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1. Network Architecture
1.1. Multiscale Attention Module g(·)

Fig. 1 shows the detailed architecture of the multiscale
attention module and of its L different encoders e(`) :
R·×c(`−1) −→ R·×c(`)/2. We recall that c(`) denotes the num-
ber of channels at the output of the `th multiscale attention
module. The encoder e(`) is made of three residual blocks,
each yielding features with c(`)/2 channels. The architec-
ture of the residual block is also presented in Fig. 1 where
the first 1D convolution is used only when the number of
input and output channels differs. Each residual block con-
sists of two FKAConv layers [2] with c(`)/2 channels at in-
put and output, a neighborhood of 32 nearest neighbours, a
stride of size 1 (no downsampling of the point clouds), and
a kernel of size 16. All convolutional layers are followed
by instance normalization (IN) [7] with learned affine cor-
rection and a ReLU activation [6]. The number of channels
c(`) used in our experiments in given in Table 1.

` 0 1 2 3 4 5 6

c(l) 3 32 32 64 64 128 128

Table 1. Number of channels c(`) at the ouput of the `th block
in the multiscale attention module. c(0) = 3 corresponds to the
three coordinates x, y, z of the input point cloud.

1.2. Confidence Estimator h(·, ·)

Fig. 1 shows the detailed architecture of the confidence
estimator h : R·×6 −→ (0, 1)·×1. It consists of nine resid-
ual blocks, a FKAConv layer that reduces the number of
channels to 1 and a final sigmoid activation. The FKAConv
layer has a neighborhood of 32 nearest neighbours, a stride
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of size 1, and a kernel of size 16. The residual blocks have
the same structure as the one used to construct the encoders
in the multiscale attention module.

2. Experimental results
2.1. Indoor dataset: 3DMatch

A detailed analysis of the performance of our method
for each of the 8 scenes in the test set of 3DMatch [11] is
presented in Fig. 2. The results confirm the global scores
presented in the main part of the paper. Each of the post-
processing steps permits to improve the recall on all the
scenes. DGR and PCAM-Sparse achieve nearly similar
recall on all scenes with a very noticeable difference on
Hotel3 where PCAM-Sparse with hard-thresholding on the
weights outperforms DGR with all post-processing steps
used.

We present in Fig. 3 and Fig. 4 examples of success and
failure, respectively, of PCAM-Sparse with filtering with φ
on 3DMatch [11]. We notice that the misregistrations are
due to wrong mappings between points on planar surfaces
in the examples of row 2, 3 in Fig. 4. We also remark in the
example at row 5 that our method found matching points be-
tween points of similar but different object. Finally, row 1
of Fig. 4 shows a case where the estimated correspondences
are correct but the confidence estimator considers them as
unreliable which leads to a wrong estimation of the trans-
formation (unless the safeguard is activated). This shows
that the performance of the confidence estimator can still be
improved.

2.2. Outdoor dataset: KITTI

We present in Fig. 5 and Fig. 6 examples of successful
and failed registration results, respectively, with our method
on the KITTI odometry dataset [4]. We observe in Fig. 5
that the static objects are well aligned after registrations.
Concerning the failed registration results, it seems that this



Figure 1. Detailed network architecture of the multiscale attention module g(·) and the confidence estimator module h(·, ·). Each
module is constructed using the same type residual block, in which all internal layers have the same number of channels C indicated in
the notation “Residual block, C”. Note that the 1D convolution in the residual block is used only when the number of input and output
channels differ.

is due to mapping between similar but different structure in
the scene, at least for the scans with very large registration
errors such as on row 1 or 4.

2.3. Synthetic dataset: ModelNet40

We provide in Table 2 the results obtained for Model-
Net40 on the split corresponding to unseen objects, unseen
categories, and unseen objects with noise [8]. Our method
achieves better results than the recent methods that provided
scores on these versions of the dataset.

RPM-Net [10] is also evaluated on ModelNet40, but us-
ing a slightly different setting than the one used by the meth-
ods in Table 2. We also test PCAM on this variant of Model-
Net40. RPM-Net uses several passes/iterations to align two
point clouds while PCAM, which is not trained on small dis-
placements for refinement, uses only one. For fairness, we
evaluate both methods after the first main pass. PCAM out-
performs RPM-Net on the ‘clean’ version of ModelNet40
(Chamfer error of 1.8 · 10−5 for RPM-Net, 3.4 · 10−9 for
PCAM) and on its ‘noisy’ version (7.9 ·10−4 for RPM-Net,
6.9 · 10−4 for PCAM).

We present in Fig. 7 examples of registration results with
our method for pairs of scans in the unseen objects with

Gaussian noise split. The results presented in these figures
illustrate the accurate registrations as well as the good qual-
ity of the matched pairs of points.

2.4. Sparse vs FKAConv convolutions

DGR uses sparse convolutions, whereas PCAM uses
FKAConv point convolutions. To test if DGR suffers
from a large disadvantage due to these sparse convolutions,
we experiment replacing our point matching network by
DGR’s pre-trained point matching network. We then retrain
our confidence estimator on KITTI using DGR’s matched
points. The performance of this new system reaches a re-
call of 94.6%, an REall of 2.9 and TEall of 0.46 on KITTI
validation set. This is on par with the results obtained with
our point matching network, showing using sparse convo-
lutions in the point matching network do not perform much
worse than FKAConv.
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Figure 3. Examples of successful registrations on 3DMatch with PCAM-Sparse + φ. From left to right: overlaid, non-registered input
scans (blue and yellow colors); ground-truth registration; scans registered with our method; and top 256 pairs of matched points with
highest confidence.



Figure 4. Examples of failed registrations on 3DMatch with PCAM-Sparse + φ. From left to right: overlaid, non-registered input scans
(blue and yellow colors); ground-truth registration; scans registered with our method; and top 256 pairs of matched points with highest
confidence.



Figure 5. Examples in bird-eye view of successful registrations on the KITTI odometry dataset [4]. From left to right: overlaid, non-
registered input scans (blue and red colors); ground-truth registration; scans registered with our method; and top 256 pairs of matched points
with highest confidence. Note that we have used the full non-voxelized Lidar scans for a better visualisation. However, all registrations
are done using 4096 points drawn at random after voxelization of the full point cloud.



Figure 6. Examples in bird-eye view of failed registrations on the KITTI odometry dataset [4]. From left to right: overlaid, non-
registered input scans (blue and red colors); ground-truth registration; scans registered with our method; and top 256 pairs of matched points
with highest confidence. Note that we have used the full non-voxelized Lidar scans for a better visualisation. However, all registrations
are done using 4096 points drawn at random after voxelization of the full point cloud.



Figure 7. Examples of registration results on ModelNet40 on the split with unseen objects, with Gaussian noise [8]. From left to
right: overlaid, non-registered input scans (blue and red colors); ground-truth registration; scans registered with our method; and top 128
pairs of matched points with highest confidence.


