Semantizing Complex 3D Scenes using Constrained Attribute Grammars

A. Boulch?, S. Houllier' R. Marlet' and, O. Tournaire'?
! Université Paris-Est, LIGM (UMR CNRS), Center for Visual Computing, Ecole des Ponts ParisTech
6-8 av. Blaise Pascal, 77455 Marne-la-Vallée, France 2 CSTB

1 Parsing stairs
Grammar for stairs

Figure 1 shows a pretty-printed version of the grammar used for extracting stairways. There are two types
of risers, to cope with different situations occurring in CAD models. Figure 2 and 3 pictures typical steps
extracted using riserBase and riserBottomTreadBase.

/I A riser base is a vertical polygon of constrained size.
riserBase b — polygon p
(vertical(p),
0.1 <=p.breadth<=0.3,
0.5<=p.length<=2)

/I A nosing element is a thin polygon whose length direction is horizontal.
nosingElement e — polygon p
(horizontal(p.lengthVector),
p.breadth <=0.08,
0.5<=p.length<=2)

/I' A riser with optional nose is a riser base topped with a possibly empty sequence
// of nosing elements (see Figure 2).
riserOptNose ron — riserBase b, maxseq(nosingElement, edgeAd]) n
(edgeAdj(b,n),
above(b,n))
/I' A tread is a horizontal polygon of constrained size.
tread t — polygon p
('horizontal(p),
0.1 <=p.breadth <=2,
0.5<=p.length<=2)

/I A riser topped with a tread underside and nose (see Figure 3) — useful for CAD models.
riserBottomTreadBase bt — riserBase b, tread t
(adj(b,1),
above(b, t))
riserBottom TreadNose rbtn — riserBottomTreadBase bt,
maxseq(nosingElement, edgeAdj) n
(1<=mn.size,
edgeAdj(bt, n), above(bt,n))

/I A riser is any kind of riser.
riser r — riserOptNose ron
| riserBottomTreadNose rbtn

/I A step is a riser topped by a tread.
step s — riser r, tread t
(edgeAdj(r, 1),
above(r, t))
/I A stairway is a sequence of steps topped by an optional riser.
stairway w — maxseq(step, edgeAdj) s, optional riser r
(edgeAdj(s,r),
above(s, 7))

Figure 1: Grammar for a stairway (units in meters)

tread tread

nosingElement L

riser .
“ riserBase ——

riser

Figure 2: Example of steps extracted with riserBase.

tread
nosingFElement —

tread —T .
riserBottom TfreadBase{ , rmser
riserBase —»

Figure 3: Example of step extracted with riserBottomTreadBase.

Parse tree of a stairway model

To illustrate a parse tree example, we use the simple synthetic model pictured on Figure 4. It is composed
of four steps with nose.

Figure 4: A model to illustrate stairway parsing.

The corresponding parse tree is represented on Figure 5. Nodes with label OPE are intermediate nodes
generated by our prototype for maximal operators (here a maximal sequence). There is only one interpre-
tation and the parse forest we construct actually is a parse tree.

polygon20
polygonl9

polygonl6

nosingElement8
nosingElement9 @ riserOptNose4

riserBase0
- riserOptNose0 @ @ @
nosingElement0 @

nosingElementl

polygonl7

polygonl8

polygon3

polygon0 =
polygon2
polygonl

treadl

riserBasel riserOptNosel
nosingElement3 @

nosingElement4

polygonll <

polygon8 -

polygon9
polygonlO

polygon7 -

tread2 @
riserBase2 riserOptNose2 @
nosingElement2 @

nosingElement5

polygond =

polygon6

polygon5

polygonl5 -t

tread3 @
riserBase3 riserOptNose3 @
nosingElement6 @

nosingElement7

polygonl2 -

polygonl3

polygonld

UUBUOBOOLOOROYRRYLIYE

Figure 5: Parse forest (actually tree) of the model pictured on Figure 4, using stairway grammar of Figure 1.

Stair parsing examples on CAD models

The paper describes some results of stairway parsing on CAD models. They are illustrated here on Fig-
ures 6, 7, 8, 9 and 10. We show risers in red and treads in orange. We also added basic detections of walls
in gray (large vertical polygons) and of floors in brown (large horizontal polygons). As we can see, steps

in LcF (Figure 9) are not well detected due to the peculiar modeled geometry of the stairway: risers have
twice the usual height.

Jnmy,

i

§ SN !Lh

=]

W L L))

5
T
.“
T~
=
B
b

| L ng

Y4

LY

Figure 6: Stairs of the LcA model.

Figure 7: Stairs of the LcC model.

Figure 8: Stairs of the LcD model.

Figure 9: Stairs of the LcF model.

Figure 10: Stairs of the LcG model.

2 Parsing openings

Figure 11 shows a model with a wall, two floors and two openings: a window (hole opening) and a door
(border opening). As it is a surface model, there are two polygons associated to a panel (windowpane
or door panel), corresponding to each face, and likewise for a main wall. Note that we differentiate wall
edges, around an opening, from frame edges, inside an opening.

main wall

frame edge

wall edge

Figure 11: A model to illustrate opening parsing, with a cross-section for the window.

Grammar for openings

The pretty-printed version of the grammar we used for the detection of openings is shown on Figure 12. It
actually relies on a few straightforward features that were not presented in the paper:

e p.area is the area of polygon p.

e p.nbHoles is number of holes in polygon p.

f-bbz is the height, along the vertical axis, of the bounding box of form f.
e adj(f1, f2) checks any kind of adjacency (by a vertex or an edge) between forms f and fs.
e or introduces disjunction in a condition.

e context introduces a confextual grammar element: it is not considered a component of the con-
structed left-hand side and it is not taken into account when checking exclusivity.

e maxconn(X, ¢, ¢, x) is as maxconn(X, ¢, ¢’) with the extra constraint that 2 should be among any
resulting set {x1,...,x,,} of connected instances of X. Providing a “first” x allows pruning the
search space by just growing a strongly connected component from .

The use of maxconn here, as opposed to other operators, was motivated by complex geometries with nested
frames as well as for sliding doors and windows.

Parse forest of a model with openings

We use the simple synthetic model pictured on Figure 11 to illustrate a parse tree example (see Figure 13).
As for stairs, intermediate nodes labeled OPE are introduced by operators, here by maxconn. Due to a
current limitation in the implementation of maxconn(X ¢, ¢/, x), the prototype introduces two parses (with
sharing) for each opening, one for each frame side (inside and outside).

/I' A floor is a large enough horizontal polygon.
floor f — polygon p
(horizontal(p),
3 <=p.breadth, 3<=p.length, 7<=p.area)

/I A main wall surface is a high and large enough vertical polygon, adjacent to two floors.
main_wall w — polygon p, context floor fi, context floor fo
(vertical(p),
1<=p.bbz, 0.4 <=p.breadth,
adj(pv fl)v adJ(pa fZ) >

/' A wall edge (i.e., a small wall surface around openings) is a thin polygon without holes,
/I adjacent to two walls (inside wall and outside wall).
wall_edge we — polygon p, context main_wall wy, context main_wall wo
(horizontal(p) or vertical(p),
p.length<=2.7,
0.05 <= p.breadth <=0.5,
p.nbHoles==0,
adj(pv wl)’ ad.](p7 w2) >
/I' A pre-opening (i.e., a candidate for a main opening component) is a polygon the size of
// an opening.
pre_opening po — polygon p
(vertical(p), 0.5 <=p.bbz,
0.2<=p.length<=2.7, 0.2 <=p.breadth <=2.7)

/I A pre-frame (i.e., a candidate for an opening frame) is a pre-opening with either one or
/I more large holes (typically for a windowpane), or no hole and a small area compare to
/I its bounding rectangle area (typically for a door).
pre_frame pf — pre_opening po
(po.nbHoles>=1,
po.area <= 0.5 * po.length x po.breadth)
| pre_opening po
(po.nbHoles==0,
po.area <= 0.25 * po.length * po.breadth)

/I' A panel (windowpane or door panel) is a pre-opening with no hole and an area similar to
// that of its 2D bounding box.
panel pn — pre_opening po
(po.nbHoles==0,
0.95 * po.area <= po.length * po.breadth <=1.05 * po.area)

/I' A frame edge is a thin polygon whose length is up to that of an opening.
frame_edge fe — polygon p
(horizontal(p) or vertical(p),
horizontal(p.lengthVector) or vertical(p.lengthVector),
p.nbHoles==0,
p.length<=2.7, 0.05<=p.breadth<=0.5)
/I An opening element is either a panel, a pre-frame or a frame edge
opening_element oe — panel pn | pre_frame pf | frame_edge fe
/I A frame is pre-frame adjacent to a wall edge.
frame f — pre_frame pf, context wall_edge we
(adj(pf, we))
/I An opening is a connected set of opening elements adjacent to a wall, implemented here
/l as a connected set of opening elements based on a frame.
opening o — frame f, maxconn(opening_element, true, adj, f) soe

Figure 12: Grammar for openings (units in meters)

polygon25

pre_opening9
polygon21 frame_edge0
polygon22 frame_edgel
polygon23 frame_edge2
polygon20 frame_edge5
pre_opening8
pre_opening5

polygonl8

openingl

polygon24

U bbbl

polygonl9

polygonl4 -

frame_edged
frame_edgeb
pre_openingl0
pre_openingll
frame_edge3
pre_opening3

wall_edged
wall_edge0
olygon9
wall_edge3
pre_opening0
wall_edge5
wall_edge6
polygon?7
pre_opening7
main_wallO
wall_edgel
polygoné
pre_openingl
wall_edge2
pre_opening2

Figure 13: Parse forest of the model pictured on Figure 11, using opening grammar of Figure 12.

polygonll

polygonl5 -

opehing3

polygonl6

polygonl7 opening2

polygonl3 -

polygonl2

polygonl0

polygon8

polygon5

peolygon3 main_walll

polygon2

polygonl

DORORENY By
ool BRANN 00 0] B0

polygonQ

polygond

Opening parsing examples on CAD models

The paper describes some results of opening parsing on CAD models. They are illustrated here on Fig-
ures 2, 2, 2, 18 and 2. See Table 2 in the paper for the color code.

‘ T Ll

UL T

T

g

L
—JH]

7?741

v] s =
m W | | | | | O | .

L0

Figure 14: LcA building with, from upper left to lower right, model without semantization, after polygon
extraction, after semantization and with texture.

Figure 15: LcC building with, from upper left to lower right, model without semantization, after polygon
extraction, after semantization and with texture.

Figure 16: LcD building with, from upper left to lower right, model without semantization, after polygon
extraction, after semantization and with texture.

10

Figure 17: LcG building with, from upper left to lower right, model without semantization, after polygon
extraction, after semantization and with texture.

‘4

"%Eﬂ@
EEEmmy

Figure 18: Openings of the LcF model.

11

3 Issues with the geometry of CAD models

CAD models are not perfect. They may contain errors such as spaces between walls and floors (Figure
19, left) or doors intersecting floors (Figure 19, right). Because of this kind of inconsistencies, adjacencies
may be missing or spurious, and the parsing may be wrong or not optimal.

Figure 19: Door going through floor (LcC).

For instance, on Figure 20, the stairway is partly included in the floor, leading to a large polygon for
the bottom riser, which is not detected as such.

Figure 20: Stairway going through the floor (LcG).

As said in the paper, these geometric issues do not occur with data originating from existing objects as
only their surface is visible.

12

Besides, the building models we used were available in IFC format (Industry Foundation Classes). The
IFC label and relate each geometric component of the model. However, there were labeling inconsistencies
between different models. For instance, balcony openings (French doors/windows) were not interpreted in
the same way by the creator of LcA and the creator of LcC: the former considers them as windows, the
latter as doors; the situation is similar for openings with guardrails in models LcF and LcG (see Figure 21).

(b) LcC, door and balcony.

=i f
UL L I N

~LL o

(c¢) LcF, window and guardrail. (d) LcG, door and guardrail.

Figure 21: Similar openings with different labels in the original IFC models.

For that reason, we do not try to differentiate doors from windows, and compare with the “ground
truth”. (Door adjacency to a floor should be enough to differentiate them from windows most of the time.)

13

