
Noname manuscript No.
(will be inserted by the editor)

Learning grammars for architecture-specific facade parsing

Raghudeep Gadde1 · Renaud Marlet1 · Nikos Paragios2

Received: date / Accepted: date

Abstract Parsing facade images requires optimal hand-

crafted grammar for a given class of buildings. Such

a handcrafted grammar is often designed manually by

experts. In this paper, we present a novel framework

to learn a compact grammar from a set of ground-

truth images. To this end, parse trees of ground-truth

annotated images are obtained running existing infer-

ence algorithms with a simple, very general grammar.

From these parse trees, repeated subtrees are sought

and merged together to share derivations and produce

a grammar with fewer rules. Furthermore, unsupervised

clustering is performed on these rules, so that, rules cor-

responding to the same complex pattern are grouped

together leading to a rich compact grammar. Experi-

mental validation and comparison with the state-of-the-

art grammar-based methods on four different datasets
show that the learned grammar helps in much faster

convergence while producing equal or more accurate

parsing results compared to handcrafted grammars as

well as grammars learned by other methods. Besides,

we release a new dataset of facade images following the

Art-deco style and demonstrate the general applicabil-

ity and extreme potential of the proposed framework.

Keywords grammar learning · facade parsing ·
subtree isomorphism · clustering

1 Université Paris-Est, LIGM (UMR CNRS 8049), ENPC,
77455 Marne-la-Vallée, France
E-mail: raghudeep.gadde@enpc.fr, renaud.marlet@enpc.fr
2 Center for Visual Computing (CVN), CentraleSupélec –
Galen Team, INRIA 92295 Châtenay-Malabry, France
E-mail: nikos.paragios@ecp.fr

1 Introduction

How building facades are segmented is of great interest

in computer vision due to the number of applications

and associated issues. Knowing the regularities in fa-

cade layout can be used in video games and movies

to generate plausible urban landscapes with realistic

rendering [45]. It can also guide the analysis of build-

ing images to construct semantized models that can be

used for urban planning and in simulation tasks (e.g.,

for thermal performance evaluation or shadow casting

studies) as well as to compact data for virtual naviga-

tion in cities.

Existing approaches for facade analysis, i.e., the seg-

mentation of facade images into semantic classes, use

either conventional segmentation methods [12, 17, 40]
or rely on grammar-driven recognition methods [41,

53, 62]. Conventional segmentation methods treat the

problem as a pixel labeling task, with the possible ad-

dition of local regularity constraints related to building

elements, but ignoring the global structural information

in the architecture. On the contrary, methods based on

shape grammars impose strong structural consistencies

by considering only segments that follow a hierarchi-

cal decomposition corresponding to a combination of

grammar rules. However, these methods require care-

fully handcrafted grammars to reach good performance.

Besides, as many grammars as different architecture

styles are required, and it is not clear who will write

and finely tune them, with what expertise and at which

cost, when there exists so many building styles.

In this work, we focus on structural segmentation,

i.e., with global regularities and hard constraints as op-

posed to just local pixel labeling. Our final goal is thus

not to produce a state-of-the-art pixelwise classification

but to provide a state-of-the-art, high-level, structured

2 R. Gadde, R. Marlet, N. Paragios

view of pictured objects. More precisely, we propose a

method to automatically learn grammars from anno-

tated images, which we illustrate on facade analysis.

The grammars we learn are specific to the architecture

style of the training samples. Using these grammars, we

reach state-of-the-art parsing results, competing with

handcrafted grammars. Thanks to our method, the te-

dious grammar writing and tuning task is turned into

the much simpler and basic task of annotating facade

images.

1.1 Related Work

Conventional segmentation techniques rely on grouping

together consistent visual characteristics while impos-

ing piecewise smoothness. Popular methods are based

on active contours [29, 49], clustering techniques such

as mean-shift [16] and SLIC [1], and graph cuts [4,

30]. However, although they obtain very good pixel-

wise scores, these techniques are not appropriate for

a number of applications because they frequently pro-

duce segments that are inconsistent with basic architec-

tural rules, e.g., irregular window sizes or alignments,

or balconies shifted from associated windows. While it

may be enough, e.g., to get a rough estimate of the

percentage of glass area for thermal performance eval-

uation, it is totally inappropriate to generate building

models (BIM), with both geometric and semantic in-

formation, as used in the construction and renovation

industry. Moreover, as they label only what is visible,

ordinary segmentation methods are sensitive to occlu-

sions, e.g., due to potted plants on windows and bal-

conies, or to pervasive foreground objects in the street:

trees, vehicles, pedestrians, street signs, lampposts, etc.

As a result, important elements can be partially or to-

tally missing from the produced segments, e.g., portions

of wall or even complete windows. On the contrary,

grammar-based methods can infer invisible or hardly

visible objects thanks to architecture-level regularity.

Conventional segmentation methods may also be sensi-

tive to variations of illumination such as cast shadows,

night lighting and glass reflection, although the sensitiv-

ity can be partly reduced with larger training sets. Here

again, grammar-based priors arguably provide better

segmentation in case of “illumination noise” thanks to

more global constraints. Actually, grammar-based im-

age parsing methods should not be thought of as alter-

native segmentation methods but as approaches that

take a good pixel classification (a.k.a. unaries) as input

and that further impose strong architectural constraints

as high-level regularizers. The two kinds of approaches

are thus complementary: a better low-level classification

or segmentation naturally leads to a better parsing and

better overall accuracy (assuming the observed facade

follows the architecture style modeled in the grammar).

More accurate segmentations have been obtained

adding weak architectural constraints, that are either

hard-coded [40] or learned [17], yielding improved pixel

classifications, but still breaking fundamental architec-

tural rules such as window alignments or balcony-window

relationships. Extra structural constraints have been

hard-coded into several dynamic programming prob-

lems that can be solved efficiently and accurately, again

improving the state of the art [12]. However, some struc-

tural rules are still not expressed in this approach, such

as the vertical alignment of windows, which is a com-

mon constraint. It also is difficult to adapt to new struc-

tures and new architectural styles because the regular-

ity is defined by hand, problem by problem.

On the contrary, segmentation methods based on

shape grammars [2, 33, 41, 53, 54, 58, 59, 62] make the

constraints explicit and thus facilitate the parameteri-

zation and adaptation to new architecture styles. They

impose strong structural consistencies by considering

only segments that follow a hierarchical decomposition

corresponding to a combination of the rules defined in

the grammar. Analyzing an image consists here in pro-

ducing a parse tree whose associated segments fit as

well as possible with the observation. Mixed continuous-

discrete inference is generally used to produce good

parse trees. The inference of the structure of segments

can also be separated from the optimization of their

size and positions [35], or be completely integrated into

constraints not requiring inefficient rule sampling [36].

With this kind of methods, partially or fully occluded

scene elements such as wall and windows can be re-

covered thanks to structural consistency. These meth-

ods are also less sensitive to changes of illumination.

However, one of their most important limitation is the

dependency on the grammar design, that is generally

written and tuned manually. It is thus natural to try to

learn these grammars automatically.

Although grammatical inference is common in natu-

ral language processing (NLP), it is rare in computer vi-

sion. Recently, a couple of methods have been proposed

to automatically learn shape grammars from ground-

truth image annotations [41, 69]. To the best of our

knowledge, these two methods are the only ones that

can tackle the complexity of multi-class facade segmen-

tation over a substantial training set. Both operate on

split grammars. Split grammars, in 2D, feature gram-

mar rules where a rectangle image is recursively split

vertically or horizontally into subrectangles. We detail

both approaches.

Martinovic and Van Gool’s method [41] does not

operate directly on the image but on an irregular lat-

Learning grammars for architecture-specific facade parsing 3

tice space similar to the one used by Riemenschnei-

der et al. [53] for parsing. For each example in the

training set, a specific split grammar is constructed

based on the lattice representation, alternating hori-

zontal and vertical split rules. Putting together all rules

of all examples yields a large grammar describing ex-

actly the training set. These rules are then merged

iteratively by a generalization operation, following a

Bayesian model-merging technique. Each step of this

iteration is relatively expensive because it requires con-

sidering as merging candidates all pairs of non-terminals

and evaluating the corresponding grammar. After iter-

ating, the resulting merged grammar is both smaller,

which leads to faster parsing, and more general, to treat

examples that are not in the training set. It seems how-

ever this approach does not scale well as the authors

have to reduce the size of the training set to keep the

induction time practicable.

Weissenberg et al. [69] present an alternative tech-

nique to learn split grammars from images with ground-

truth annotations. As in Martinovic and Van Gool’s

method, a parse tree is first constructed for each anno-

tated image in the training set. However, the construc-

tion here operates directly in the image space, gener-

ating split rules iteratively based on an energy func-

tion expressing preference among split line candidates.

Nested binary split rules in the same direction are then

grouped together to form n-ary split rules. Finally, a

compact grammar is generated by greedily merging gram-

mar rules with identical structure (split direction and

sub-components) but different parameters (split posi-

tions). The work is validated by a study of the per-

formance of grammar compression, an experiment in

facade image retrieval and examples of virtual facade

synthesis. But no experiment on using the generated

grammars for parsing is reported.

Tu et al. [66] propose a powerful and very general

framework for the unsupervised learning of stochastic

And-Or grammars which, like ours, is also based on

some kind of factorization of similar subtrees. But it

is not clear how this approach could be applied to the

segmentation of facade images. In this framework, when

applied to images, terminals are visual words that are

to be connected via spatial relations and structured

into a compact hierarchy of nonterminals. This hier-

archy is inferred from the distribution of terminals in

the training set, maximizing the posterior probability

of the corresponding grammar. To apply this generic

method, a specific work is required to select appropriate

visual words and define relevant spatial relations that

can carry across the factorization process. Besides, the

learning process starts from a flat representation of all

visual words in each image of the training set, along

with their relations, whose number can grow quadrati-

cally with the number of visual words, and there is no

indication in the general framework on a strategy for

dropping or merging relations when performing gener-

alization. In fact, examples in [66] are only illustrated

on objects with a small and fixed number of compo-

nents that have well-defined relative positions (well cen-

tered animal faces with two ears, two eyes and one nose,

among four species of mammals), which is quite differ-

ent from the case of facades with an unknown number

of floors and an unknown number of window columns,

and where objects can cover a wide portion of the image

area (whole extent of wall, roof, sky, running balconies).

Si and Zhu [57] have a similar approach to learn

And-Or grammars. Rather than relying on specific and

explicit relations between terminals, it is based on the

direct encoding of object presence and position in an oc-

cupancy grid. However, the size of this encoding grows

with the grid resolution (quadratically in the length of

objects), which may raise scalability issues. As a matter

of fact, it seems that experiments have been reported up

to a 19x19 grid only, which is too coarse for the level of

accuracy we target (about 70 to 90 % of pixel accuracy

for images of size at least 0.2 Mpixels). Besides, in the

case of facade images, similar windows that are just

shifted a few squares horizontally or vertically would

have a very different representation, leading either to

an explosion of alternative cases if they are kept sepa-

rate (large Or-nodes, i.e., overfitting), or to an excessive

generalization if they are merged (large And-nodes con-

taining small Or-nodes, i.e., independent probabilities

for neighboring squares). On the contrary, split gram-

mars separate presence (given by rules) and position

(given by rule parameters), which greatly reduces the

space of configurations to explore and allows an inde-

pendent factorization of rules and parameters.

It seems that these approaches, based on And-Or

grammars and visual words, are more suited for classi-

fication and detection tasks (as illustrated by presently

reported experiments) than for accurate segmentation.

To our knowledge, no experiment with these grammar

learning methods has been reported on facade segmen-

tation tasks, at least not on the standard datasets used

to evaluate and compare competing methods.

Another interesting aspect of these two approaches,

at least theoretically, is the use of stochastic grammars.

We actually made experiments of facade parsing with

the addition of probabilities to split grammar rules. As

it resulted in a minor accuracy improvement, we choose

not to burden our grammar learning method with prob-

abilities, for such a small margin. It is seems that fixed

rule probabilities are less relevant as guides to explore

4 R. Gadde, R. Marlet, N. Paragios

the space of configurations (rule combinations) than the

bottom-up cues specific to a given image [48].

Grammar induction has been studied both in the

formal language literature [19] (with applications, e.g.,

to pattern recognition and RNA structure modeling)

and in the NLP community [20]. The formal language

literature mainly considers learning from strings based

on positive examples, possibly complemented by nega-

tive data [26], whereas the NLP community focuses on

learning distribution information from hand-annotated

parse trees representing positive examples. As for the

parsing images, where pixels are (at least) 4-connected,

the 2D nature of the problem makes inappropriate most

approaches based on learning from strings, as their work-

ing principle heavily relies on the 1D associativity of the

binary concatenation operator [11,46,56]. Learning sets

for image parsing typically also consist of positive ex-

amples only. As a result, the most relevant literature

concerning shape grammar learning lies in the NLP

community. (Other approaches such as statistical re-

lational learning and inductive logic programming that

have some connections to grammar learning, but cur-

rently no obvious links to shape grammars.)

Learning from trees is also a way to escape some of

the two-dimensional parsing issues. Parsing 2D data [42,

65] indeed has a much higher complexity than 1D pars-

ing. The orders of magnitude also differ widely: an aver-

age English sentence, with about 21 words, whose part

of speech (POS) can be determined with an accuracy of

97.3%, has a general accuracy of 56% [39]; a small image

with only 300,000 pixels, whose pixel accuracy is at best

92% [27], has an overall accuracy less than 10−10,000.

Considering the noise in input data, image parsing ac-

tually is closer to speech processing than to plain text

parsing. This situation probably explains why a num-

ber of proposed algorithms for image parsing consist of

a partial, randomized exploration of an extremely large

space, corresponding to derivation trees generated in a

top-down manner [58,59,62].

Now if the choices for splitting a region vertically

or horizontally are already made in the trees of the

training set, the grammar induction problem then be-

comes related to the problem of learning a tree au-

tomaton from tree-structured data [7]. Indeed, previous

approaches for shape grammar learning involve a first

stage of tree hypothesis generation to produce ground-

truth parse trees from the ground-truth segmentation,

based on heuristics [41, 69]; it is similar to the case

of unsupervised data-oriented parsing [6], that consid-

ers a subset of all possible binary trees that can be

constructed over training strings. In our approach, we

propose to generate these ground-truth parse trees dif-

ferently, using a small generic handwritten grammar,

which provides more similar trees in which patterns can

be found, as well as interpretable parses (in terms of the

generic grammar).

Two simple but useless solutions to grammatical in-

ference are either to construct a flat grammar gener-

ating only the examples in the training set (one rule

per training sample) or to construct a grammar that

considers all strings or structures as parse-able. To pre-

vent these trivial solutions and find a right balance be-

tween these two extreme cases, the grammar to infer is

typically required to have a certain level of generality,

thus allowing to also parse unseen sentences or struc-

tures, but not too much not to over-generalize. This

can be achieved by introducing mechanisms of rule in-

ference that can generalize patterns in the training set,

together with a compactness criterion such as a mini-

mum message length (MML) or minimum description

length (MDL) principle [25].

In NLP, parsing can be ambiguous due uncertain-

ties when determining the part of speech of words, and

also because of possible spelling errors and unknown

words. For this reason, statistical information is also

learned from training data for the parser to produce

most likely sentence analyses. The nature of this infor-

mation is however strongly related to the nature of the

targeted parser and grammar, e.g., whether it is sta-

tistical data for a probabilistic context-free grammar

(PCFG) [28], a latent-variable PCFG (L-PCFG) [13],

or a data-driven dependency parser [47]. The same sit-

uation occurs for shape grammar learning. In our case,

as we target Teboul et al.’s parser [62], which does not

exploit any data distribution knowledge when sampling

production rules, probabilistic information makes little

sense. This is consistent with the fact that, for practi-

cal shape grammars, the parser at any point only has

a few structural choices, i.e., a small number of appli-

cable rules if the split position parameters are ignored.

Besides, even if many split positions are possible for the

same “meta-rule” according to the grammar, position

sampling actually depends on bottom-up cues extracted

from the parsed image. What matters most is thus the

occurrence or not of certain structural patterns and rule

parameters in training data, not their frequency.

The work in NLP that is most closely related to

our approach is grammar refinement, which operate on

annotated trees to learn distribution information but

also to generate specialized rules to represent patterns

that could not be captured given strong independence

assumptions of grammar rules. This may be achieved

with symbol splitting [52], latent variable addition [43],

or grammar paradigms richer than plain context-free

grammars (CFGs), such as tree substitution grammars

(TSGs) [5]. TSGs allows for arbitrarily large tree frag-

Learning grammars for architecture-specific facade parsing 5

ments as rules in the grammar and thereby better rep-

resent complex structures. The TSG induction scheme

proposed by Cohn et al. [15] relies on a Bayesian non-

parametric prior for regularizing the tree fragments to

explore as rule candidates, giving a bias towards small

grammars with small production rules. This method

is different from our approach, where we find repeat-

ing subtrees in the data and then perform clustering of

these complex subtrees. In our implementation, as our

target parser only accepts plain binary split grammars

(BSGs) [62], we actually represent complex rules using

a flat deterministic decomposition which is similar to

what occurs when symbol splitting is performed [52].

The inference of latent variables to construct combined

instances of specialized rules seems to be a promis-

ing alternative to the rule clustering algorithm that we

propose, especially spectral methods [13] that appear

to scale well (more or less linearly) when the number

of hidden states increases [14], compared to EM-based

methods [43], for a similar if not better accuracy. The

order of magnitude of the reported number of hidden

states (up to 32) [14] is comparable to the number of

rule instances we generate. The level of recursion in nat-

ural language sentences is however much lower than in

the kind of shapes and grammars we consider.

Another aspect is the difference of size of the train-

ing corpora. In NLP, the training sets used for gram-

mar induction, such as the WSJ section of the Penn

treebank, typically contain more than 30,000 trees (i.e.,

sentences). Although language constructs are arguably

more complex than shape relationships, and thus re-

quire more training data, this is at least two orders of
magnitude larger than the training sets used here for

shape grammar learning, where the number of ground-

truth segmentations for learning in our experiments is

40 to 300. This calls for different compromises.

The problem of grammatical inference is also stud-

ied in the data compression literature. The goal here

is to find the smallest grammar that can generate a

given string [3, 8, 9, 37]. However, as the information in

this case is of symbolic nature (as opposed, e.g., to sig-

nals), compression is generally defined to be loss-less.

The grammar is thus designed to generate one and only

one string. While some of these techniques can be ac-

commodated to generate a given set of strings, they are

not suited for generalization: the grammar is designed

to reject any unknown strings, even if it is “similar” to a

learned string. These techniques are thus not adapted

to our problem, as we need to moderately generalize

from the learning set.

1.2 Overview

Our method for automatically learning grammars from

images with ground-truth annotations operates on split

grammars. As the above two methods [41, 69], it first

generates a large set of rules from the training set, and

then compresses and generalizes them. However, it is

based on different principles and relies on more powerful

grammatical transformations.

A graphical overview of our approach is pictured in

Figure 1. We first consider a small, simple-to-write and

generic grammar that can describe many kinds of seg-

mentations but that is not constrained enough to im-

pose actual structural regularities. Using these generic

rules and a standard parser for split grammars, we parse

the training image annotations. It generates a set of

parse trees that fit, almost perfectly, the ground-truth

annotations and that can thus be considered as ground-

truth parse trees. The instantiated grammar rules oc-

curring in these parse trees are representative of the

architecture style of the training sample. However, this

set of instantiated rules cannot practically be used as a

grammar within a parser because there are too many of

them. Indeed, given the enormous combinatorial space

to explore, current parsers require a moderate number

of rules for inference to succeed. For these reasons, we

perform two compression operations. First, we search

for common subtrees in the parse trees and merge them

into single rules. Second, we cluster rules using an ap-

propriate similarity measure and factor each cluster

around a single complex rule. This results in compact

grammars that facilitate inference and generalize well

the training samples.

In contrast with Weissenberg et al.’s method [69],
our learned grammars can be used for efficient pars-

ing. Our learned grammars reach the performance of

handcrafted grammars in terms of accuracy of resulting

segmentation with better parsing time. On the Hauss-

mannian dataset [62], it also outperforms the grammar

generated by Martinovic and Van Gool’s method [41]

(for a different parser). Besides, our approach addresses

the scalability issue of their method.

1.3 Contributions and Organization

The main contributions of our work are the following.

– We propose a new way to generate ground-truth

parse trees based on simple, handwritten, generic

grammars. Compared to current approaches, it pro-

vides less arbitrary and more systematic structures,

from which patterns can better emerge, and that

can be understood by a human.

6 R. Gadde, R. Marlet, N. Paragios

Ground-truth
Segmentations

Shape Grammar
Parsing

(Section 3)

1

Parse Trees (Section 5.3)

Rule Compression
(Section 6, Figure 3)

Rule Merging
(Section 7, Figure 5)

Specific Grammar

Generic Grammar
(Section 5.2, Tables 1 and 2)

Input Image

Shape Grammar
Parsing

(Section 3)

Output Segmentation

Fig. 1 Overall pipeline of the framework.

– Contrary to other methods [69], the complex rule we

generate may combine both horizontal and vertical

splits, which captures richer patterns.

– Our rule generalization approach does not rely on a

greedy iterative procedure, as in other methods. It is

formulated as an unsupervised clustering problem,

which is solved efficiently.

– Compared to the other approach for learning gram-

mars that has been used for parsing, our method

scales to training sets with several hundreds of an-

notated images.

– We provide and discuss experiments on four datasets

featuring different architectures styles, including a

new Art-deco dataset that we made available to

the community. The other datasets are standard

and well-known for evaluating facade segmentation.

We show that our learned grammars have an equal

or better performance than handcrafted grammars

or other automatically generated grammars, almost

reaching the state-of-the-art of hard-coded segmenters
(that do not enforce all the hard architectural con-

straints that our generated grammars guarantee).

The rest of this paper is organized as follows. Sec-

tions 2 and 3 briefly describe the concepts of shape

grammar and image parsing. Section 4 discusses the

kind of grammars we want to learn. Section 5 presents

a method to construct ground-truth parse trees and ex-

plains why these ground-truth parse-tree rules cannot

be used directly as a learned grammar. Section 6 de-

tails how rules extracted from the ground-truth parse

trees can be efficiently compressed. Section 7 explains

how to merge rules, which both generalizes and further

compress them. Various experiments following this ap-

proach are reported and analyzed in Section 8. Section 9

concludes the paper.

2 Split grammars in 2D

Split grammars were introduced by Wonka et al. [70] as

a particular kind of shape grammars. The general idea

of split grammars is to express the regularity of an ob-

ject as a recursive decomposition where, at each level, a

basic shape of a certain type is split into separate spa-

tial regions that contain smaller basic shapes of some

other types. A special case of split grammars in 2D

considers a labeled image rectangle as the basic shape.

This labeled rectangle is recursively split horizontally or

vertically into labeled sub-rectangles according to the

grammar rules.

2.1 The grammatical formalism

More formally, a labeled rectangle of an image is de-

noted as l(x, y, w, h), where l is the label of the rectan-

gle, x, y are its coordinates and w, h are its width and

height. A 2D binary split grammar (2D-BSG, or BSG
for short) is a 4-tuple G = (N , T ,R, S) where N is a set

of non-terminal symbols, T is a set of terminal symbols

(disjoint from N), R is a set of production rules, and

S ∈ N is a start symbol, also called axiom. A simple

rule in R has one of the two following forms:

A → B (1)

A
a→p BC (2)

The left-hand side of the arrow is a single non-terminal

A ∈ N . The right-hand side consists of terminals or

non-terminals B,C ∈ N ∪ T . On the arrow, a ∈ {h, v}
indicates a split axis and p > 0 is the split position.

The first kind of production rule (1) expresses a mere

change of label of the rectangle. The second kind (2)

expresses the fact that a rectangle A(x, y, w, h) can be

split along axis a at position p into two sub-rectangles

of type B and C. The effect of the above rules on a

rectangle scope (x, y, w, h) is as follows:

A(x, y, w, h) → B(x, y, w, h) (3)

Learning grammars for architecture-specific facade parsing 7

A(x, y, w, h)
h→p B(x, y, p, h)C(x+ p, y, w − p, h) (4)

A(x, y, w, h)
v→p B(x, y, w, p)C(x, y + p, w, h− p) (5)

If a = h, the rectangle is split horizontally (with a verti-

cal split line), which creates two adjacent sub-rectangles

of the same height. If a = v, the split is vertical (with a

horizontal split line), which creates two sub-rectangles

of the same width one on top of another. A rule of

form (2) is only applicable if p < h when a = h, or

p < w when a = v; it then creates two proper sub-

rectangles (not with null height or width).

Terminals represent atomic elements, i.e., rectangles

that contain only one type of object, e.g., a window, or

part of a wall. By definition, a terminal never occurs on

the left-hand side of a production rule. Non-terminals

represent complex elements that can be broken down

recursively into simpler elements until all of them are

terminals, e.g., the floor of a building, which can be

broken down into wall parts, windows and balconies.

The formalism of split grammars can be enriched

with notations that facilitate the writing of grammars.

Standard notations includes:

A0
a→(p1,...,pn−1) M1 . . .Mn ⇔


A0

a→p1 M1X1

X1
a→p2 M2X2

. . .

Xn−2
a→pn−1

Mn−1Mn

(6)

A0
a→ ... (M) ...⇔

{
A0

a→ ... X ...

X
a→ M

(7)

A0
a→ M1 | . . . |Mn ⇔


A0

a→ M1

. . .

A0
a→ Mn

(8)

A0
a→ ... M+ ...⇔


A0

a→ ... X ...

X
a→ M

X
a→ MX

(9)

A0
a→ ... M? ...⇔

{
A0

a→

A0
a→ ... M ...

(10)

A0
a→{p1,...,pm} M ⇔


A0

a→p1 M

. . .

A0
a→pm M

(11)

whereX,X1, etc., are extra auxiliary non-terminals and

where M,M1, etc., is a concatenation of expressions

built on non-terminal and terminal symbols. Note that

these are only abbreviations, not a change of paradigm.

In particular, a parameterized rule A
a→P BC is just a

factorization of the meta-rule A
a→ BC for all the pa-

rameters p ∈ P of instantiated rules A
a→p BC. Tables 1

and 2 provide examples of grammars in this formalism.

Split grammars can also be seen as tree substitu-

tion grammars (TSGs) by making explicit the split as

a tree operator, with given split axis and position. Sim-

ple rewriting rule of the form A → B stay the same.

Other kinds of rule are understood as follows:

A
a→p BC ⇔ A→ splita,p(B,C) (12)

This allows the definition of complex rules, whose right-

hand side is a tree with operators splita,p as non-leaf

nodes, and terminals or non-terminals as leafs, e.g.,

splita1,p1(splita2,p2(A1,A2),splita3,p3(A3,splita4,p4(A4,A5))).

In the following, we will construct complex rules by

combining simple rules, e.g.,

A0
a1→p1 A1B1

A1
a2→p2 A2B2

}
⇒ A0 → splita1,p1(

splita2,p2(A2, B2), B1)
(13)

Note that in a right-hand side tree, the axes a1, . . . , an
of the split nodes are not required to be equal.

This grammar formalism (BSG, or TSG with split

nodes) defines context-free shapes: a non-terminal is

transformed according to the grammar independently

of its context. As such, this formalism cannot capture

grid regularities, e.g., to model the alignment of win-

dows both horizontally and vertically. For this reason,

Teboul additionally defines a repetition tag [61], that

can be put on any non-terminal of the grammar. This

tag indicates that all derivations of this non-terminal

(see Sect. 2.2) shall be identical w.r.t. its split direction.

This variant of the usual binary split grammars allows

the expression of grid-like constraints. For instance, if

the non-terminal for floors is tagged, all floors will have

identical window splits, which will ensure that all win-

dows are vertically aligned. This tag extends the BSG

formalism to non context-free grammars (probably to

something akin to Type-1 grammars in the Chomsky

hierarchy, or possibly a subset, but we have no claim in

that respect).

2.2 Derivation trees

A derivation is a top-down view of the decomposition

of an object via the grammar. It represents the process

and result of recursively splitting a non-terminal into

terminal elements. Unless otherwise specified a deriva-

tion originates from the start symbol S. Note that, in

practice, a grammar generally contains several rules

that have the same non-terminals A at the left-hand

side of a rule. It introduces non-determinism as differ-

ent rules can then be applied to split a given rectangle

of type A.

More formally, given some rectangular image of size

W×H, the basic shape S(0, 0,W,H) is recursively trans-

formed or split into sub-rectangles as defined by produc-

tion rules in the grammar. At any point of this process,

8 R. Gadde, R. Marlet, N. Paragios

the input image is tiled into rectangles that have a la-

bel in T ∪N , which provides a semantic interpretation

in terms of labeled segments. In theory, this process

may not terminate because of possible recursive rules;

in practice, binary rules reduce the size of rectangles

and lead to bounded derivations. A derivation is com-

plete when no more rule can be applied. In theory, some

non-terminal basic shapes A(x, y, w, h) may remain as

underlined because the productions rules with A on the

left-hand side cannot apply due to split positions p in-

compatible with the current rectangle. In practice, the

grammar is generally designed such that the remaining

basic shapes are all labeled in T . The language gen-

erated by the grammar, i.e., the set of shapes repre-

sented by the grammar, is the set of all possible tilings

with terminals only as labels, that can be obtained by a

derivation process from S. Alternatives in the produc-

tion rules generally create a combinatorial explosion of

the possible tilings.

A derivation can be represented as a tree with a pro-

duction rule at each node. The root node is a rule whose

left-hand side is the start symbol S, and at any level of

the tree, a non-leaf node holding rule A → B has one

child whose rule has B as left-hand side, and a non-leaf

node bearing rule A
a→p BC has two children whose

rule have B and C as left-hand sides. Such a derivation

tree is also called a parse tree. It can be seen as a tree-

shaped graphical model associated to the image, that is

constructed dynamically rather than fixed. A complete

subtree, a.k.a. bottom-up subtree, is a subtree whose

leaf nodes contains rules that have only terminals in

their right-hand side. This implies the subtree cannot

be further derived, as there is no non-terminal whom

to attach a corresponding rule as son.

For complex rules, we have to distinguish derivation

trees from derived trees. A derivation tree in this case

represents as above the successive application of gram-

mar rules from an initial non-terminal: nodes of the

derivation tree are grammar rules. A derived tree is the

combination of trees occurring on the right-hand side of

the rules, to form a single tree: here, non-leaf nodes of

a derived tree are operators splita,p, and leaf-nodes are

terminals or non-terminals. Whereas derivation trees

and corresponding derived trees are isomorphic in the

case of simple rules (putting aside the case of simple

rewritings A→ B), they are not in the case of complex

rules, as a single derived tree may originate from dif-

ferent derivation trees. Note also that a derivation tree

can be seen as a complex rule that has as left-side the

non-terminal of the root rule and as right-hand side

the corresponding derived tree. (In the following, we

picture derived trees rather than derivation trees for

readability.)

Parsing an image consists in looking for the best

derivation that explains the image. It is generally based

on low-level pixel classifiers and or detectors, that pro-

duce a set of probabilities, for each pixel, to be of given

types l ∈ T . A parser typically defines the score of

a given parse tree based on a comparison between the

“observed” pixel classification probabilities and the “ex-

pected”, regularized pixel class as defined by the rect-

angular tiling associated to the parse tree. The goal of

the parser is to find a parse tree that minimizes (or

maximizes) this score. This search is extremely difficult

due to the combinatorial explosion of the possible parse

trees.

For this reason, existing inference methods require

carefully handcrafted grammars that heavily reduce the

search space while mostly preserving the applicability

of the grammar to parse targeted images. This allows a

parser to produce a good result within reasonable time

limits. Our goal is thus not just to generate a grammar

that is compatible with a dataset of images that is rep-

resentative of an architecture style. It is also to produce

a grammar that leads to an efficient parsing. For this,

the generated grammar has to be as deterministic and

specific as possible while preserving enough generality

to handle possible cases that are not in the training set.

3 Shape grammar parsing

Image parsing with grammars is a complex and chal-

lenging optimization task for two reasons. One, the num-

ber of unknown parameters to infer is not fixed and

evolves during the optimization process, and two, the

inference process involves both discrete (specific deriva-

tion rules) and continuous variables (derivation param-

eters). Prominent methods to tackle this problem are

based on (i) reversible jump Markov chain Monte Carlo

[54], (ii) evolutionary computation algorithms [59] and

(iii) Markov decision processes, in particular reinforce-

ment learning [62]. In this work, we use the latter for ex-

periments because of the better performance it seems to

provide compared to the other methods. Furthermore,

the effectiveness of the learned grammar can then be

evaluated compared to the handcrafted grammar used

in [62] under identical settings (see Section 8 for more

details). It actually turns out that our learned grammar

is more specific to the architecture style than this hand-

written grammar (see also Section 4) and thus provides

a better accuracy.

Learning grammars for architecture-specific facade parsing 9

3.1 Principles of Reinforcement Learning

In reinforcement learning (RL) [60], an agent interacts

with an unknown environment while choosing actions

that maximize its cumulative reward. The unknown en-

vironment is modeled as a Markov Decision Process

(MDP), described by a finite set of states S, a set of

actions A, transition probabilities P , and expected re-

wards R consecutive to actions. At time t, the agent

in state st, takes action at ∈ A(st) leading the agent

to a new state st+1 with an immediate reward of rt+1.

The transition from state s to s′ due to an agent ac-

tion is subject to the probability P ass′ and the reward

received is an expectation Rass′ on the distribution P ass′ .

Formally, we have:

P ass′ = P (st+1 = s′|st = s, at = a) (14)

Rass′ = E[rt+1|st = s, at = a, st+1 = s′] (15)

The goal of the reinforcement learning agent is to max-

imize its long term reward which is :

Rt =

∞∑
k=0

γkrt+k+1 (16)

The parameter γ is a discount factor and represents

how much weight we give to the rewards that we will

come across in the future. Such a behavior is governed

by the agent’s policy π(s, a), the probability of choos-

ing action a while in state s. This leads to the follow-

ing state-value function V π(s) and action-value func-

tion Qπ(s, a):

V π(s) =
∑
a

π(s, a)Qπ(s, a) (17)

Qπ(s, a) =
∑
s′

P ass′
(
Rass′ + γV π(s′)

)
(18)

For the most optimal policy π∗, the above two equa-

tions lead to the following non-linear Bellman optimal-

ity equations:

V ∗(s) = max
a

∑
s′

P ass′
(
Rass′ + γV ∗(s′)

)
(19)

Q∗(s, a) =
∑
s′

P ass′ [R
a
ss′ + γmax

a′
Q∗(s′, a′)] (20)

These optimal value functions can be approximated us-

ing several algorithms, for example the Q-learning al-

gorithm. For a further details please refer to [60].

3.2 Reinforcement learning for parsing

Reinforcement learning has been successfully applied to

solve the shape parsing problem an as optimization of a

top-down geometry (from binary split grammars) of the

facade, to fit the bottom-up merit responses of a pixel-

wise classifier [62]. The pixelwise merit m(l, x, y) pro-

vides initial semantic information based on classifiers

from the image-level features. It expresses the likeli-

hood that the pixel at coordinates x, y is labeled l. The

parsing engine is the agent which can be modeled as a

MDP. The state s of the agent is (T,N) where T is a

derivation tree and N refers to the non-terminal node

that is currently being processed. The agent’s action a

at state s can be any of the grammar rule that is ap-

plicable to N , leading to the next state s′ = (T ′, N ′).
The agent’s actions are decided by the policy function

reward π(s, a) = P (a|s), the probability of choosing

action a at state s. The agent’s goal is to maximize

the rewards that are being obtained from its actions.

If multiple non-terminal nodes are generated, N refers

to the leftmost non-terminal. Otherwise, N becomes

the first unprocessed non-terminal encountered while

backtracking in the tree. The different states are the

several non-terminal shapes in the grammar for which

the rewards are expressed as the sum of its descendant

rewards. The goal is to choose a set grammar rules that

maximize the reward for the axiom non-terminal. We

refer the reader to [61,63] for more details.

4 What grammars to learn?

Given a training set consisting of annotated images, we
want to learn a grammar that is able to “parse well”

similar unannotated images. Three aspects of such a

“good parsing” can be considered, that depend both

on the parser and on the grammar: accuracy of the

resulting segmentation, parsing speed (and more gen-

erally resource consumption), and relative repeatabil-

ity of the results if the same facade is parsed several

times. Indeed, because the solution space is irregular

and huge, most parsers only explore a small portion of

this space and can be caught in local optimum, yielding

sub-optimal results. Besides, most parsers also include

randomized procedures and are thus non-deterministic.

The convergence property of a RL parser can be stud-

ied, e.g., by observing the reward and its standard de-

viation over time [48,61]. In the following, we focus on

accuracy and speed, varying the grammar for a fixed

parser; repeatability seems to be a less relevant issue

given the experimental data.

As explained below, the quantity and the nature of

choices in a grammar are crucial regarding its perfor-

10 R. Gadde, R. Marlet, N. Paragios

mance. There are two sources of alternatives in a split

grammar: structural choices (possible combinations of

meta-rules) and parameter choices for each of these

rules (split positions of instantiated rules).

Accuracy is bounded by the language generated by

the grammar. If the grammar is too coarse, it will not be

able to express some structural or parametric variations

of the objects, leading by force to sub-optimal segmen-

tations. For instance, Teboul et al.’s manual grammar

for Haussmannian buildings [62] does not allow wall

areas between shop and door, imposes that roof win-

dows are as high as the whole roof, and admits only

two kinds of balconies: balcony running over the whole

facade width, or balconies being attached to one sin-

gle window and having exactly the same width. Con-

versely, if a grammar is too expressive, for instance to

possibly cover rare or merely hypothesized cases, the

solution space might be too large to search and inac-

curate solutions can be produced, although better so-

lutions could exist within the grammar. Speed and sta-

bility are also reduced in this case. A balance thus has

to be found in the ability of the grammar to cover pos-

sible variations. This observation is not restricted to

structural choices; it also applies to parameter varia-

tion. For example, Teboul et al.’s Haussmannian gram-

mar discretizes split positions with a step of 3 pixels.

Although it intrinsically implies sub-optimal splits, it

actually results in a better overall accuracy thanks to

the reduction of the search space (for a given bound on

the number of episodes of the parse).

Besides, different grammars may generate exactly

the same language. Yet, some of these grammars may

lead to more efficient parses than others. In particu-

lar, grammars that impose derivation choices at a time

where parsing cues are weak or missing necessitate more

backtracking to recover from wrong early choices.

Conversely, a grammar may have different analyses

for a given shape. Such a grammar is called ambiguous.

As an ambiguous grammar for a given language use-

lessly increases the search space, we would like to learn

unambiguous grammars, i.e., grammars for which any

segmentation has at most one corresponding parse tree.

However, the fact that a grammar is ambiguous is un-

decidable for context-free grammars. Thus, in practice,

the property that a grammar is unambiguous can only

be enforced by construction.

Note that these properties are not all intrinsic to

grammars. They may also depend on the actual parser

that is used. In the following, we consider the case of

Teboul et al.’s parser based on reinforcement learning

(see Section 3), which is available from the authors and

which we have used in our experiments. However, we

believe that the general reasoning as well as the qual-

itative results would be similar to another top-down

parser based on a randomized search over the structure

and parameter space.

As our goal is to prevent experts from having to

manually write and tune grammars, our learned gram-

mars should ideally have a similar or better perfor-

mance than handwritten grammars, regarding accuracy,

speed and stability. The difficulties when writing a gram-

mar concerns the control of the expressive power, the

specific encoding of complex patterns, and the tuning

of parameters to express likely sizes. They have to be

addressed automatically.

Finally, as we not only want to learn the structure of

objects but also possible object sizes, we assume that all

images (in both the training and the test sets) present

the object more or less at the same scale, i.e., the same

number of unit length per pixel. For instance, images

in the Haussmannian dataset [62] have been specifically

designed to be scaled according to that principle. Im-

ages in other datasets have consistent sizes but do not

enforce a strict rescaling.

5 Generation of ground-truth parse trees

As observed with formal languages and natural lan-

guages, a particularly appropriate data model to learn

a grammar is the parse tree. However, training data in

our case only consist of annotated images. Parse trees

thus have, first, to be generated from these images.

An annotated image is a pair of images consisting

of a real picture and a label image of the same size. In a

label image, each pixel is assigned a label from T iden-

tifying the type of the underlying element at the same

location in the real image. Label images express the

ground-truth segmentation of the corresponding real

images.

5.1 Arbitrary, prior-less splits

Different techniques have been proposed to build parse

trees from label images [41, 69]. As mentioned in the

introduction, Martinovic and Van Gool [41] first tile

the label image using the horizontal and vertical axis

of segment boundaries, and then merge iteratively these

tiles, constructing rules and parse trees on the fly. Weis-

senberg et al. [69] prefer to define an energy that gives a

score to split line candidates. They use a greedy strat-

egy to recursively split the image using optimal split

positions.

These methods have one advantage, which can also

be a drawback: they assume no specific knowledge. The

problem is that a given label image can be compatible

Learning grammars for architecture-specific facade parsing 11

with several parse trees. For instance, a facade with

a grid of windows can be analyzed as a set of floors

containing rows of windows or as a set of columns of

windows, or even as a combination of both. Imposing a

minimum description length (MDL) [41] is not enough

to single out one particular grammar. As a result, very

different parse trees can be generated for very similar

facades, resulting in suboptimal factorizations in the

learned grammar. A bias can also be imposed to choose

specific types of parse trees, e.g., favoring horizontal

splits over vertical splits or favoring split axis alterna-

tions [69]. But it is hard to control in order to guaran-

tee similar analyses for similar images. To prevent arbi-

trary analyses of label images, we propose to generate

ground-truth parse trees using a generic grammar.

5.2 The idea of a generic grammar

The idea is that the generic grammar should be very

small and simple, to be written rapidly with no partic-

ular expertise and no tuning required: it should not de-

feat the purpose of automatically learning a full-fledged

specific grammar with adapted parameters from anno-

tated images. More than that, it should actually be able

to explain a wide range of structures. The same generic

grammar should thus make sense for different datasets,

e.g., corresponding to different architecture styles.

Table 1 shows a simple generic grammar that has

the same structural expressive power as Teboul et al.’s

Haussmannian grammar [61]. Table 2 shows another

example of a generic grammar that can derive a wide

range of facade images comprising the following ele-

ments: wall, window, balcony, roof, shop, door and sky.

Note that these grammars are unambiguous: any re-

sulting segmentation only has one single parse with the

grammar. (They are unambiguous because, considering

the ground-truth segmentation as the input and start-

ing from the axiom, there is always only one single rule

that can be applied to consume a part of the input,

with the same label(s) as in the rule, and thus only one

rule to grow the corresponding derivation tree. More-

over, this consumption must be maximum, i.e., with

terminals of greatest extent, otherwise no further rule

can be applied and the derivation is not complete.)

Note also that only the meta-rules are shown here.

The split parameters of the actual generic grammars

are P = {1, . . . ,W−1} for horizontal-split rules and

P = {1, . . . ,H−1} for vertical-split rules.

Note that such a generic grammar only makes sense

for the learning task, to generate meaningful parse trees.

It cannot be used practically to parse actual facade im-

ages, for two reasons. First, it is so general that the

solution space would be too large to search, leading

Simple generic grammar Gsgen

Axiom
v→ GroundFloor Floors RoofFloor sky

GroundFloor
h→ shop door shop

Floors
v→ wall (Floor wall)+

Floor
h→ wall (BalcWins wall)+

Floor
v→ balcony WinFloor

WinFloor
h→ wall (windows wall)+

BalcWin
v→ balcony window

RoofFloor
v→ roof (window roof)+

Table 1 The meta-rules of a simple generic grammar that
has the same structural expressive power as Teboul et al.’s
Haussmannian grammar [62].

Generic grammar Ggen

Axiom
v→ GroundFloor Floors RoofFloor sky

GroundFloor
h→ shop? wall DoorWall wall shop?

DoorWall
v→ door wall

Floors
v→ wall (Floor wall)+

Floor
h→ wall (BalcWins wall)+

BalcWins
v→ window | balcony Windows

Windows
h→ window | wall (window wall)+

RoofFloor
v→ roof? RoofWins roof?

RoofWins
h→ roof (BalcWin roof)+

BalcWin
v→ balcony? window

Table 2 The meta-rules of a generic grammar that can pos-
sibly express many facades, with the following segment types:
door, shop, balcony, window, wall, roof and sky.

to time-consuming and suboptimal parses, and thus to
inaccurate and unreliable segmentations. Second, the

generic grammar would not be constrained to the spe-

cific structure of the learning set, i.e, to a particular

architecture style. It thus could not regularize facade

analysis with respect to noise (clutter), occlusions or

variations of illuminations. However, as shown below, a

generic grammar is appropriate to parse ground-truth

annotations and generate corresponding ground-truth

parse trees.

As an illustration of the inappropriateness of such

grammars to directly parse real pictures, Figure 2 shows

a few examples of parses using the simple generic gram-

mar from Table 1 after 5000 episodes of Teboul et al.’s

parser [62]. Actually, 5000 episodes are not enough for

convergence. This is in contrast with the handwritten

compact grammar for Haussmannian facades, where con-

vergence is typically observed within 2000 episodes of

RL parsing [62]. Moreover, with this generic grammar,

some global structural consistency such as window align-

ment in columns are not modeled.

12 R. Gadde, R. Marlet, N. Paragios

Fig. 2 Segmentation maps after 5000 iterations of RL pars-
ing [62] with the generic grammar of Table 1.

5.3 Ground-truth parse trees from a generic grammar

To produce a ground-truth parse tree, we feed the parser

described in Section 3 with the generic grammar and

the ground-truth label image Igt. Additionally, we re-

place the usual merit function based on a pixel classifier

by the label image itself:

m(l, x, y) =

{
1 if Igt(x, y) = l

0 otherwise
(21)

With this definition, the merit of a parse tree is equal

to the number of corresponding pixels that are assigned

the same label as in the ground-truth annotation. The

parser tries to maximize this merit, and thus to produce

a parse tree whose associated label image matches as

much as possible the ground-truth label image.

Although the parser, equipped with the generic gram-

mar, cannot parse real images (in a reasonable time),

it is able to successfully parse the ground-truth label

images. The reason is that these label images are much

more regular and much less noisy than the distribution

of label probabilities given by the merit function for real

images. It leads to sharper parsing scores and greatly

contributes to pruning the search tree. Moreover, as the

sampling distribution of split positions in the parser is

based on image gradients, the sharp annotations also

leads to a small number of sharp peaks in the gradi-

ents. There are less decisions to make and good choices

are tried first. Some empirical data on parse tree gen-

eration using the generic grammar in Table 2 are given

in Section 8.

Note that, at least in theory, any parser could ac-

tually be used with the same kind of input for generat-

ing ground-truth parse trees. For the same reasons as

above, we believe that the convergence would be sim-

ilarly good with other parsing schemes, e.g., based on

rjMCMC [41]. Although we could experiment with only

one parser (Teboul et al.’s parser [62], that is publicly

available), we believe our approach is not tied to a sin-

gle parser but has general applicability.

Besides simplicity, one advantage of this approach is

also that the generated ground-truth parse trees can be

easily understood, as they reuse the same “concepts”

and terms as the generic grammar. This translates as

well to the specialized grammars that we infer. For in-

stance, a specific kind of floor in the learned specialized

grammar can still be recognized as a floor, and even

be given a name derived from the corresponding non-

terminal in the generic grammar. (See Section 8.5 for

a qualitative analysis of Art-deco facades, made eas-

ier with this property.) This is in contrast with the

other approaches [41, 69], that have to generate arbi-

trary names. More importantly, one could argue that

the grammar we learn is strongly equivalent [44] to

grammars that would be written by hand for the tar-

geted architecture style: the whole structure of the cor-

responding parse trees should be equivalent up to some

kind of isomorphism, not just their leafs, i.e., the under-

lying segmentation. This is in contrast with grammars

made from trees that are generated as heuristic group-

ings of segments in ground-truth images [41, 69]. In

this case, patterns could for instance be discovered for

columns of windows rather than for rows; there would

then be nothing like a floor in the corresponding parse

trees.

5.4 Direct use of parse-tree rules

A grammar specific to the images of a ground-truth

training set can be simply produced by just gathering

all the rules (including their split parameters) present

in the corresponding parse trees. Such a grammar is

denoted by Ggt.
While generating parse trees using a generic gram-

mar Ggen, the number of meta-rules present in the trees

and thus in Ggt is bounded by the number of meta-rules

in the generic grammar Ggen. However, the number of

actual rules (with specific split parameters) can be sev-

eral orders of magnitude larger, as there can be H−1 or

W−1 different instances of a single meta-rule. It grows

initially more or less linearly with the number of train-

ing images, until most instances relevant for the train-

ing set have been encountered. (See also Section 8.)

Such a ground-truth grammar typically comprises

most of the rules that are useful to parse an object

similar to those in the training set. Even if a few op-

timal rules are missing because the corresponding split

positions do not occur in the training set, close split po-

sitions are enough in practice to provide a reasonably

good parse. Otherwise it means that the object is not

similar to those in the training set.

However, as shown in Section 8, the ground-truth

grammar Ggt cannot be used practically for parsing. It

requires a large amount of time for convergence and of-

ten results in sub-optimal parses. The reason is that it is

too large, which yields a huge space to search. Further,

Learning grammars for architecture-specific facade parsing 13

it is too general because it accepts any combination

of parse fragments associated to different objects. For

instance, for buildings, different floors may have differ-

ent windows alignments and even different numbers of

windows, even if, in the training set, all facades have

perfect (but different) window grid alignments. The ar-

chitecture style is thus not captured.

On the contrary, if we create new instances of non-

terminals for the rules of each ground-truth parse tree,

i.e., if we generate independent sets of rules for each

tree, then the only possible parses are those in the

ground-truth. An architecture style can somehow be

captured in this way, but the grammar totally overfits

the learning data: any new object can only be analyzed

as an object of the ground truth. Consequently, previ-

ously unseen objects are parsed very inaccurately.

To produce a sensible grammar suitable for parsing

objects similar to the ones in the training set, we need

the grammar to be general enough not to overfit the

data and specific enough to capture the structure of the

objects. It should be large enough to cover some unseen

cases but small enough to ensure efficient parsing.

Our approach consists first in identifying repetitions

in each parse tree individually, and consider them as in-

stances of the same pattern, specific to the considered

facade. This lossless compression captures intra-object

regularity in the learning set and improves convergence,

but it is too restrictive to generalize to unseen objects.

In a second step, we cluster these fixed patterns ac-

cording to a similarity measure and merge them, in-

troducing appropriate generalization. These operations

are described in the following two sections.

6 Rule compression

We first consider repetition in a single derivation. More

precisely, given a parse tree, we look for complete sub-

trees that repeat. It identifies patterns within a sin-

gle object. Specific rules are then introduced to freeze

these patterns. (Incomplete subtrees and inter-object

patterns are treated in Section 7.)

6.1 Freezing repeated patterns

Many subtrees can repeat within a single parse tree,

revealing different levels of structural and parametric

regularity. For instance, in a building, there may be

several identical instances of windows with balcony, or

several repeated floors with the same layout. We are

interested in the largest and most repeating patterns,

which we hypothesize are the more likely to be charac-

teristic of a more widespread regularity. More formally,

X

Y

z A

b C

d A

b C

e

A

b C

d A

b C

e

X a1−→p1 YA
Y a2−→p2 zA
A a3−→p3

bC
C a4−→p4

dA
A a5−→p5

bC
C −→ e

=⇒

X a1−→p1 YA1

Y a2−→p2 zA1

A1
a3−→p3

bC1

C1
a4−→p4

dA2

A2
a5−→p5

bC2

C2 −→ e

a1 : p1

a2 : p2

a3:p3

a4 : p4

a5 : p5

a3 : p3

a4 : p4

a5 : p5

Fig. 3 Example of rule compression.

we look for complete subtrees that maximize the num-

ber of repeated nodes:

arg max
U

subtree(U,T)
nbocc(U,T)≥2

nbocc(U, T) size(U) (22)

where:

– subtree(U, T) says that U is a complete subtree of T ,

– nbocc(U, T) is the number of occurrences of U in T ,

– size(U) is the number of nodes in U .

Repetition of subtrees here takes into account both

structure and parameters. Two instantiated rules A
a→p

BC and A′
a′→p′ B

′C ′ occurring in the parse tree are

identical if A = A′, B = B′, C = C ′, a = a′ and p = p′.
However, noise, discretization discrepancies as well as

inaccuracies when constructing the ground-truth anno-

tations may result in identical meta-rules A
a→ BC in

the parse tree, but with slightly different parameters

p, p′. For this reason, we actually consider two instan-

tiated rules to be identical if they stem from the same

meta-rule and their parameters p, p′ differ only by a

certain threshold (see Section 8).

Given a repeating subtree U , we then create new

rules that represent the pattern only. For this, we dupli-

cate all rules in the subtree, renaming all non-terminals

to make sure they are only used once in a rule left-hand

side. (In terms of derived trees rather than derivation

trees, we rename all non-leaf nodes.) In the following,

we note Ai a renamed non-terminal created from an

original non-terminal A. The renaming creates as many

instances A1, . . . , An as there are occurrences of A in

the subtree. An example of such a transformation is

pictured on Figure 3.

This removes non-determinism, if any, wherever the

pattern is used. As choices inside the pattern are frozen,

the language generated by the resulting grammar rules,

for a single parse tree, is smaller. It is as if we had in-

troduced a new, complex n-ary rule representing the

whole pattern. Note that this operation is much more

14 R. Gadde, R. Marlet, N. Paragios

floor
8

floorWall
7

wall
1

floorTile
6

tile5

floorWall
2

balcony
3

window
4

wall
1

floor
8

floorWall
7

wall
1

floorTile
6

floorWall
2

tile 5wall
1

balcony
3

window
4

Axiom
11

facade

10
facadeWall

9

wall
1

Fig. 4 Certificates of a parse tree with 2 repeating subtrees.

general than the rule compression transformation of

Weissenberg et al. [69], that only combines splits along

one direction, horizontal or vertical. For instance, their

transformation cannot handle a floor pattern (which re-

quires horizontal splits) having identical windows with

balcony (which requires a vertical split). Another ad-

vantage is that we capture rich patterns into complex

rules without the need to change the underlying for-

malism (splits remain binary) nor the parsers that im-

plement it. As a matter of fact, in all our experiments,

we reuse Teboul et al.’s binary split parser as is [62] (cf.

Section 3).

6.2 Finding repetition via subtree isomorphism

The number of complete subtrees of a tree T is equal to

the number of nodes in T . The simplest and most naive

way to find the largest repeating complete subtrees in T

is to compare each subtree with all the other subtrees,

which is computationally expensive. Several efficient al-

gorithms have been proposed to discover most frequent

subtrees in ordered trees [10], making the search mostly

linear in the size of the tree. A family of popular ap-

proaches turns the issue into a substring matching prob-

lem [38, 71]. We prefer to rely on a proposition of Va-

liente [68] — actually a variant of a folklore method

recalled by Flajolet et al. [22] —, which is simple and

can be adapted to approximate matching, as required

to give some tolerance in rule parameter comparison.

Valiente’s algorithm for subtree isomorphism com-

putes a certificate for each subtree in a forest, which is

a number between 1 and (at most) the number of nodes

in T . The certificate is such that two subtrees have the

same certificate iff they are identical. Certificates thus

provide a partition of the set of subtrees into isomor-

Algorithm 1 : Subtree isomorphism

1: H ← ∅ // Hash table mapping signatures to certificates
2: cnew ← 0 // Counter to make new fresh certificates
3: for all u node of T , in bottom-up order do
4: let (c1, . . . , cn) be the certificates of sons of u, if any
5: l← label(u) // Get label of subtree at u
6: s← (l, c1, . . . , cn) // Make signature of subtree at u
7: c← getCertificate(s) //Make/get cert. for subtree at u
8: end for
Ensure: identical subtrees ⇔ identical certificates

phic equivalent classes. The assignment of certificates

to subtrees is based on a bottom-up traversal of the

tree (see Algorithm 1 and 2). When considering a new

node, a signature is made from the label of the node

and the certificates of its n sons, if any (n ∈ {0, 1, 2}).
A hash table then maps this signature to the associated

certificate. If the signature has not been encountered

yet, a new certificate is created and used. For example,

in Figure 4, both “floor” nodes have a certificate of 8,

indicating that both have the same complete subtree

starting from these nodes. The complexity is linear on

average in the number of nodes in the tree.

Labels in a parse tree are grammar rules, of the

form A → B or A
a→p BC. Subtree isomorphism be-

tween two nodes requires that labels to be equal, i.e.,

strict rule equality. To perform approximate matching,

leaving some tolerance in split positions, only the meta-

rule part A
a→ BC is used as label in the signature;

the parameter p is left out. The hash table now does

not only contain a single certificate c for a given sig-

nature s; it contains an association between possibly

several positions pi and corresponding certificates ci.

This allows positions close to pi to be considered as

identical and to be given the same certificate ci. More-

over, rather than use pi when generating the pattern

rules, we actually use the average of all positions as-

similated to pi. For this, we also store in the hash ta-

ble, along with pi and ci, the sum mi of all encoun-

tered positions similar to pi as well as the number Ni
of such positions. Later on, when the pattern is used to

generate actual grammar rules, with corresponding pa-

rameters, this information can give access to the mean

position mi

Ni
of all positions similar to pi. For this, a mi-

nor change is made to Algorithm 1: we replace line 7

by c← getCertificate(s, n, p), where n is the number of

sons and p is the split parameter in case n = 2. Proce-

dure getCertificate(s, n, p) is defined in Algorithm 3.

To find a complete subtree U in T that maximizes

term (22), we actually also record the number of times

the certificate of U is used. It counts the number of

occurrences nbocc(U, T) of subtree U in tree T . After

such a U is found, new rules are generated as defined

Learning grammars for architecture-specific facade parsing 15

Algorithm 2 : getCertificate(s)

1: if s /∈ Dom(H) // if signature is unknown yetthen
2: cnew ← cnew + 1 // make new fresh certificate
3: H[s]← cnew // associate it with signature
4: end if
5: return H[s] // return certificate associated to signature

where Dom(H) is the domain of hash table H.

Algorithm 3 : getCertificate(s, n, p)

1: if n 6= 2 // If rule is not a split rulethen
2: return getCertificate(s) // Return normal certificate
3: end if // If rule is a split rule at p
4: if s ∈ Dom(H) // If signature is already knownthen
5: (pi, ci,mi, Ni)1≤i≤k ← H[s] // Access remembered info.
6: for all 1 ≤ i ≤ k // For all previously stored pido
7: if |p− pi| ≤ θ // if p ≈ pithen
8: mi ← mi + p // Sum positions similar to pi
9: Ni ← Ni + 1 // Count positions similar to pi

10: return ci // Yield same certificate as pi
11: end if
12: end for
13: end if // If s unknown or p too different from the pi’s
14: cnew ← cnew + 1 // Make fresh certificate
15: H[s]← H[s]∪ {(p, cnew, p, 1)} // Remember new p for s
16: return cnew // Return new certificate for s

in Section 6.1. The hash table is updated accordingly,

and the search for repeated subtrees is iterated.

At this stage a subtree-reduced grammar (Gst) can

be obtained and used for inference. Compared to the

generic split grammar (with all possible parameters)

or to the parse-tree grammar (set of rules occurring in

ground-truth parse trees), the compressed grammar is

much smaller in terms of complex rules (counting as one

a whole rule pattern) and much more deterministic. In-

ference is thus much faster. (See Section 8.5 and Table 4

for figures on compression factor and convergence rate.)

However, the size of the compressed grammar mostly

grows linearly with the number of learning images. The

reason is that there is no inter-object sharing and no

sharing between similar patterns, as opposed to identi-

cal ones. In fact, in the case of buildings, we would like

to group all facades having the same architectural style

independently of the number and values of correspond-

ing attributes. For instance, a 4-window floor could be

grouped with a 5-window floor given that the deriva-

tion of the former would be a similar subderivation of

the latter. This is achieved by the rule merging stage.

7 Rule merging

The rule compression stage (cf. Section 6) freezes intra-

object patterns, restricting rule usage. It also drasti-

cally reduces the size of the parse trees and of the cor-

responding grammar. This size reduction allows more

complex transformations, which would otherwise be com-

putationally expensive, to capture richer patterns. The

rule merging stage described in this section, to be per-

formed after rule compression, is such a transformation.

It captures inter-object patterns and generalizes some

of the patterns that have been frozen earlier at rule

compression stage.

Given parse trees T1, . . . , Tn covering all the learn-

ing set, we want to identify similar subtrees and group

them. The similarity of subtrees here is looser than for

rule compression: we still impose structural equality,

i.e., equal meta-rules, but we give more freedom to pa-

rameters, allowing somewhat different split positions.

More importantly, we allow two kinds of rule pattern

matching: either a complete subtree Ui of Ti is fully in-

cluded in a tree Tj (bottom-up matching), or two trees

Ti, Tj share a common partial subtree at the root of

both Ti and Tj (top-down matching). In both cases,

matching is followed by a merging step that shares the

pattern across the dataset and generalizes it where each

occurrence of the pattern starts to differ.

In our current framework, we first cluster and merge

all repeated subtrees identified at the rule compression

stage, i.e. recurring subtrees in individual parse trees

separately. For this, we use the bottom-up matching

scheme. Then, we cluster and merge all parse trees, at

root level, with the top-down matching scheme.

7.1 Clustering rule patterns

Rather than use a greedy approach to enumerate groups

of similar subtrees, we prefer to define the pattern search

as a clustering problem, which is more principled. The

idea is that each given tree or subtree is considered as

an object to be grouped with other similar trees or sub-

trees into clusters. Each cluster then corresponds to a

pattern. We require the cluster center to be one of the

input tree or subtree. We actually define a distance be-

tween objects that favors the fact that the cluster center

holds the most general part of the pattern. Other ob-

jects in the cluster define variations around this core.

This is a standard unsupervised learning problem

and existing clustering algorithms can be used. Note

however that centroid-based algorithms such as k-means

cannot be used here as we require one of the samples

to be the cluster center. Recent clustering techniques

such as affinity propagation [23] or LP-based cluster-

ing [31] have the additional advantages of being in-

sensitive to initialization and of inferring the optimal

number of clusters k, around cluster centers (Cj)1≤j≤k.

In our experiments, we employ the LP-based clustering

algorithm [31] to minimize the following objective func-

tion, which is the sum of the distance of each object to

16 R. Gadde, R. Marlet, N. Paragios

its cluster center:

min
k

(Cj)1≤j≤k

n∑
i=1

min
1≤j≤k

d(Ti, Cj) + α

k∑
j=1

ψ(Cj) (23)

where

– d(T, T ′) is the distance between trees T, T ′ (defined

below), satisfying d(T, T) = 0,

– ψ(T) = 1/depth(T) is a regularization penalty of

choosing T as a cluster center, to avoid the trivial

clusterization as a set of singletons, and which favors

high trees as cluster centers,

– α is a parameter adjusted to balance the number of

clusters, as explained in Section 7.3.

Two different distance functions are used for the two

different kinds of merging. The distance d1 is used for

bottom-up clustering and merging. It applies to sub-

trees identified as repeating in the rule compression

stage, measuring the similarity of a subtree completely

included in another one. The distance d2 is used for

top-down clustering and merging. It applies to rooted

parse trees, measuring how similar the common rooted

parts are. They are defined as follows:

d1(T, T ′) =


ρ(U, T ′) if ∃Usubtree(U, T) s.t. U ≡ T ′
ρ(T,U ′) if ∃Usubtree(U ′, T ′) s.t. U ′ ≡ T
ω otherwise

(24)

d2(T, T ′) = ρ(U,U ′) where (U,U ′) = T t T ′ (25)

where

– U ≡ U ′ indicates a structural equality between U

and U ′, not taking into account rule parameters nor

non-terminal renaming (cf. Section 6.1),

– ρ(U,U ′) measures the similarity between structurally

equivalent trees U ≡ U ′ (as defined below),

– subtree(U, T) expresses the occurrence of U as a

complete subtree of T ,

– T t T ′ refers to the largest common part (a.k.a.

least general generalization or anti-unification) of T

and T ′, taken from the root, considered as a pair

(U,U ′) of structurally equivalent partial subtrees of

T and T ′, i.e., such that U ≡ U ′,
– ω is a large value preventing the two trees to be part

of the same cluster.

Function ρ(U,U ′) is defined for structurally equiv-

alent trees U ≡ U ′, which implies size(U) = size(U ′).
It measures the similarity between the rule parameters

(pu)1≤u≤size(U) of U and (p′u)1≤u≤size(U ′) of U ′:

ρ(U,U ′) =
1 +

∑
1≤u≤size(U) |pu − p′u|

size(U)
(26)

The value of ρ increases when parameters differ more or

when the size of the common part reduces: this favors,

in a same cluster, trees that have a large common part

and whose parameters differ little. With this definition,

d1 and d2 are symmetric, and d1(T, T) = d2(T, T) = 0.

7.2 Merging rule patterns

The merging of rules after clustering is performed as

follows. For each cluster Γ = {T1, . . . , Tn}, we first con-

sider each instance in each (Ti)1≤i≤n of the largest com-

mon part (Ui)1≤i≤n =
⊔

1≤i≤n Ti of all elements in the

cluster.

Second, we generate a complex rule corresponding

to the largest common part. To make sure this rule

pattern is “frozen” and specific to the cluster, we re-

name all non-leaf non-terminals in the largest common

part, as in Section 6.1, excluding the start symbol if

present. We also group the parameters of instantiated

rules into single parameterized rules. More formally,

for each meta-rule A
a→ BC in the largest common

part, which has instances A
a→pi BC in each Ui and

which is renamed Aλ
a→ BµCν , we generate a new

rule Aλ
a→P BµCν where P = {pi}1≤i≤n. As each sim-

ple rule rj accumulates its own set of specific parame-

ters Pj = {pj,i}1≤i≤nj , the complex rule that combines

them consequently gets a set of parameter vectors that

corresponds to the product of the single-rule parameter

sets, i.e.,
∏

1≤j≤k Pj . For meta-rules of the form A→ B

in the largest common part, we simply generate a new

rule of the form Aλ → Bµ according to the renaming

of non-terminals defined by λ.

Last, we need to make sure that the non-terminalBγ
at the root of a newly renamed pattern can be derived

from the rules that were deriving B before renaming.

This only concerns bottom-up merging; for top-down

merging the non-terminal at the root remains the start

symbol. Formally, for each rule A
a→P Bi C such that

Bi is the root of the largest common part Ui of Γ in Ti,

we generate a new rule A
a→P Bγ C. The same applies

to rules of the form A
a→P C Bi and A→ Bi.

An example of such a rule merging (bottom-up case)

is shown on Figure 5.

(We think that, if the generic grammar is unam-

biguous, then the specialized grammars that we gener-

ate are unambiguous too. However, we do not have a

formal proof of it. In any case, parsing with our gen-

erated grammars experimentally has good convergence

and accuracy properties, as can be seen from Section 8.

Even if some specialized grammars contained a form of

ambiguity, it does not prevent us from obtaining good

results.)

Learning grammars for architecture-specific facade parsing 17

X

Y A1

b C1

D1

e f

A2

b C2

g

U

V A3

b C3

D2

h

A4

b C4

D3

u

A5

λ

a1, p1

a3, p3

a4, p4

a5, p5a6, p6

a2, q2

a3, q3

a4, q4

a5, q5

a6, q6

X a1−→p1
YA1

A1
a3−→p3

bC1

C1
a4−→p4

D1A2

D1
a6−→p6

ef
A2

a5−→p5 bC2

C2 −→ g
U a2−→q2 VA3

A3
a3−→q3 bC3

C3
a4−→q4 D2A4

A4
a5−→q5 bC4

C4
a6−→p6

D3A5

D3 −→ u
A5 −→ λ

=⇒

X a1−→p1
YAc,1

U a2−→q1 VAc,1

Ac,1
a3−→{p3,q3} bCc,1

Cc,1
a4−→{p4,q4} Dc,1Ac,2

Dc,1
a6−→p6

ef
Dc,1 −→ h
Ac,2

a5−→{p5,q5} bCc,2

Cc,2 −→ g
Cc,2

a6−→q6 D3A5

D3 −→ u
A5 −→ λ

Fig. 5 Example of rule merging.

0 20 40 60 80 100
0

0.5

1

1.5

2

alpha

in
d

e
x
 v

a
lu

e

Dunn’s Index

Davies−Bouldin Index

Global Silhouette Index

Fig. 6 Clustering index plots on the validation set for one
fold (ECP2011 dataset).

7.3 Adjusting clustering parameters

The clustering result depends heavily on the value of

α. A very high value of α results in very few cluster

centers with large cluster radius, while a small α value

could result in each data-point being a cluster center. In

order to determine the optimal value of α, we consider

three well-known indices, namely the Dunn’s index [21],

the Davies-Bouldin index [18] and the Silhouette in-

dex [55]. These indices are based on already clustered

data. They combines measures of cluster compactness

(distances between cluster members) and cluster sepa-

ration (distances between clusters vs within clusters).

Given a distance d, they are defined as follows given k

clusters (Γi)1≤i≤k with respective centers (Ci)1≤i≤k.

Dunn Index [21]: This metric is defined as the ratio be-

tween the minimal inter-cluster distance and the max-

imal intra-cluster distance:

D =

min
1≤i<j≤k

d(Ci, Cj)

max
1≤i≤k

max
X,Y ∈Γi

d(X,Y)
(27)

A higher Dunn index indicates better clustering.

Davies-Bouldin Index [18]: As Dunn index, this metric

measures cluster compactness vs cluster separation. It

is defined as:

DB =
1

k

k∑
i=1

 max
1≤j≤k
j 6=i

{
d̄i + d̄j
d(Ci, Cj)

} (28)

d̄i =
1

|Γi|
∑
X∈Γi

d(X,Ci) (29)

where is d̄i is the average distance of members of Γi
to the cluster center Ci. A lower DB value indicates a

better separation of the clusters and a greater proximity

among members of a cluster.

Global Silhouette Index [55]: Contrary to the previous

two indices, this metric takes into account the distance

among all members in a cluster, not just with the cluster

center. It is defined as:

GS =
1

k

k∑
i=1

{
1

|Γi|
∑
X∈Γi

bi(X)− ai(X)

max(ai(X), bi(X))

}
(30)

ai(X) =
1

|Γi| − 1

∑
Y ∈Γi,Y 6=X

d(X,Y) (31)

bi(X) = min
1≤j≤k,j 6=i

1

|Γj |
∑
Y ∈Γj

d(X,Y) (32)

where ai(X) is the average distance between X and the

other elements in the same cluster Γi, and bi(X) is the

lowest average distance of X to other clusters. A higher

index indicates a better clustering.

Choice of parameter α. The above three indices are

used in the experiment section to define α. The best

value of α, to produce well-partitioned clusters, corre-

sponds the maximum of Dunn and Global Silhouette

indices and to the minimum of the Davies-Bouldin in-

dex. Although they differ in their formulation, these

indices mostly agree on the kind of data we are clus-

tering, as can be seen in Figure 6. Rather than select a

single index, and as their computation cost is negligi-

ble, we choose the value of α such that the ratio D×DB
GS

is maximum, which could add some robustness in case

one of the indices would disagree with the others. Other

authors [50,51] have used a similar treatment.

8 Results

In this section, we provide both quantitative and qual-

itative results using the proposed framework and com-

pare with state-of-art. We experimented our method

on three existing standard datasets of rectified anno-

tated facade images: ECP2011 [62], Graz2012 [53] and

CMP2013 [67]. In addition, we evaluated our approach

18 R. Gadde, R. Marlet, N. Paragios

with ENPC2014, a new dataset with yet a different ar-

chitecture style, that we have collected specifically to

illustrate the applicability of our approach to a variety

of structural constraints and to study the sensitivity of

grammar learning to architecture styles.

Most facades pictured in these datasets represent

buildings that contain a notable amount of regularity,

both across the dataset and within the facade itself. For

instance, they typically have at least three floors and

at least three windows per floor, that are laid out ac-

cording to one or two grid-like patterns, with possible

variations in position and size though. This is an ap-

propriate setting for segmenting with a grammar-based

prior, and also for learning grammatical patterns from

just a few tens of annotated samples. On the contrary,

grammatical approaches are less suited for datasets that

feature facades with little regularity, e.g., with few win-

dows, highly uneven layouts and strong architectural in-

consistencies, such as eTRIMS [32]. For such datasets,

grammatical priors have to be relaxed [12, 34]. Natu-

rally, trying to learn grammars from such datasets is

inappropriate too, especially if the number of images is

small, e.g., 60 annotated images in the eTRIMS dataset.

For all our experiments, we use the RL parser made

available by Teboul et al. [62], with default settings,

on an Intel Xeon E3-1225 CPU 3.2GHz. Unless oth-

erwise mentioned, we use the generic grammar of Ta-

ble 2 (G2gen) to generate ground-truth parse trees, and

we use DARWIN [24] with default settings to gener-

ate specific pixel classifiers from annotated images, in-

dependently for each dataset. We first study the ac-

curacy of parsing using the learned grammars: we re-

port classwise accuracy, average class accuracy, over-

all pixel accuracy and average intersection-over-union

score (IoU). We also evaluate the grammars in terms

of scalability, size and inference performance. In all our

experiments, unless otherwise specified, we use a 5-fold

cross-validation setup similar to [12,40,41], with 60% of

the images for grammatical inference and pixel classi-

fier generation, 20% for choosing the value of α, and the

remaining 20% for testing. For each experiment with

one of our grammar learning method, we thus actually

generate 5 pixel classifiers, 5 specialized grammars, and

average the resulting figures. Concerning rule compres-

sion, we set the similarity threshold mentioned in Sec-

tion 6.1 to 10 pixels, except for the CMP2013 dataset

for which it is set to 30 pixels because the images have

a higher resolution.

To somehow compare with Weissenberg et al. [69],

despite the fact that they do not evaluate their gen-

erated grammars for parsing, we replicated the part

of their framework that deals with grammatical infer-

ence, namely transformation to n-ary split nodes [69,

Sect. 4.1] and production rule inference by parame-

ter merging [69, Sect. 4.2]. Note however that we did

not replicate their method for generating ground-truth

parse trees [69, Sect. 3.3]; in the following experiments,

we always use as ground-truth parse trees the ones we

obtain from the generic grammar approach (cf. Sec-

tion 5.3). The parsing and size comparison with Weis-

senberg et al.’s method that we provide thus only con-

cerns the grammar generation from our ground-truth

parse trees.

For the rest of this section, we use the following

notations to represent the induced grammars from dif-

ferent steps of different frameworks:

– [69]1, [69]2 represent the grammars induced by n-

ary composition [69, Sect. 4.1] and then parameter

merging [69, Sect. 4.2], using our implementation of

their method and our ground-truth parse-trees.

– Ggt, Gst, Gcl represent, respectively, the grammar

inferred directly from the ground-truth parse trees

(Section 5), after subtree reduction (rule compres-

sion, Section 6), and after clustering (rule merging,

Section 7).

8.1 ECP2011 Haussmannian dataset [62]

The ECP2011 dataset [62] consists of 104 annotated im-

ages of Haussmannian buildings in Paris. For this set

of images, we use the new, more accurate ground-truth

annotations released by Martinovic [40]. We consider

two experimental settings. In the first one, we use for

grammar inference the simple generic grammar (G1gen,

shown in Table 1), and for parsing a pixel classifier

based on a random forest (RF) [64]. This makes our re-

sults directly comparable to published results obtained

in the same setting [41, 62, 64], i.e., with the same ex-

pressive power of the grammar (e.g., only single-window

or whole-facade running balconies) and with the same

pixel merits. In the second setting, we use for grammat-

ical inference the richer generic grammar (G2gen, shown

in Table 2), which allows more architectural variation,

and better pixel merits from DARWIN [24]. The fea-

ture vector used in DARWIN includes RGB color infor-

mation, HoG descriptor, LBP texture descriptor and

normalized pixel location.

We provide a detailed comparison of our approach

with existing methods in terms of both accuracy (Ta-

ble 3) and convergence time (Table 4). For the gram-

mars that we generate, we run the RL parsing algorithm

for a maximum of 10 seconds per image. For Teboul et

al.’s RL parser with a handwritten grammar [62], we re-

port the figures given by Martinovic and Van Gool [41]

Learning grammars for architecture-specific facade parsing 19

. RF unaries .DARWIN unaries. State of art

Grammar induced from G1
gen Grammar induced from G2

gen (no grammar)

[62] [41] [69]1 [69]2 Ggt Gst Gcl [69]1 [69]2 Ggt Gst Gcl [40] [12]

Door 47 50 20 26 19 41 52 49 54 48 57 62 60 79

Shop 88 81 84 85 79 85 86 87 89 88 90 94 86 94

Balcony 58 49 30 42 24 51 55 58 69 66 78 84 71 91

Window 62 66 24 48 26 58 64 52 59 56 67 72 69 85

Wall 82 80 74 78 71 78 83 79 83 76 85 89 93 90

Sky 95 91 99 97 95 92 92 99 96 96 96 98 97 97

Roof 66 71 33 34 29 63 67 52 58 54 73 79 73 90

Average 71.1 69.7 51.9 58.6 49.1 66.9 71.3 67.9 72.6 66.5 78.1 82.5 78.4 89.4

Overall 74.7 74.8 62.9 69.3 59.9 73.1 76.2 74.2 78.6 71.8 82.6 86.9 85.1 90.8

IoU - - 36.5 42.1 34.3 55.4 57.6 54.8 57.3 52.3 67.7 71.8 - -

Table 3 Segmentation results on the ECP2011 dataset: [62] uses a handcrafted grammar; [41] infers a grammar but without
strong constraints such as grid alignments; [40] and [12] are state-of-the-art methods with hard-coded constraints (that are
soft or that do not cover all architectural constraints).

Grammar induced from G1
gen Grammar induced from G2

gen

[62] [69]1 [69]2 Ggt Gst Gcl [69]1 [69]2 Ggt Gst Gcl

Convergence time (s) 22 13.4 7.1 24 7.5 6.6 18.1 10.8 32 9.8 8.9

of episodes 1740 1117 695 1956 489 306 1421 876 2518 720 580

Derivation length 108 26 28 103 42 27 31 35 122 49 37

Table 4 Performance comparison of handcrafted grammar [62] w.r.t. learned grammar on ECP2011: average parsing time,
median number of episodes for convergence and average derivation length.

as the figures first provided by the authors were in a dif-

ferent setting, with a less accurate ground-truth [62].

With weak pixel merits from a RF classifier, our

method performs better than the handcrafted gram-

mar from [62] and better than the generated gram-

mars from [41]. Comparing with the grammar induction

framework from [69], we achieve better segmentation

result with our learned grammar at a faster conver-

gence rate. The manually-written grammar consists of

19 parametric rules, representing 281 instantiated rules.

Comparing with the handcrafted grammar, the learned

grammar (Gcl) from G1gen is more efficient at least by a

factor of five in terms of number of episodes required

and by a factor of three in terms of wall clock time for

convergence. One of the reasons might be that, thanks

to such a compact grammar, the average length of the

derivation sequence (counting complex rules as one) is

reduced by a factor of three. Although we compare fa-

vorably to grammar-based methods, whether the gram-

mar is written by hand or learned automatically, and

even to some weakly-constrained segmentation meth-

ods [40], our approach does not reach the accuracy of

the state-of-the-art hard-coded segmentation method [12].

It might be due to the fact that they use a very good

pixel classifier and/or because they do not try to en-

force as many hard constraints as we do.

0 20 40 60 80 100

74

76

78

80

82

84

alpha

A
v
g

.
c
la

s
s
 a

c
c
u

ra
c
y

Fig. 7 Impact of α on average class accuracy on the test set
of the fold from Figure-6 (ECP2011 dataset).

To show the role of α, we plot the value of α against

the average class accuracy for one fold on the ECP2011

dataset (see Figure 7). Intuitively, a high value of α

implies fewer number of clusters with large cluster size.

This induces a major generalization in the learned gram-

mar, which enlarges the search space, potentially lead-

ing to suboptimal parse. And for a low value of α, there

will be a large number of clusters, shrinking the general-

20 R. Gadde, R. Marlet, N. Paragios

DARWIN unaries

[53] [69]1 [69]2 Ggt Gst Gcl

Door 41 29 33 31 39 43

Window 60 64 66 62 69 76

Wall 84 84 87 82 89 91

Sky 91 95 94 93 92 92

Average 69 68.2 70.1 66.9 72.3 75.6

Overall 78.0 79.3 81.9 77.4 83.9 86.6

IoU 58.0 61.6 63.2 59.4 63.1 68.4

Table 5 Segmentation results on the Graz2012 dataset.

ization capability of the learned grammar; the learned

grammar would overfit the training data and not be

adapted to unseen images, leading to inaccurate parses.

An appropriate value of α is thus one for which the gen-

eralization capacity of the learned grammar is balanced.

This can be seen from Figure 7 by observing the aver-

age class accuracies for very high and very low values

of α. Note that the best value for α in this case happens

to be about the same as the one we compute automati-

cally in a similar setting (see Figure 6). Figure 14 shows

some visuals results.

8.2 Graz2012 Dataset [53]

The Graz2012 dataset [53] consists of 50 images. A ma-

jority of them represent the Gruenderzeit architecture

style which is common in Germany and Austria. As

there are only 4 classes in this dataset, namely door,

window, wall and sky, we had to downgrade the generic

grammar to discard the other terminals, i.e., shop, roof

and sky.

Classwise accuracies are shown in Table 5, with a

comparison to Riemenschneider et al.’s method [53].

Our learned grammar outperforms the other methods.

The average number of episodes for convergence was ob-

served to be 180 with the learned grammars, while the

average derivation length was 22. The number of opti-

mal clusters was found to be 21 for this dataset, and

the average number of rules in the clustered grammar

was 29. Figure 12 shows some visual results.

8.3 CMP2013 Dataset [67]

The CMP dataset [67] contains a mixture of worldwide

styles including a majority of Prague buildings. It con-

sists of 378 images of diverse facades with ground-truth

annotations initially provided for eleven classes facade,

molding, cornice, pillar, window, door, sill, blind, bal-

cony, shop and deco, plus one class for the background,

DARWIN unaries

[67] [69]1 [69]2 Ggt Gst Gcl

Door 54 38 39 46 45 49

Shop 59 61 63 59 63 66

Balcony 46 26 27 24 25 32

Window 59 44 46 49 52 57

Wall 84 81 83 76 86 89

Average 60.4 50.2 51.6 50.9 54.2 58.8

Overall 78.3 70.4 72.34 67.7 75.6 82.5

IoU - 35.5 37.8 34.5 39.7 42.4

Table 6 Segmentation results on CMP2013 dataset.

DARWIN unaries

[69]1 [69]2 Ggt Gst Gcl

Door 49 53 41 56 59

Shop 78 84 78 85 88

Balcony 49 57 46 57 63

Window 51 59 46 58 66

Wall 72 79 78 77 84

Sky 97 96 95 95 92

Roof 52 54 49 56 58

Average 64.1 68.9 61.8 69.1 72.9

Overall 68.4 74.3 69.5 73.4 78.8

IoU 48.0 57.8 48.2 55.1 59.4

Table 7 Segmentation results on the ENPC2014 dataset.

corresponding to cropped areas after image rectifica-

tion. To enable a comparison of our method across dif-

ferent datasets and different kinds of architecture, we

did not try to extend the generic grammar G2gen to cover

all the extra classes. We had to adapt it nonetheless be-

cause the dataset does not include classes sky and roof.

We thus downgraded the generic grammar to the five

classes shop, door, balcony, window and wall.

To compare the resulting accuracy with the figures

reported by Tylecek [67], we also had to merge or ig-

nore some of his classes, based on the reported covari-

ance matrix. While the shop, door and balcony classes

are taken directly, the accuracy we give for the window

class in [67] is actually a combination of the figures for

the original labels window and blind. Similarly, all the

other labels are merged into a unique wall class, except

the background class that is ignored by all methods.

Classwise accuracy is shown in Table 6. The average

number of episodes for convergence was observed to

be 1200 with the learned grammars, while the average

derivation length was 32. The average number of rules

in the learned grammar was 78. Figure 13 shows few

visual results.

Learning grammars for architecture-specific facade parsing 21

8.4 ENPC2014 Art-deco Dataset

The Haussmannian style, as illustrated in the ECP2011

dataset, features facades with high regularity, not only

regarding window layout but also concerning window

sizes, which often have the same width across an entire

facade. To demonstrate that architecture-specific gram-

mars are required for a better parsing (see Section 8.6),

a dataset with identical semantic classes but different

architecture style is needed. For this reason, we have

constructed a new dataset, called ENPC2014, with 79

images of Art-deco buildings in Paris. Although they

have commonalities with Haussmannian facades, Art-

deco facades actually differ, in particular in the typical

sizes of windows (which can be wider) and in the num-

ber of floors (which can be higher). The balcony lay-

out may also be different. Besides, the dataset includes

some layout inconsistencies due to image rectification

as some windows and balconies are often protruding

in the Art-deco style. It is similar to the case of roof

windows, already present in the ECP2011 Haussman-

nian dataset, which often are not in the same plane as

the other facade windows. Similar to ECP2011, images

in ENPC2014 are segmented and annotated into seven

classes, door, shop, balcony, window, wall, sky and roof.

The segments in the ground-truth annotations we de-

fined follow a rectangular regularity, but no alignment is

artificially enforced. The dataset is publicly available1.

Concerning our experiments, we use the same generic

grammar G2gen as with the other datasets to generate our

specialized grammars. Accuracy results are reported in

Table 7. The average number of episodes for conver-

gence was observed to be 670 with the learned Art-deco

grammars, while the average derivation length was 30.

The number of optimal clusters were found to be 18 for

this dataset. Figure 15 shows few visual segmentations

on this dataset.

8.5 Scalability and qualitative analysis

To provide an insight on the scalability of our gram-

mar learning method, we plot in Figure 8 the num-

ber of inferred rules against the size of the training

set. For the ECP2011 dataset, the number of rules in

the learned grammar is almost saturated after 25 sam-

ples, validating the claim of [69]. For the ENPC2014

dataset, the most common rules correspond to: (i) two

large widely separated windows, on the first and fifth

columns, (ii) large window in the middle (third) col-

umn, (iii) running balcony on the top floor. (Such an

1 https://github.com/raghudeep/

ParisArtDecoFacadesDataset/

interpretation in made easier by the fact that our in-

ferred grammars are generated from a generic grammar

that already has an understandable semantics.) For the

datasets CMP2013 and ENPC2014, the number of rules

continues to grow with the training samples, indicating

the diversity of the dataset and underlying architecture

styles. Note that the numbers of rules provided here by

our implementation of Weissenberg at al.’s method are

a bit smaller than the values reported in the authors’

paper [69]. This could be explained by the fact that

we find more complex rule patterns, as we can com-

bine both horizontal and vertical splits, and/or by the

fact that our input ground-truth parse trees generated

from a generic grammar display more regularity than

the parse trees discovered by the heuristics in [69].

Computations for the rule compressing steps in our

implementation took 5 ms per facade, on average, on

the ECP2011 dataset. The clustering step took 15 ms

on single core of Intel Xeon E3-1225 machine. As for

extracting the ground-truth parse trees, we run the RL

parser for a maximum of 15 s per annotated image.

However, convergence was observed in 4.8 s on average.

Please note that rule compression can be applied in par-

allel on all facades of the training set. Martinovic et al.

do not report running times but it seems their approach

does not scale well as, in their experiments, the authors

limit the training sets to “30 images to keep the induc-

tion time within reasonable bounds” [41]. Weissenberg

et al. [69] report that their inference algorithm takes

about 32 ms per facade on an Intel Core i7 930. Their

inference method is mostly linear and works online. As

we are currently relying on the LP-based clustering of

Komodakis et al. [31], our implementation is not on-

line, but it could be made so using an online clustering

algorithm. In any case, learning time probably is not an

issue given the current performance and the typical size

of the training sets. Larger orders of magnitude for the

number of images with handmade ground-truth anno-

tations would defeat some of the interests of generating

a grammar automatically to reduce the human burden

on this task.

Figure 9 shows the performance of induced gram-

mars from different stages of our framework and also

a like-for-like comparison with different grammars ob-

tained by our implementation of Weissenberg et al.’s

framework. For these experiments, the RL parser is run

for 40 seconds and the average class accuracy is plotted

with respect to time.

8.6 Cross-dataset analysis

To investigate commonalities and dissimilarities in gram-

mar rules between different styles of architecture, we

22 R. Gadde, R. Marlet, N. Paragios

0 20 40 60 80 100 120
10

1

10
2

10
3

10
4

ECP2011

of facades

#
 o

f
r
u

le
s

Ggt

Gcl
Gst

[63]1

[63]2

10 20 30 40 50
10

1

10
2

10
3

10
4

Graz2012

of facades
#
 o

f
r
u

le
s

Ggt

Gcl
Gst

[63]1

[63]2

0 100 200 300 400
10

1

10
2

10
3

10
4

of facades

#
 o

f
r
u

le
s

CMP2013

Ggt

Gcl
Gst

[63]1

[63]2

0 20 40 60 80
10

1

10
2

10
3

10
4

ENPC2014

of facades

#
 o

f
r
u

le
s

Ggt

Gcl
Gst

[63]1

[63]2

Fig. 8 Number of rules in the learned grammar (Y-axis) w.r.t. the size of training set (X-axis). Notice the log scale of Y-axis.

0 10 20 30 40

30

40

50

60

70

80

ECP2011

Time (in seconds)

A
v

g
 c

la
s

s
 a

c
c

u
ra

c
y

Ggt

Gcl
Gst

[63]1

[63]2

[57]

0 10 20 30 40
40

45

50

55

60

65

70

75

80

85

Graz2012

Time (in seconds)

A
v

g
 c

la
s

s
 a

c
c

u
ra

c
y

Ggt

Gcl
Gst

[63]1

[63]2

0 10 20 30 40
25

30

35

40

45

50

55

60

65

70

CMP2013

Time (in seconds)
A

v
g

 c
la

s
s

 a
c

c
u

ra
c

y

Ggt

Gcl
Gst

[63]1

[63]2

0 10 20 30 40
30

40

50

60

70

80 ENPC2014

Time (in seconds)

A
v

g
 c

la
s

s
 a

c
c

u
ra

c
y

Ggt

Gcl
Gst

[63]1

[63]2

Fig. 9 Average class accuracy (y-axis) w.r.t. time (x-axis).

operate our learned Haussmannian grammar on Art-

deco facades, and the other way around. Figure 10 shows

such segmentation results on two images. The most

common rule between these two styles corresponds to a

running balcony on the top floor of a facade. And the

most distinctive rules are (i) periodical large windows in

the Art-deco style and uniformly-sized windows in the

Haussmannian style, (ii) the number of floors: seven

in Art-deco and five in Haussmannian. Not only this

experiment provides an insight in understanding com-

mon rule patterns across different styles, but it also

strengthens the need for style-specific grammars. Ta-

ble 8 shows the performance of grammar learned using

Art-deco and Haussmannian styles on Haussmannian

and Art-deco facades.

GAA GAH GHA GHH

Door 59 56 57 62

Shop 88 86 83 94

Balcony 63 51 54 84

Window 66 56 48 72

Wall 84 71 76 89

Sky 92 82 92 98

Roof 58 68 51 79

Average 72.9 67.1 65.9 82.5

Overall 78.8 71.9 70.8 87.0

IoU 59.4 55.8 57.6 71.8

Table 8 Cross-dataset analysis using Art-deco (A) and
Haussmannian (H) facades. GAH represents the grammar
learned using annotated Art-deco facades and applied on
Haussmannian facades images. Others follow similarly.

Fig. 10 Cross-comparison of learned Art-deco and Hauss-
mannian grammars on Haussmannian and Art-deco facades.
Top, from left to right: Art-deco facade, analyzed with
Art-deco grammar, analyzed with Haussmannian grammar,
and disagreement map (white color for differences). Bottom:
Haussmannian facade, analyzed with Haussmannian gram-
mar, analyzed with Art-deco grammar, disagreement map.

8.7 Sensitivity to the accuracy of pixel classifiers

A question that arises is how much the underlying pixel

classifier, that the parser uses to evaluate sampled lay-

out configurations, impacts the performance of a given

grammar. (Note that the goal here is not to reach the

best pixelwise accuracy possible, but still to perform a

structural segmentation that follows architectural con-

straints.) For this, we experimented with 4 different

unaries: random forests (RF) [64], DARWIN [24], Auto-

Context (AC) [27], and the ground-truth (GT) labeling

itself. We consider 6 different grammars (or more pre-

cisely, 6 families of grammars in the case of grammar

Learning grammars for architecture-specific facade parsing 23

Fig. 11 Performance of hand-crafted and learned grammars
using different unaries on the ECP2011 dataset.

generation, as we follow a 5-fold cross-validation in this

case): the handwritten grammar of Teboul et al. [62],

grammars generated by the two variants of Weissenberg

et al.’s method [69]1 and [69]2, and grammars generated

by our 3 variants Ggt, Gst, Gcl. For all experiments, the

RL-based parser is run under identical settings, with

2000 iterations. Figure 11 shows the overall pixel accu-

racy on the ECP2011 dataset for these 4 pixel classi-

fications and 6 grammars. As can be seen, for a given

grammar, the better the pixel classifier, the better the

resulting pixel accuracy after parsing. Besides, the qual-

ity ranking of the grammars is preserved when the ac-

curacy of the pixel classification increases. This shows

that the quality of the grammars (or grammar gener-

ators) is relatively independent of the underlying pixel

classifier used by the parser. In these experiments, our

approach consistently performs better.

9 Conclusion

In this paper we have proposed a novel method for

learning split grammars from annotated images, and

we have used it to learn typologies of architectures.

The method assumes a simple generic grammar which

is used to parse the training set. Reasoning on the as-

sociated derivation trees, to first identify common sub-

trees and then merge similar trees, determines the set

of meta-rules corresponding the observed typology of

buildings. It leads to a compact (in terms of derivation

trees) and simple (in terms of inference process) gram-

mar. State-of-the-art results with respect to typology-

specific handcrafted grammars or to grammars learned

from data demonstrate the extreme potentials of our

method.

Extending this to other typologies of architecture is

an ongoing work, such as applying the concept to mod-

ern architectures. Such a task will possibly benefit from

improved likelihoods of image classes [40]. Improving

the process of establishing the set of meta-rules by rea-

soning simultaneously on the compact derivations of all

training examples is a natural extension of our method.

Considering more trees at the rule-merging stage should

also lead to an improved performance. Furthermore, ex-

tending this approach to 3D grammars is an extremely

promising task, and in particular when taking into ac-

count the difficulty of defining such a grammar manu-

ally.

Acknowledgments. This work was partly carried out

in IMAGINE, a joint research project between Ecole

des Ponts ParisTech (ENPC) and the Scientific and

Technical Centre for Building (CSTB). It was partly

supported by ANR project Semapolis ANR-13-CORD-

0003.

References

1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P.,
Susstrunk, S.: SLIC superpixels compared to state-of-
the-art superpixel methods. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on 34(11), 2274–
2282 (2012)

2. Alegre, F., Dellaert, F.: A probabilistic approach to the
semantic interpretation of building facades. In: CIPA
International Workshop on Vision Techniques Applied to
the Rehabilitation of City Centres, pp. 25–27 (2004)

3. Benz, F., Kötzing, T.: An effective heuristic for the small-
est grammar problem. In: Proceedings of the 15th annual
conference on Genetic and evolutionary computation, pp.
487–494. ACM (2013)

4. Berg, A.C., Grabler, F., Malik, J.: Parsing images of ar-
chitectural scenes. In: Computer Vision, 2007. ICCV
2007. IEEE 11th International Conference on, pp. 1–8.
IEEE (2007)

5. Bod, R.: An efficient implementation of a new DOP
model. In: 10th Conference on European Chapter of the
Association for Computational Linguistics (EACL 2003),
Volume 1, pp. 19–26 (2003)

6. Bod, R.: An all-subtrees approach to unsupervised pars-
ing. In: 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Association
for Computational Linguistics (ACL 2006), pp. 865–872.
Association for Computational Linguistics (2006)

7. Carrasco, R.C., Oncina, J., Calera-Rubio, J.: Stochastic
inference of regular tree languages. Machine Learning
44(1-2), 185–197 (2001)

8. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prab-
hakaran, M., Rasala, A., Sahai, A., et al.: Approximating
the smallest grammar: Kolmogorov complexity in natu-
ral models. In: Proceedings of the thiry-fourth annual
ACM Symposium on Theory of Computing (STOC), pp.
792–801. ACM (2002)

9. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prab-
hakaran, M., Sahai, A., Shelat, A.: The smallest gram-
mar problem. Information Theory, IEEE Transactions
on 51(7), 2554–2576 (2005)

10. Chi, Y., Muntz, R.R., Nijssen, S., Kok, J.N.: Frequent
subtree mining – an overview. Fundamenta Informaticae
66(1), 161–198 (2005)

24 R. Gadde, R. Marlet, N. Paragios

11. Clark, A.: Distributional learning of some context-free
languages with a minimally adequate teacher. In: Gram-
matical Inference: Theoretical Results and Applications,
pp. 24–37. Springer (2010)

12. Cohen, A., Schwing, A.G., Pollefeys, M.: Efficient struc-
tured parsing of facades using dynamic programming. In:
Computer Vision and Pattern Recognition (CVPR), 2014
IEEE Conference on, pp. –. IEEE (2014)

13. Cohen, S.B., Stratos, K., Collins, M., Foster, D.P., Ungar,
L.: Spectral learning of latent-variable pcfgs: Algorithms
and sample complexity. The Journal of Machine Learning
Research 15(1), 2399–2449 (2014)

14. Cohen, S.B., Stratos, K., Collins, M., Foster, D.P., Un-
gar, L.H.: Experiments with spectral learning of latent-
variable PCFGs. In: Human Language Technologies:
Conference of the North American Chapter of the Associ-
ation of Computational Linguistics (HLT-NAACL 2013),
pp. 148–157 (2013)

15. Cohn, T., Blunsom, P., Goldwater, S.: Inducing tree-
substitution grammars. The Journal of Machine Learning
Research 11, 3053–3096 (2010)

16. Comaniciu, D., Meer, P.: Mean shift: A robust approach
toward feature space analysis. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on 24(5), 603–619
(2002)

17. Dai, D., Prasad, M., Schmitt, G., Van Gool, L.: Learning
domain knowledge for façade labelling. In: Computer
Vision–ECCV 2012, pp. 710–723. Springer (2012)

18. Davies, D.L., Bouldin, D.W.: A cluster separation mea-
sure. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 1(2), 224–227 (1979)

19. De La Higuera, C.: A bibliographical study of gram-
matical inference. Pattern recognition 38(9), 1332–1348
(2005)

20. D’Ulizia, A., Ferri, F., Grifoni, P.: A survey of gram-
matical inference methods for natural language learning.
Artificial Intelligence Review 36(1), 1–27 (2011)

21. Dunn, J.C.: Well-separated clusters and optimal fuzzy
partitions. Journal of cybernetics 4(1), 95–104 (1974)

22. Flajolet, P., Sipala, P., Steyaert, J.M.: Analytic variations
on the common subexpression problem. In: Proceedings
of the 17th International Colloquium on Automata, Lan-
guages and Programming, pp. 220–234. Springer (1990)

23. Frey, B.J., Dueck, D.: Clustering by passing messages
between data points. science 315(5814), 972–976 (2007)

24. Gould, S.: DARWIN: a framework for machine learn-
ing and computer vision research and development. The
Journal of Machine Learning Research 13(1), 3533–3537
(2012)

25. Grünwald, P.: A minimum description length approach
to grammar inference. In: Connectionist, Statistical, and
Symbolic Approaches to Learning for Natural Language
Processing, pp. 203–216. Springer-Verlag (1996)

26. De la Higuera, C.: Grammatical inference: learning au-
tomata and grammars. Cambridge University Press
(2010)

27. Jampani, V., Gadde, R., Gehler, P.V.: Efficient facade
segmentation using auto-context. In: Applications of
Computer Vision (WACV), 2015 IEEE Winter Confer-
ence on, pp. 1038–1045. IEEE (2015)

28. Johnson, M., Griffiths, T., Goldwater, S.: Bayesian in-
ference for PCFGs via Markov Chain Monte Carlo. In:
Human Language Technologies 2007: The Conference of
the North American Chapter of the Association for Com-
putational Linguistics, pp. 139–146 (2007)

29. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active
contour models. International journal of computer vision
1(4), 321–331 (1988)

30. Kolmogorov, V., Zabin, R.: What energy functions can be
minimized via graph cuts? Pattern Analysis and Machine
Intelligence, IEEE Transactions on 26(2), 147–159 (2004)

31. Komodakis, N., Paragios, N., Tziritas, G.: Clustering via
lp-based stabilities. In: Advances in Neural Information
Processing Systems 21, pp. 865–872 (2009)

32. Korč, F., Förstner, W.: eTRIMS Image Database for
interpreting images of man-made scenes. Tech. Rep.
TR-IGG-P-2009-01, Dept. of Photogrammetry, Univer-
sity of Bonn (2009). URL http://www.ipb.uni-bonn.

de/projects/etrims_db/
33. Koutsourakis, P., Simon, L., Teboul, O., Tziritas, G.,

Paragios, N.: Single view reconstruction using shape
grammars for urban environments. In: Computer Vision,
2009 IEEE 12th International Conference on, pp. 1795–
1802. IEEE (2009)

34. Koziński, M., Gadde, R., Zagoruyko Sergeyand Marlet,
R., Obozinski, G.: A MRF shape prior for facade pars-
ing with occlusions. In: Computer Vision and Pattern
Recognition (CVPR), 2015 IEEE Conference on (2015)

35. Koziński, M., Marlet, R.: Image parsing with graph gram-
mars and markov random fields. In: Winter Confer-
ence on Applications of Computer Vision (WACV 2014)
(2014)

36. Koziński, M., Obozinski, G., Marlet, R.: Beyond proce-
dural facade parsing: Bidirectional alignment via linear
programming. In: 12th Asian Conference on Computer
Vision (ACCV 2014) (2014)

37. Lehman, E., Shelat, A.: Approximation algorithms for
grammar-based compression. In: Proceedings of the thir-
teenth annual ACM-SIAM symposium on Discrete algo-
rithms, pp. 205–212. Society for Industrial and Applied
Mathematics (2002)

38. Mäkinen, E.: On the subtree isomorphism problem for
ordered trees. Information Processing Letters 32(5), 271–
273 (1989)

39. Manning, C.D.: Part-of-speech tagging from 97% to
100%: Is it time for some linguistics? In: 12th Interna-
tional Conference on Computational Linguistics and In-
telligent Text Processing (CICLing 2011) - Volume Part
I, pp. 171–189. Springer-Verlag (2011)

40. Martinović, A., Mathias, M., Weissenberg, J., Van Gool,
L.: A three-layered approach to facade parsing. In: Com-
puter Vision–ECCV 2012, pp. 416–429. Springer (2012)

41. Martinovic, A., Van Gool, L.: Bayesian grammar learning
for inverse procedural modeling. In: Computer Vision and
Pattern Recognition (CVPR), 2013 IEEE Conference on,
pp. 201–208. IEEE (2013)

42. Martinović, A., Van Gool, L.: Earley parsing for
2D stochastic context free grammars. Tech. Rep.
KUL/ESAT/PSI/1301, KU Leuven (2013)

43. Matsuzaki, T., Miyao, Y., Tsujii, J.: Probabilistic CFG
with latent annotations. In: 43rd Annual Meeting on
Association for Computational Linguistics (ACL 2005),
pp. 75–82 (2005)

44. Miller, P.: Strong generative capacity. CSLI Publications
(1999)

45. Müller, P., Wonka, P., Haegler, S., Ulmer, A., Van Gool,
L.: Procedural modeling of buildings. In: ACM SIG-
GRAPH 2006 / ACM Transactions on Graphics, pp. 614–
623 (2006)

46. Nevill-Manning, C.G., Witten, I.H.: Identifying hierar-
chical structure in sequences: A linear-time algorithm.
Journal of Artificial Intelligence Research pp. 67–82
(1997)

47. Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit,
G., Kübler, S., Marinov, S., Marsi, E.: Malt parser:

Learning grammars for architecture-specific facade parsing 25

A language-independent system for data-driven depen-
dency parsing. Natural Language Engineering 13(2), 95–
135 (2007)

48. Ok, D., Kozinski, M., Marlet, R., Paragios, N.: High-level
bottom-up cues for top-down parsing of facade images.
In: 2nd Joint 3DIM/3DPVT Conference on 3D Imag-
ing, Modeling, Processing, Visualization and Transmis-
sion (3DIMPVT) (2012)

49. Osher, S., Paragios, N.: Geometric level set methods in
imaging, vision, and graphics. Springer (2003)

50. Parisot, S., Duffau, H., Chemouny, S., Paragios,
N.: Graph based spatial position mapping of low-
grade gliomas. In: Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2011, pp. 508–
515. Springer (2011)

51. Parisot, S., Duffau, H., Chemouny, S., Paragios, N.:
Graph-based detection, segmentation & characterization
of brain tumors. In: Computer Vision and Pattern Recog-
nition (CVPR), 2012 IEEE Conference on, pp. 988–995.
IEEE (2012)

52. Petrov, S., Klein, D.: Improved inference for unlexical-
ized parsing. In: Human Language Technologies 2007:
The Conference of the North American Chapter of the
Association for Computational Linguistics, pp. 404–411.
Association for Computational Linguistics (2007)

53. Riemenschneider, H., Krispel, U., Thaller, W., Donoser,
M., Havemann, S., Fellner, D., Bischof, H.: Irregular lat-
tices for complex shape grammar facade parsing. In:
Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pp. 1640–1647. IEEE (2012)

54. Ripperda, N., Brenner, C.: Reconstruction of façade
structures using a formal grammar and RJMCMC. In:
Pattern Recognition, pp. 750–759. Springer (2006)

55. Rousseeuw, P.J.: Silhouettes: a graphical aid to the in-
terpretation and validation of cluster analysis. Journal
of computational and applied mathematics 20, 53–65
(1987)

56. Sakakibara, Y., Kondo, M.: GA-based learning of
context-free grammars using tabular representations. In:
ICML, vol. 99, pp. 354–360 (1999)

57. Si, Z., Zhu, S.C.: Learning and-or templates for ob-
ject recognition and detection. IEEE Trans. Pattern
Anal. Mach. Intell. 35(9), 2189–2205 (2013). DOI
10.1109/TPAMI.2013.35. URL http://dx.doi.org/10.

1109/TPAMI.2013.35
58. Simon, L., Teboul, O., Koutsourakis, P., Paragios, N.:

Random exploration of the procedural space for single-
view 3D modeling of buildings. International journal of
computer vision 93(2), 253–271 (2011)

59. Simon, L., Teboul, O., Koutsourakis, P., Van Gool,
L., Paragios, N.: Parameter-free/Pareto-driven procedu-
ral 3D reconstruction of buildings from ground-level se-
quences. In: Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, pp. 518–525. IEEE
(2012)

60. Sutton, R.S., Barto, A.G.: Introduction to reinforcement
learning. MIT Press (1998)

61. Teboul, O.: Shape grammar parsing: Application to
image-based modeling. Ph.D. thesis, Ecole Centrale Paris
(2011)

62. Teboul, O., Kokkinos, I., Simon, L., Koutsourakis, P.,
Paragios, N.: Shape grammar parsing via reinforcement
learning. In: Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, pp. 2273–2280. IEEE
(2011)

63. Teboul, O., Kokkinos, I., Simon, L., Koutsourakis, P.,
Paragios, N.: Parsing facades with shape grammars and

reinforcement learning. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 35(7), 1744–1756
(2013)

64. Teboul, O., Simon, L., Koutsourakis, P., Paragios, N.:
Segmentation of building facades using procedural shape
priors. In: Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pp. 3105–3112. IEEE
(2010)

65. Tomita, M.: Parsing 2-dimensional language. In:
M. Tomita (ed.) Current Issues in Parsing Technology,
The Springer International Series in Engineering and
Computer Science, vol. 126, pp. 277–289. Springer US
(1991)

66. Tu, K., Pavlovskaia, M., Zhu, S.C.: Unsupervised struc-
ture learning of stochastic and-or grammars. In: Ad-
vances in Neural Information Processing Systems, pp.
1322–1330 (2013)

67. Tylecek, R.: The cmp facade database. Tech. rep., CTU–
CMP–2012–24, Czech Technical University (2012)

68. Valiente, G.: Algorithms on trees and graphs. Springer
(2002)

69. Weissenberg, J., Riemenschneider, H., Prasad, M.,
Van Gool, L.: Is there a procedural logic to architecture?
In: Computer Vision and Pattern Recognition (CVPR),
2013 IEEE Conference on, pp. 185–192. IEEE (2013)

70. Wonka, P., Wimmer, M., Sillion, F., Ribarsky, W.: In-
stant architecture. ACM Transactions on Graphics
(TOG). 22(3), 669–677 (2003)

71. Zaki, M.J.: Efficiently mining frequent trees in a forest.
In: Proceedings of the eighth ACM SIGKDD interna-
tional conference on Knowledge discovery and data min-
ing, pp. 71–80. ACM (2002)

26 R. Gadde, R. Marlet, N. Paragios

(145, 78.6%) (210, 85.6%) (191, 81.1%)

(141, 78.1%)
(197, 80.8%) (188, 88.7%)

Fig. 12 Qualitative results on Graz2012 dataset. Image (left) and segmentation using learned grammar Gcl (right) are shown
here along with number of episodes for convergence and segmentation accuracy.

(810, 75.1%) (642, 78.4%)
(1125, 72.9%) (728, 82.3%)

(1236, 65.3%)
(1149, 71.9%) (1297, 70.9%)

(978, 70.3%)

(631, 85.1%) (646, 82.0%)
(681, 81.5%)

(592, 83.0%)

Fig. 13 Qualitative results on CMP2013 dataset. Image (left) and segmentation using learned grammar Gcl (right) are shown
here along with number of episodes for convergence and segmentation accuracy.

Learning grammars for architecture-specific facade parsing 27

(1823, 83.0%) (634, 90.1%) (1765, 80.8%) (610, 80.1%) (2029,87.6%) (569, 91.7%) (1642,87.1%) (476,
92.3%)

(2444,86.8%) (502,
92.2%)

(1781,80.8%) (436, 90.1%)
(1563,86%) (521, 91.0%) (2122,85.1%) (634, 85.6%)

(1987,85.2%) (562, 90.7%) (2306,86.4%) (620, 89.6%) (1851,80.1%) (441, 91.2%)
(2332,81.3%) (469, 86.1%)

Fig. 14 Qualitative results on ECP2011 dataset. Image (left) and segmentation using handwritten grammar (center) and
learned grammar Gcl (right) are shown here along with number of episodes for convergence and segmentation accuracy.

(814, 80.4%) (763, 81.1%) (652, 86.2%)
(921, 83.2%)

(691, 84.7%)
(729, 76.1%) (701, 82.2%) (658, 85.1%)

Fig. 15 Qualitative results on ENPC2014 dataset. Image (left) and segmentation using learned grammar Gcl (right) are shown
here along with number of episodes for convergence and segmentation accuracy.

