computed up to an unknown scale factor. We also
tried different weight alternatives, e.g., to take into account
uncertainty or based on how the cameras see the distance
between the 2 lines, but results were not consistently better.
In practice, the plain reprojected distance, which is com-
mon in many SfM approaches, works well enough, despite
degenerate cases, which we discard.

4.2. Robust estimation

Our method to robustly estimate scale factors is based on
an a contrario principle.

We tried a number of alternatives. An issue for find-
ing the modes of a histogram was to find a proper bin dis-
cretization as the scale of the relative scale factors is itself
unknown. It is also difficult to use a hypothesis test as the
possible scale factors follow a distribution difficult to char-
acterize, and its standard deviation is highly sensitive to the
many outliers.

Our AC-RANSAC formulation, which is a form of hy-
pothesis test, does not assume uniform scale ratios for the
null hypothesis; it considers a distribution indirectly defined
by a distribution of lines. Besides, AC-RANSAC allows to
treat all features (points, lines, coplanar lines) in the same
framework.

5. Match refinement
After two-view pose estimation, we actually refine line

matches using the known transformation, in the same spirit

as [1], but more simply. For each line segment l1 matching
with l2 in the other image, we consider the strip S delimited
by the epipolar lines of the extremities of l2; we measure
the ratio of the length of segment l1 that overlaps S over the
length of the (infinite) line l1 that overlaps S. Segments be-
low a threshold are discarded, and matches are recomputed
as in LBD [3], but now ignoring LBD’s geometric criterion,
as we have more reliable information.
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