
OpenMVG: Open Multiple View Geometry

Pierre Moulon1, Pascal Monasse2, Romuald Perrot3, and Renaud Marlet2

1 Zillow Group pierrem@zillowgroup.com
2 LIGM, UMR 8049, École des Ponts, UPE, Champs-sur-Marne, France

{pascal.monasse,renaud.marlet}@enpc.fr
3 Université de Poitiers - Laboratoire XLIM, UMR CNRS 7252, Futuroscope, France

romuald.perrot@univ-poitiers.fr

Abstract. The OpenMVG C++ library provides a vast collection of multiple-
view geometry tools and algorithms to spread the usage of computer vision and
structure-from-motion techniques. Close to the state-of-the-art in its domain, it
provides an easy access to common tools used in 3D reconstruction from im-
ages. Following the credo ”Keep it simple, keep it maintainable” the library is
designed as a modular collection of algorithms, libraries and binaries that can
be used independently or as bricks to build larger systems. Thanks to its strict
test driven development, the library is packaged with unit-test code samples that
make the library easy to learn, modify and use. Since its first release in 2013
under the MPL2 license, OpenMVG has gathered an active community of users
and contributors from many fields, spanning hobbyists, students, computer vision
experts, and industry members.

Keywords: Reproducible research, Computer Vision, Multiple-view geometry,
3D reconstruction, Structure from Motion, C++, open source

1 Introduction

Computer vision is used extensively nowadays, even by our pocket devices thanks to our
smartphones. Some of the computer visions tasks they perform include stitching images
to create a planar mosaic and a spherical panorama, using image content-based search
retrieval (bar codes, similar product search), and performing 3D reconstruction from
photographs. Moreover, 3D content creation from images is more and more used: e.g.,
digitizing our world for offline (surveying, cartography, VFX) or for online applications
(gaming, AR/VR), digitizing dynamic elements for gaming (Kinect), and autonomous
navigation of vehicles are all trendy topics.

Regarding the large scope of applications and the diverse needs of computer vision
techniques relating to 3D reconstruction, it is clear that the community can have a major
gain if a common framework can be used to communicate, make experiments, and build
new prototypes. Often, high level and general purpose tools like Matlab or Intel IPP4

are used, but they are not the best choice, since beside being costly they do not have all

4 Intel Integrated Performance Primitives https://software.intel.com/en-us/
intel-ipp/

https://software.intel.com/en-us/intel-ipp/
https://software.intel.com/en-us/intel-ipp/

the needed algorithms implemented. They include only a subset of the major Multiple-
View-Geometry (MVG) algorithms and are not specialized for Structure from Motion
(SfM). Other alternatives like OpenCV can be compelling, but again, only partial im-
plementations exist. Since these alternatives want to cover a large scope of applications
they do not focus on multiple view geometry and 3D reconstruction from images in an
efficient way.

2 Photogrammetry software alternatives

Photogrammetry is the science of making measurements from photographs, especially
for recovering the exact positions of surface points. The domain is mature; as witnessed
on the internet5, more than 80 software solutions (commercial, free or open source)
are listed. 3D reconstruction from images knows a second breath nowadays, since the
emergence of UAV is making a true revolution in land surveying, the acquisition of low
altitude images being now a cheap and simple task.

We make here a distinction between multiple view geometry (MVG) and multiple
view stereovision (MVS) software. The former is concerned with recovering camera
locations and orientations from the data (images and camera intrinsics); it delivers also
a sparse set of 3D points, built by triangulation from the feature points observed in
the photographs. The latter deals with the dense 3D reconstruction; its output can be a
dense point cloud, a faceted surface (mesh), or a set of planes, which can be visualized
as a realistic 3D rendering of the scene. It relies on MVG to achieve that.

Commercial software. The solutions, integrating MVG and MVS in single products,
are clustered around the markets they are addressing: UAV land surveying is addressed
by the Pix4D products6 and by DroneDeploy software7, while the large scale close
range photogrammetry market is mostly addressed by the Bentley ContextCapture8 and
CapturingReality9 software.

Free software. Visual SfM (VSfM [13]) is a solution that is largely used. The main
point that eases its usage is due to the fact the software is delivered with a graphical user
interface (GUI) and that it uses multi-threading on CPU and GPU for high efficiency.

Open Source solutions. While some solutions deliver a software program (Bundler [1],
ColMap [39], MicMac [40], PMVS [35], CMVS [34]), others deliver both a collec-
tion of libraries and softwares (MVE [37], OpenMVG, OpenSfM [41], OpenMVS [42],
TheiaSfM [38])10. Combining OpenMVG with OpenMVS or MVE provides an end-to-
end open-source photogrammetry pipeline.

5 https://en.wikipedia.org/wiki/Comparison_of_photogrammetry_
software#Comparison

6 https://pix4d.com/
7 https://www.dronedeploy.com/
8 https://www.bentley.com/en/products/brands/contextcapture
9 https://www.capturingreality.com/

10 See https://github.com/openMVG/awesome_3DReconstruction_list

https://en.wikipedia.org/wiki/Comparison_of_photogrammetry_software#Comparison
https://en.wikipedia.org/wiki/Comparison_of_photogrammetry_software#Comparison
https://pix4d.com/
https://www.dronedeploy.com/
https://www.bentley.com/en/products/brands/contextcapture
https://www.capturingreality.com/
https://github.com/openMVG/awesome_3DReconstruction_list

From a user point of view, commercial and freeware solutions are like black boxes
that cannot be tuned or modified for the user needs, while open source solutions pro-
vide complete pipelines and interface to multiple view geometry algorithms that can be
modified and customized.

Regarding the reproducible research side, open-source alternatives are interesting
since they deliver a transparent implementation of some algorithms that anyone can
test, use, check, and modify. While it is not easy to implement an algorithm in the right
way, some software guidelines rules can help to provide transparency and fairness to
the respective algorithm or paper implementation.

It is interesting to note that Bundler (more than 2000 citations) and VSfM (more
than 200 citations) projects have helped spreading the usage of Structure from Motion
into the computer vision community. Bundler was released as a PhD code dump under
an open-source license. It caught a lot of attraction since it offers an easy to use com-
mand line software. Unfortunately, it did not receive any major evolution, cleanup or
updates since its initial release. Although also initially developed during a PhD prepara-
tion [2], OpenMVG was designed from the start with the idea of providing a collection
of tools, a test driven high quality library, a regular support and up to date features.

3 OpenMVG design

This section gives an overview of OpenMVG11 functionality and design. OpenMVG
goals are multiple, providing the computer vision community with: (i) an easy access
to accurate implementation of multiple view geometry algorithms; (ii) an understand-
able source code library; (iii) a set of tools used to build complete applications such as
SfM pipelines. OpenMVG includes functionalities for image loading and processing,
feature detection and matching, multi-view geometry solvers and provides an easy ac-
cess to linear algebra and optimization frameworks. It delivers a collection of modular
core features arranged in small libraries (Table 1) that can be used independently or as
building blocks in an entire pipeline in order to perform 3D reconstruction from images
(SfM) or localize images into an existing 3D reconstruction.

OpenMVG is written in standard C++11 and uses the CMake build system bringing
portable builds on x86, x86 64 and ARM targets. It relies on the Eigen [10] library to
perform high performance linear algebra manipulations, the Ceres-solver [9] to solve
large scale non-linear minimization such as bundle adjustment, and OSI-CLP [14] as
a linear programming solver. Thanks to well documented and transparent interfaces,
OpenMVG can be extended or interfaced with other software and even use custom data
in a few easy steps.

OpenMVG goals. OpenMVG goals are twofold:

• an educational side: to provide easy to read and accurate implementation of state of
the art ”classic algorithms” that the community considers as ”common knowledge”.

• a knowledge diffusion side: to spread the usage of the computer vision techniques
to the community by delivering easy to use code, libraries, samples, and pipelines.

11 https://github.com/openMVG/openMVG/

https://github.com/openMVG/openMVG/

OpenMVG philosophy. In order to complete its vision in the best way, OpenMVG
follows as guidelines the credo ”Keep it simple, keep it maintainable”. OpenMVG
authors believe that it is more important for the reproducible research side to have a
code that is easy to read and use than a code that is fast but difficult to edit due to
cumbersome optimization.

Beside the readability criteria, algorithm effectiveness must be also demonstrated.
This goal is achieved using Test Driven Development. The main motivations for using
unit testing is that it helps:

• to assert that algorithm and code are working as expected;
• to perform non regression tests following code updates;
• to provide usage examples in real context;
• people to implement new things.

Thanks to its large collection of unit test, external users can integrate their new
method, test if it works as expected, and use it later in a larger context with no new code
requirements.

OpenMVG license. OpenMVG is licensed under the MPL2 (Mozilla Public License 2).
The choice has been made to maximize its usage, even by industry partners, but force
somehow contribution back to the existing library files. This license is similar to the
well-known LGPL, but it has a file extent: a modification or a bug fix inside an existing
file must be shared under the same license. However the license allows a larger work
to be released under different terms and so enables the usage of OpenMVG powered
code in a commercial application. As shown by the number of external contributions,
the community is comfortable with this license (31 contributors, 100 Pull Requests, 500
issues handled).

4 OpenMVG functionalities

OpenMVG provides algorithms that perform tasks like image loading and processing,
feature detection and matching, multi-view geometry solvers and an easy access to
linear algebra and optimization frameworks. The different modules/libraries are listed
in Table 1.

4.1 Generic photogrammetry data description

The OpenMVG processing pipeline is articulated around the SfM_Data container. It
acts as a spine and allows to have a smooth communication between the tools during
the whole process. This data container stores relations between images and their related
data: abstract views (image metadata, IDs to the camera model and pose), abstract cam-
era models, camera poses, structure landmarks and image observations IDs. Thanks to
a generic I/O interface this container can be saved in binary (for compactness and fast
reading/saving) or in JSON/XML (for easy transfer to third party projects). Thanks to
this container an effective pipeline can be built for different purposes, like 3D recon-
struction from images.

module name usage
cameras Abstract camera model
features Abstract region description (point position, descriptors)

geometry 3D transformation (similarity, 3D pose)
matching Abstract nearest neighbour interface
multiview Multiple View Geometry solvers

robust estimation Robust estimation framework
stl C++ STL extensions

tracks Un-ordered feature tracking
exif Exif data parsing

geodesy Geodesy transformation
graph Graph analysis tools

linearProgramming Abstract linear programming interface
matching image collection Abstract interface to match image collection

numeric Linear algebra tools
sfm reconstruction pipeline (SfM & Localization)

system Benchmarking tools

Table 1: Set of OpenMVG modules

4.2 Image processing

OpenMVG provides a simple image handling module. The generic image class acts as
a 2D template pixel container based on the Eigen matrix structure. It allows to have all
Eigen optimizations available to perform efficient image processing operations. Built
on top of this class, the user can have access to:

• Image I/O (png, jpeg, tiff);
• Image sampling (nearest, linear, cubic, spline) and warping;
• Primitive drawing (line, circle, ellipse);
• Color space conversion;
• Image filtering (gradient computation, linear convolution, non-Linear diffusion [22]).

4.3 Feature extraction and description

Detecting distinctive, repeatable image points and descriptors is a fundamental aspect
of computer vision. This is a key step for object detection, image recognition and multi-
view stereovision applications. OpenMVG allows to describe an image by a collection
of regions. Since the region concept in OpenMVG is abstract freely chosen attributes
can be embedded in the point description (e.g., such as a point location, scale and ori-
entation) and a binary descriptor of arbitrary length. The current implementation allows
to detect and describe:

• Blob regions (Scale invariant points): SIFT [11] (based on VlFeat [20] and Sift
Anatomy [12]), AKAZE [22].

• Corner regions: FAST keypoints [25].
• Affine invariant regions: Tree-Based Morse Regions (TBMR) [23], Maximally Sta-

ble Extremal Regions (MSER) [24].

4.4 Feature and image collection matching

OpenMVG provides an abstract nearest neighbor search framework that could be used
with any vector dimension. The concrete implementations are: (i) BruteForce; (ii) ANN-
kD trees [19]; (iii) Cascade hashing [21]. They can be used to compute nearest 3D points
or to find corresponding points of a scene by matching features across a series of image
pairs.

The image collection matching can be customized by: (i) choosing the appropriate
nearest neighbor method; (ii) sending a custom pair list. Thanks to this customization
the user can control the accuracy vs. time of the retrieval task or easily configure an
exhaustive, a sliding window, a loop matching or even a custom matching (i.e., selection
of pair by similarity search based on vocabulary tree [33]).

Then the ”photo-metric” putatives matches are filtered as geometric coherent matches
using an interface to fit robustly multiple-view geometric models.

In order to better understand and visualize the relationship between the images and
the computed data (features, matches), OpenMVG exports some SVG data, Fig. 1. Us-
ing the SVG format allows to preserve details when zooming thanks to its vectorial
nature; it is really useful to see the pairwise matches, since the user can click on a
match and see the matching features.

Fig. 1: OpenMVG SVG files exported during the image collection matching task
(from Left to Right): image collection, computed features, adjacency matrix, visibil-
ity graph [36], pair matches.

4.5 Multiple View Geometry

On top of matching pairs, some multiple view geometric constraints can be checked.
This can, for example, be employed to filter the set of matching feature points between
images. OpenMVG provides various models and solvers, illustrated Fig.2:

– Relative pose from pairs of image-image matching points, such as homography
(4-point algorithm [6] for transform of planar scene or scene viewed under pure ro-
tation), fundamental matrix (7/8-point algorithm [6], in case of ignorance of camera
internal parameters), essential matrix (5-point [8], in case of known camera internal
parameters).

– Absolute pose from pairs of 3D-2D matching points by different algorithms, P3P
(Perspective from 3 Points) [16], DLT (Direct Linear Transform) [6] (6 pairs),
ePnP [15] (n pairs).

– Similarity transformation from 3D-3D matching space points, model with 7 de-
grees of freedom.

– Triangulation of 3D point from two view projections through linear method [6],
non linear, and L∞ distance [7].

– Structure and Motion with L∞ norm [7].

Left view Right view

OL

ORH

(a) Homography

Left view

X

x
L

x
R

OL OR

Right view

eL eR

(b) Fundamental

Left view

X

x
L

x
R

OL OR

Right view

[R|t]

(c) Relative Pose (d) Triangulation

Fig. 2: Multiple View Geometry Model estimation.

For each model, OpenMVG provides a simple and direct method to compute the
resulting pose. For example, estimating the homography between two corresponding
point sets xLeft and xRight can be performed in a few lines of code:

/ / Se tup l e f t , r i g h t c o r r e s p o n d i n g p o i n t s and s o l v e f o r H
openMVG : : Mat xLeft (2 , 4) , xRight (2 , 4) ;
/ / I n s t a n t i a t i o n o f homography s o l v e r
using H_Solver=openMVG : : homography : : kernel : : FourPointSolver ;
/ / Pe r fo rm model s o l v i n g
std : : vector<openMVG : : Mat3> Hs ; / / M u l t i . s o l . f o r some s o l v e r s
openMVG : : H_Solver : : Solve (xLeft , xRight , &Hs) ;

Multiple View Geometry also deals with motion averaging. It consists in computing
global motions from relative motions, that is, putting all viewpoints and orientations in a
common coordinate system. OpenMVG implements rotation and translation averaging
algorithms using various metrics:

- Rotation averaging with L2 norm, non linear L2 and L1 [18].
- Translation averaging with L2 norm [17], L1, and L∞ [5].

4.6 Robust estimation

Real world data is corrupted by noise and corresponding point pairs may contain out-
liers. Therefore it is mandatory to use a robust model estimation method. OpenMVG
proposes various methods to perform robust estimation. Some are based on user-defined
thresholds while the others estimate automatically the best model based on a statistical
balance between the tight fitting of the data to the model and the number of inlier data.
OpenMVG implements these methods:

- Threshold priors through MaxConsensus and RANSAC (RANdom SAmple Con-
sensus) [26]

Fig. 3: An a contrario-RANSAC unit test example: Automatic threshold adaptivity for
line estimation. On the right: no detected model is hallucinated in pure noise data.

- Threshold free with Leat Median of Squares (LMedS) and a contrario-RANSAC [27,28].

An example of robust line regression to 2D points is illustrated in Fig. 3. The robust
estimation framework uses a kernel concept to keep genericity. The kernel is a template
object that embeds the model solver and the error metrics (i.e., a measure of the fitting
error between the model and the data).

/ /−−Robust a c o n t r a r i o f u n d a m e n t a l m a t r i x e s t i m a t i o n example−−
using KernelType=ACKernelAdaptor<
fundamental : : kernel : : SevenPointSolver , / / S o l v e r
fundamental : : kernel : : SymmetricEpipolarDistanceError , / / M e t r i c s
UnnormalizerT , Mat3>;

/ / B u i l d t h e K er ne l o b j e c t w i th c o r r e s p o n d i n g p o i n t s d a t a
KernelType kernel (
xLeft , leftImageWidth , leftImageHeight ,
xRight , rightImageWidth , rightImageHeight ,
true) ; / / c o n f i g u r e as p o i n t t o l i n e e r r o r model .

/ / Robus t e s t i m a t i o n
Mat3 F ;
const size_t max_iter = 1024 ;
std : : vector<size_t> vec_inliers ;
openMVG : : ACRANSAC (kernel , vec_inliers , max_iter , &F) ;

4.7 Camera models

OpenMVG provides an abstract camera interface that can be used seamlessly along the
library with the following concrete implementations: pure pinhole [6], pinhole with 1
to 3 radial distortion coefficients [31], pinhole with 5 distortion coefficients (3 radial
+ 2 tangential) (aka. Brown-Conrady) [29,30], and fish-eye [32]. The abstract camera
model allows easy computation of bearing vectors from 2D points, 3D point projection
to camera and application or correction of lens distortion.

4.8 Structure from Motion

Using all previous modules, an incremental [3] and a global [5] 3D-reconstruction
pipelines are implemented in OpenMVG. The first is more adapted for images with low
cross-coverage, but it suffers from drift effects and low scalability due to its sequential
nature. The second is fast for datasets with large image overlap and offers a good scal-
ability. The two pipelines have been demonstrated to be very accurate compared to the
other existing open solutions [1,13]. Ready to use Python scripts are delivered with the
library in order to ease the usage of this tool-chain.

Bundle Adjustment All SfM pipelines rely on a generic bundle adjustment module
that allows to perform non linear refinement of the SfM scene by minimizing the struc-
ture reprojection in the images (residual error). It consists of a non-linear minimization
in a high-dimensional space. This module provides a fine grain control of which param-
eters (intrinsic (principal point, focal, distortion), extrinsic (rotation, translation), struc-
ture landmarks) will be held as constants or variable during the minimization. This fine
grain control interface is done using bitwise operator that make the code compact and
very expressive. An efficient multi-thread concrete implementation is provided through
the Ceres-solver interface [9].

4.9 Localization

This module allows to find the camera pose and orientation of a collection of images
in an existing reconstruction. Such a problem is common in virtual/augmented reality
setup where one wants to localize the user in a known 3D world in order to display
virtual elements at the right place, or when one wants to localize video frames in an
existing map/asset for VFX issues (virtual camera system).

4.10 Geodesy

This module provides tools to use known 3D priors to fit the 3D reconstruction to a
given user Spatial Reference System (SRS), such as ECEF, for geo-localization. Reg-
istration can be performed using Ground Control Points (GCP), and GPS data (pose
center position prior) for (i) rigid transformation or (ii) non rigid constraints used in the
bundle adjustment framework. Pose priors can also be useful in order to limit the num-
ber of pairs to match in a very large image collection in case of UAV/mobile mapping
survey.

5 Reproducible research

The project tries to follow the best practice of open source software development. It uses
some strict guidelines in order to deliver a high quality code that allows the community
to be involved in any work in progress.

5.1 OpenMVG infrastructure

In order to build a project for a community it is necessary to maximize its accessibility
and provide tools for feedback about the status of the library. To do so OpenMVG
eco-system relies on free tools that allow to perform online version control system,
continuous integration and documentation. Here is the list of the different tools used
and their purpose:

• Project management: https://github.com/openMVG/openMVG
– Github (version control system) for easy access and collaboration, issue tracking,
milestones, fork, pull request, code review.

• Documentation:
– reStructuredText for Github integration (visible as a formatted document and not
as code), online doc generation & hosting, http://openmvg.readthedocs.
io/en/latest/.

• Continuous integration:
– Travis-CI for Unix (Linux, OsX).
– AppVeyor for Windows (Visual Studio).
– Docker for container based deployment.

5.2 Development principles

Updates rely on the simple rule that they must not break any existing code. Releases
are pushed in the master branch with tagging; Each time a new release is planned, a
new branch develop is started. Each new feature development (X) happens in a new
branch. (i) A Github issue is created with a comprehensive step by step explanation
that is required for completion of the feature; (ii) a branch develop X is created from
develop; (iii) each commit is linked to the Github issue; (iv) once validated, develop X
is merged to develop.

Github Pull Request (external contribution) are handled by a code review from the
community (code style, check the code is easy to use, readable and understandable with
comprehensive code comments and paper references), suggestion of an enhanced API
or usage of existing functionalities, suggestion of unit test or samples if missing, sug-
gestion to complete the documentation, continuous integration test and non regression,
merge once tested and validated by the community to develop branch.

Creation of a new release follows these steps: (i) modify develop branch API inter-
nal version number; (ii) merge from develop to master; (iii) create a release tag; (iv) edit
the Github release tag with a complete CHANGELOG; (v) advertise the new version
and features to the community.

Thanks to this set of rules the quality of any modified line of code OpenMVG can
be followed by the community and open to comments, tests and critics. People can join
effort to develop a feature by using the fork mechanism and contribute actively.

5.3 Future development

The OpenMVG developers hope to continue improving its database of algorithms to
follow the state of the art, extend the scope of its users, provide best in class “easy to

https://github.com/openMVG/openMVG
http://openmvg.readthedocs.io/en/latest/
http://openmvg.readthedocs.io/en/latest/

read and use” code, hoping to seduce some real time oriented users to add some SLAM
algorithms.

Another aim could be to build an open format inspired by the modular SfM_Data
OpenMVG scene description for 3D photogrammetry purpose, to seamlessly connect
projects between existing and upcoming products.

Beside this project, some OpenMVG authors started a new project called ”Awesome
3DReconstruction list” that collects the papers (tutorials, conference papers) and open-
source resources related to 3D reconstruction from images (more than 120 references
are collected).12.

6 Community adoption

One difference to the other existing framework is that OpenMVG is trying to initiate a
real exchange with its community. Some Github statistics give an idea of the community
size:

Project name Year of creation Contributors Watchers Stars Fork
bundler sfm 2008 8 108 530 245
COLMAP 2016 5 14 82 34

MVE 2012 13 61 188 131
OpenMVG 2013 31 156 802 392
THEIASfM 2015 15 43 165 80

Despite it is hard to compare the statistics due to the differing year of creation of each
project, note that OpenMVG has an active community (OpenMVG is neither the old-
est nor the most recent project). Moreover, OpenMVG is used by professionals and
laboratories for real application, for example:

Arc-Team13 (a professional company operating in different branches of archaeology,
from fieldwork to research, and specialized in the use and development of open source
software and hardware for cultural heritage projects) uses OpenMVG softwares for
3D archaeological and architectural documentations in different logistical conditions:
ordinary excavations, underwater contexts, remote sensing, underground environments,
glacial archaeological researches and abroad missions, see Fig. 4.

Ebrafol14 provides an independent alternative to judicial expertise and technical as-
sistance in forensic dentistry and forensic anthropology). It uses OpenMVG and its
connection to multiple view stereo tools to build 3D models of skull for 3D face recon-
struction and to help injured animals by building accurate prostheses, see Fig. 5.

12 https://github.com/openMVG/awesome_3DReconstruction_list
13 http://www.arc-team.com/
14 Brazilian Team of Forensic Anthropology and Legal Dentistry http://ebrafol.org/

https://github.com/openMVG/awesome_3DReconstruction_list
http://www.arc-team.com/
http://ebrafol.org/

Fig. 4: Arc-Team reconstructions for archaeology.

Fig. 5: EBRAFOL sample usage of OpenMVG reconstruction for skull reconstruction
and accurate animal prothesis reconstruction and printing.

Digital Humanities Laboratory DHLAB15 (an EPFL laboratory team that conducts
research in historical and geographical information systems. The team is creating a web
based service, through the development of a 3D historic GIS server, allowing to view,
explore and compare SfM, LIDAR and historical handmade models). It uses OpenMVG
to develop a reliable and powerful SfM pipeline in order to compute sparse and dense
reconstructions of cities (taking advantage of existing aerial photography database and
specific ground-based acquisitions), see Fig. 6.

The community also uses OpenMVG for non-professional work (Fig. 7).

7 Conclusion

We presented OpenMVG, a generic library for multiple view geometry aimed at provid-
ing the community with a reference tool. Its insistence on code quality and readability
15 http://dhlab.epfl.ch/

http://dhlab.epfl.ch/

Fig. 6: DHLAB reconstructions of Paris (1945 historical aerial images, IGN) and Venice
(aerial, UAV + ground-based images, DHLAB).

Fig. 7: Some reconstructions by non-professionals (Romuald Perrot 2016).

does not prevent it from aiming at genericity without sacrificing ease of use and sim-
plicity.

Interesting enhancements would be the addition of algorithms specialized in SLAM
for online 3D odometry and reconstruction.

More generally, OpenMVG developers are willing to attract users that could even-
tually participate in its development. For that, they offered tutorials at the OpenWorld
Forum in Paris in 2014, at the CVPR Boston conference in 2015 and at the SFPT Paris
meeting in 2016.

Thanks to its strong connection to a state of the art solution for computing de-
tailed models, the OpenMVS [42] open source project, OpenMVG and OpenMVS of-
fer together a strong end-to-end collection of open source algorithms to the community
to compute sparse and dense detailed models (see some dense reconstructions from
Fig. 7).

Acknowledgements

The authors thank the Imagine project of École des Ponts ParisTech, MikrosImage,
Foxel, Auxilium entity partners and all the OpenMVG community for its support and
contributions.

References

1. N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: exploring photo collections in 3D.
ACM Transactions on Graphics (TOG), 2006

2. P. Moulon. Robust and accurate calibration of camera networks, PhD, Université Paris-Est,
2014

3. P. Moulon, P. Monasse, and R. Marlet. Adaptive Structure from Motion with a contrario model
estimation. ACCV, 2012

4. P. Moulon and P. Monasse. Unordered feature tracking made fast and easy. CVMP, 2012
5. P. Moulon, P. Monasse, and R. Marlet. Global Fusion of Relative Motions for Robust, Accu-

rate and Scalable Structure from Motion. ICCV, 2013
6. R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Second edition,

Cambridge University Press, 2004. ISBN: 0521540518
7. F. Kahl and R. I. Hartley. Multiple-View Geometry Under the L∞-Norm. IEEE Trans. PAMI,

2008
8. D. Nistér. An Efficient Solution to the Five-Point Relative Pose Problem. CVPR, 2003
9. S. Agarwal and K. Mierle. Ceres Solver: Tutorial & Reference. Google Inc.
10. G. Guennebaud , B. Jacob and others. Eigen v3. http://eigen.tuxfamily.org,

2010.
11. D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. IJCV, 2004
12. I. Rey Otero and M. Delbracio. Anatomy of the SIFT Method. Image Processing On Line,

2014. https://doi.org/10.5201/ipol.2014.82
13. C. Wu. Towards Linear-time Incremental Structure From Motion. 3DV, 2013
14. J. Forrest, J. Hall and others. Clp (Coin-or linear programming). https://projects.

coin-or.org/Clp
15. V. Lepetit, F. Moreno-Noguer, and P. Fua. EPnP: An Accurate O(n) Solution to the PnP

Problem. IJCV, 2009
16. L. Kneip and P. Furgale. OpenGV: A unified and generalized approach to real-time calibrated

geometric vision. ICRA, 2014
17. K. Wilson and N. Snavely. Robust Global Translations with 1DSfM. ECCV, 2014
18. A. Chatterjee and V. M. Govindu. Efficient and Robust Large-Scale Rotation Averaging.

ICCV, 2013
19. M. Muja and D. G. Lowe. Fast Approximate Nearest Neighbors with Automatic Algorithm

Configuration. VISAPP, 2009
20. A. Vedaldi and B. Fulkerson. VLFeat: An Open and Portable Library of Computer Vision

Algorithms. Proc. of the ACM International Conference on Multimedia, 2010
21. J. Cheng, C. Leng, J. Wu, H. Cui, and H. Lu. Fast and Accurate Image Matching with Cas-

cade Hashing for 3D Reconstruction. CVPR, 2014
22. P. F. Alcantarilla, J. Nuevo, and A. Bartoli. Fast Explicit Diffusion for Accelerated Features

in Nonlinear Scale Spaces. BMVC, 2013
23. Y. Xu, P. Monasse, T. Géraud, L. Najman. Tree-Based Morse Regions: A Topological Ap-

proach to Local Feature Detection. IEEE Transactions on Image Processing, 2014
24. D. Nistér, H. Stewénius. Linear Time Maximally Stable Extremal Regions. ECCV, 2008
25. E. Rosten and T. Drummond. Machine learning for high-speed corner detection. ECCV, 2006
26. M. A. Fischler and R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting

with Applications to Image Analysis and Automated Cartography. ACM, 1981
27. L. Moisan, P. Moulon, and P. Monasse. Automatic Homographic Registration of a Pair of

Images, with A Contrario Elimination of Outliers. Image Processing On Line, 2012. http:
//dx.doi.org/10.5201/ipol.2012.mmm-oh

28. L. Moisan, P. Moulon, and P. Monasse. Fundamental Matrix of a Stereo Pair, with A Con-
trario Elimination of Outliers. Image Processing On Line, 2016. http://dx.doi.org/
10.5201/ipol.2016.147

29. D. C. Brown. Decentering distortion of lenses. Photogrammetric Engineering, 1966
30. A. E. Conrady. Decentred Lens-Systems. Monthly notices of the Royal Astronomical Society

79, 1919
31. J.-P. de Villiers, F. W. Leuschner, and R. Geldenhuys. Centi-pixel accurate real-time inverse

distortion correction. International Symposium on Optomechatronic Technologies, 2008

http://eigen.tuxfamily.org
https://doi.org/10.5201/ipol.2014.82
https://projects.coin-or.org/Clp
https://projects.coin-or.org/Clp
http://dx.doi.org/10.5201/ipol.2012.mmm-oh
http://dx.doi.org/10.5201/ipol.2012.mmm-oh
http://dx.doi.org/10.5201/ipol.2016.147
http://dx.doi.org/10.5201/ipol.2016.147

32. P. Sturm, S. Ramalingam, J.-P. Tardif, S. Gasparini, and J. Barreto. Camera Models and
Fundamental Concepts Used in Geometric Computer Vision. Found. Trends. Comput. Graph.
Vis., 2011

33. D. Nistér and H. Stewenius. Scalable Recognition with a Vocabulary Tree. CVPR, 2006
34. Y. Furukawa, B. Curless, S. Seitz, and R. Szeliski. Towards Internet-scale Multi-view Stereo.

CVPR, 2010
35. Y. Furukawa and J. Ponce. Accurate, Dense, and Robust Multi-View Stereopsis. PAMI, 2010
36. S. C. North. Drawing graphs with NEATO. NEATO Users Manual, 2004
37. S. Fuhrmann, F. Langguth, and M. Goesele. MVE - A Multi-View Reconstruction Environ-

ment. Proceedings of the Eurographics Workshop on Graphics and Cultural Heritage, 2014
38. C. Sweeney, and T. Hollerer, and M. Turk. Theia: A Fast and Scalable Structure-from-Motion

Library. Proceedings of the 23rd ACM International Conference on Multimedia, 2015
39. J. L. Schönberger and J.-M. Frahm. Structure-from-Motion Revisited. CVPR, 2016.
40. M. Pierrot Deseilligny and I. Clery. APERO, An open source bundle adjustment software for

automatic calibration and orientation of set of images. ISPRS, 2011
41. Mapillary. OpenSfM. https://github.com/mapillary/OpenSfM, 2013
42. D. Cernea. OpenMVS: Open Multiple View Stereovision. https://github.com/

cdcseacave/openMVS/, 2015

https://github.com/mapillary/OpenSfM
https://github.com/cdcseacave/openMVS/
https://github.com/cdcseacave/openMVS/

	OpenMVG: Open Multiple View Geometry

