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Abstract. This paper considers the generic problem of dense alignment
between two images, whether they be two frames of a video, two widely
different views of a scene, two paintings depicting similar content, etc.
Whereas each such task is typically addressed with a domain-specific
solution, we show that a simple unsupervised approach performs surpris-
ingly well across a range of tasks. Our main insight is that parametric
and non-parametric alignment methods have complementary strengths.
We propose a two-stage process: first, a feature-based parametric coarse
alignment using one or more homographies, followed by non-parametric
fine pixel-wise alignment. Coarse alignment is performed using RANSAC
on off-the-shelf deep features. Fine alignment is learned in an unsuper-
vised way by a deep network which optimizes a standard structural
similarity metric (SSIM) between the two images, plus cycle-consistency.
Despite its simplicity, our method shows competitive results on a range
of tasks and datasets, including unsupervised optical flow on KITTI,
dense correspondences on Hpatches, two-view geometry estimation on
YFCC100M, localization on Aachen Day-Night, and, for the first time,
fine alignment of artworks on the Brughel dataset. Our code and data
are available at http://imagine.enpc.fr/~shenx/RANSAC-Flow/.

1 Introduction

Dense image alignment (also known as image registration) is one of the funda-
mental vision problems underlying many standard tasks from panorama stitching
to optical flow. Classic work on image alignment can be broadly placed into
two camps: parametric and non-parametric. Parametric methods assume that
the two images are related by a global parametric transformation (e.g. affine,
homography, etc), and use robust approaches, like RANSAC, to estimate this
transformation. Non-parametric methods do not make any assumptions on the
type of transformation, and attempt to directly optimize some pixel agreement
metric (e.g. brightness constancy constraint in optical flow and stereo). How-
ever, both approaches have flaws: parametric methods fail (albeit gracefully) if
the parametric model is only an approximation for the true transform, while
non-parametric methods have trouble dealing with large displacements and large
appearance changes (e.g. two photos taken at different times from different views).
It is natural, therefore, to consider a hybrid approach, combining the benefits of
parametric and non-parametric methods together.
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Fig. 1: Overview of RANSAC-Flow. Stage 1: given a pair of images, we compute
sparse correspondences (using off-the-shelf deep features), use RANSAC to estimate
a homography, and warp second image using it. Stage 2: given two coarsely aligned
images, our self-supervised fine flow network generates flow predictions in the matchable
region. To compute further homographies, we can remove matched correspondences,
and iterate the process.

In this paper, we propose RANSAC-flow, a two-stage approach integrating
parametric and non-parametric methods for generic dense image alignment.
Figure 1 shows an overview. In the first stage, a classic geometry-verification
method (RANSAC) is applied to a set of feature correspondences to obtain one
or more candidate coarse alignments. Our method is agnostic to the particular
choice of transformation(s) and features, but we’ve found that using multiple
homographies and off-the-shelf self-supervised deep features works quite well.
In the second non-parametric stage, we refine the alignment by predicting a
dense flow field for each of the candidate coarse transformations. This is achieved
by self-supervised training of a deep network to optimize a standard structural
similarity metric (SSIM) [76] between the pixels of the warped and the original
images, plus a cycle-consistency loss [84].

Despite its simplicity, the proposed approach turns out to be surprisingly
effective. The coarse alignment stage takes care of large-scale viewpoint and
appearance variations and, thanks to multiple homographies, is able to capture
a piecewise-planar approximation of the scene structure. The learned local flow
estimation stage is able to refine the alignment to the pixel level without relying
on the brightness constancy assumption. As a result, our method produces
competitive results across a wide range of different image alignment tasks, as
shown in Figure 2: (a) unsupervised optical flow estimation on KITTI [42]
and Hpatches [5], (b) visual localization on Aachen Day-Night [60], (c) 2-
view geometry estimation on YFCC100M [70], (d) dense image alignment, and
applications to (e) detail alignment in artwork and (f) texture transfer. Our code
and data are available at http://imagine.enpc.fr/~shenx/RANSAC-Flow/.

2 Related Work

Feature-based image alignment. The classic approach to align images with
very different appearances is to use sparse local image features, such as SIFT [35],

http://imagine.enpc.fr/~shenx/RANSAC-Flow/
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(a) Optical flow estimation. (b) Visual localization.

(c) 2-view geometry estimation. (d) Dense image alignment

(e) Artwork alignment (f) texture transfer

Fig. 2: RANSAC-Flow provides competitive results on a wide variety of tasks and enable
new challenging applications.

which are designed to deal with large viewpoint and illumination differences as
well as clutter and occlusion. These features have to be used together with a
geometric regularization step to discard false matches. This is typically done
using RANSAC [16] to fit a simple geometric transformation (e.g. affine or
homography) [69]. Recently, many works proposed to learn better local features
[37,12,71,43,38,54]. Differentiable and trainable version of RANSAC have also
been developed [79,48,47,50].

Using mid-level features [67] instead of local keypoints, proved to be beneficial
for matching visual content across modalities, e.g. 3D models and paintings [3].
Recently, [64] learned deep mid-level features for matching across different visual
media (drawings, oil paintings, frescoes, sketches, etc), and used them together
with spatial verification to discover copied details in a dataset of thousands
of artworks. [57] used deep feature map correlations as input to a regression
network on synthetic image deformations to predict the parameters of an affine
or thin-plate spline deformation. Finally, transformer networks [24] can also learn
parametric alignment typically as a by-product of optimizing a classification task.

Direct image alignment. Direct, or pixel-based, alignment has its roots in
classic optical flow methods, such as Lucas-Kanade [36], who solve for a dense
flow field between a pair of images under a brightness constancy assumption. The
main drawback is these methods tend to work only for very small displacements.
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This has been partially addressed with hierarchical flow estimation [69], as well
as using local features in addition to pixels to increase robustness [6,55,4,20].
However, all such methods are still limited to aligning very similar images, where
the brightness constancy assumption mostly holds. SIFT-Flow [33] was an early
method that aimed at expanding optical flow-style approaches for matching
pairs of images across physically distinct, and visually different scenes (and later
generalized to joint image set alignment using cycle consistency [83]). In the deep
era, [34] showed that ConvNet activation features can be used for correspondence,
achieving similar performance to SIFT-Flow. [9] proposed to learn matches
with a Correspondence Contrastive loss, producing semi-dense matches. [58]
introduced the idea of using 4D convolutions on the feature correlations to
learn to filter neighbour consensus. Note that these latter works target semantic
correspondences, whereas we focus on the case when all images depict the same
physical scene.

Deep Flow methods. Deep networks can be trained to predict optical
flow and to be robust to drastic appearance changes, but require adapted loss
and architectures. Flows can be learned in a completely supervised way using
synthetic data, e.g. in [13,21], but transfer to real data remains a difficult problem.
Unsupervised training through reconstruction has been proposed in several
works, targeting brightness consistency [2,75], gradient consistency [52] or high
SSIM [25,78]. This idea of learning correspondences through reconstruction has
been applied to video, reconstructing colors [73], predicting weights for frame
reconstruction [27,29], or directly optimizing feature consistency in the warped
images [74]. Several papers have introduced cycle consistency as an additional
supervisory signal for image alignment [84,74]. Recently, feature correlation
became a key part of several architectures [21,68] aiming at predicting dense
flows. Particularly relevant to us is the approach of [41] which includes a feature
correlation layer in a U-Net [59] architecture to improve flow resolution. A similar
approach has been used in [31] which predicts dense correspondences for image
retrieval.

Hybrid parametric/non-parametric image alignment. Classic “plane
+ parallax” approaches [62,28,23] aimed to combine parametric and non-parametric
alignment by first estimating a homography (plane) and then considering the
violations from that homography (parallax). Similar ideas also appeared in stereo,
e.g. model-based stereo [10]. Recently, [78,8] proposed to learn optical flow by
jointly optimizing with depth and ego-motion for stereo videos.

3 Method

Our two-stage RANSAC-Flow method is illustrated in Figure 1. In this section,
we describe the coarse alignment stage, the fine alignment stage, and how they
can be iterated to use multiple homographies.

3.1 Coarse alignment by feature-based RANSAC

Our coarse parametric alignment is performed using RANSAC to fit a homography
on a set of candidate sparse correspondences between the source and target images.
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We use off-the-shelf deep features (conv4 layer of a ResNet-50 network) to obtain
these correspondences. We experimented with both pre-trained ImageNet features
as well as features learned via MoCo self-supervision [18], and obtained similar
results. To obtain good results, we found it was crucial to perform feature
matching at different scales. We kept the images aspect ratio and resized them
with seven scales: 0.5, 0.6, 0.88, 1, 1.33, 1.66 and 2. Matches that were not
symmetrically consistent were discarded. The estimated homography is applied
to the source image and the result is given together with the target image as
input to our fine alignment. We report coarse-only baselines in Experiments
section for both features as ”ImageNet [19]+H ” and ”MoCo [18]+H ”.

3.2 Fine alignment by local flow prediction

Given a source image Is and a target image It which have already been coarsely
aligned, we want to predict a fine deformation flow FIs→It between them. We
write FIs→It as the mapping function associated to the flow FIs→It . Since we
only expect the fine alignment to work in image regions where the homoraphy is
a good approximation of the deformation, we also want to predict a matchability
mask MIs→It , indicating which correspondences are valid. In the following, we
first present our objective function, then how and why we optimize it using a
self-supervised deep network.

Objective function. Our goal is to find a flow that warps the source into an
image similar to the target. We formalize this by writing an objective function
composed of three parts: a reconstruction loss Lrec, a matchability loss Lm and
a cycle-consistency loss Lc. Given the pair of images(Is, It) the total loss is:

L(Is, It) = Lrec(Is, It) + λLm(Is, It) + µLc(Is, It) (1)

with λ and µ hyper-parameters weighting the contribution of the matcha-
bility and cycle loss. We detail each of these three components in the following
paragraphs. Each loss is defined pixel-wise and · denotes the element-wise multi-
plication.

Reconstruction loss. Reconstruction is the main term of our objective and is based
on the idea that the source image warped with the predicted flow FIs→It (Is) should
be aligned to the target image It. We use the structural similarity (SSIM) [76] as
a robust similarity measure:

LSSIM
rec (Is, It) = (1− SSIM (FIs→It(Is), It)) ·MIt (2)

Cycle consistency loss. We enforce cycle consistency of the flow for 2-cycles:

Lc(Is, It) = ‖FIt→Is(FIt→Is) + FIs→It‖ ·MIt (3)

Note we also experimented with cycle consistency between triplets of images,
but this overly constrains the training data since triplets of matching images are
required and the results didn’t lead to significant improvements.
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Matchability loss. Our matchability mask can be seen as pixel-wise weights for
the reconstruction and cycle-consistency losses. These losses will thus encourage
the matchability to be zero. To counteract this effect, the matchability loss
encourages the matchability mask to be close to one. Since the matchabiliy
should be consistent between images, we define the cycle-consistent matchability
in Is as:

M cycle
Is→It

= FIt→Is(MIt→Is) ·MIs→It (4)

where MIs→It is the matchability predicted from source to target, MIt→Is the
one predicted from target to source and FIt→Is the map associated to the flow

predicted from target to source. M cycle
Is→It

will be high only if both the matchability
of the corresponding pixels in the source and target are high. The matchability
loss encourages this cycle-consistent matchability to be close to 1:

Lm(Is, It) = ‖M cycle
Is→It

− 1‖ (5)

Note that directly encouraging the matchability to be 1 leads to similar quantita-
tive results, but using the cycle consistent matchability helps to identify regions
that are not matchable in the qualitative results.

Optimization with self-supervised network. Optimizing objective functions
similar to the one described above is common to most optical flow approaches.
However, this is known to be an extremely difficult task because of the highly non-
convex nature of the objective which typically has many bad local minima. Recent
works on the priors implicit within deep neural network architectures [65,72]
suggest that optimizing the flow as the output of a neural network might overcome
these problems. Unfortunately, our objective is still too complex to obtain good
result from optimization on just a single image pair. We thus built a larger
database of image pairs on which we optimize the neural network parameters
in a self-supervised way (i.e. without need for any annotations). The network
could then be fine-tuned on the test image pair itself, but we have found that
this single-pair optimization lead to unstable results. However, if several pairs
similar to the test pair are available (i.e. we have access to the entire test set),
the network can be fine-tuned on this test set which leads to some improvement,
as can be seen in our experiments where we systematically report our results
with and without fine-tuning.

To collect image pairs for the network training, we simply sample pairs of
images representing the same scene and applied our coarse matching procedure.
If it led to enough inliers, we added the pair to our training image set, if not
we discarded it. For all the experiments, we sampled image pairs from the
MegaDepth [32] scenes, using 20, 000 image pairs from 100 scenes for training
and 500 pairs from 30 different scenes for validation.

3.3 Multiple Homographies

The overall procedure described so far provides good results on image pairs where
a single homography serves as a good (if not perfect) approximation of the overall
transformation (e.g. planar scenes). This is, however, not the case for many image
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pairs with strong 3D effects or large objects displacements. To address this, we
iterate our alignment algorithm to let it discover more homography candidates.
At each iteration, we remove feature correspondences that were inliers for the
previous homographies as well as from locations inside the previously predicted
matchability masks, and recompute RANSAC again. We stop the procedure
when not enough candidate correspondences remain. The full resulting flow is
obtained by simply aggregating the estimated flows from each iteration together.
The number of homographies considered depends on the input image pairs. For
example, the average number of homographies we obtain from pairs for two-
view geometry estimation in the YFCC100M [70] dataset is about five. While
more complex combinations could be considered, this simple approach provides
surprisingly robust results. In our experiments, we validate quantitatively the
benefits of using these multiple homographies (”multi-H ”).

3.4 Architecture and Implementation Details

Architecture In our fine-alignment network, the input source and target images
(Is, It) are first processed separately by a fully-convolutional feature extractor
which outputs two feature maps (fs, ft). Each feature from the source image is
then compared to features in a (2K + 1)× (2K + 1) square neighbourhood in
the target image using cosine similarity. This results in a W × H × (2K + 1)2

similarity tensor s defined by:

s(i, j, (m+K + 1)(n+K)) =
fs(i, j).ft(i−m, j − n)

‖fs(i, j)‖‖ft(i−m, j − n)‖
where m,n ∈ [−K, ...,K] and ”.” denotes dot product. In all our experiments, we
used K = 3. This similarity tensor is taken as input by two fully-convolutional
prediction networks which predict flow FIs→It and matchability MIs→It .

Our feature extractor is similar to the Conv3 feature extractor in ResNet-
18 [19] but with minor modifications: the first 7× 7 convolutional kernel of the
network is replaced by a 3× 3 kernel without stride and all the max-poolings and
strided-convolution are replaced by their anti-aliazing version proposed in [80].
These changes aim at reducing the loss of spatial resolution in the network,
the output feature map being 1/8th of the resolution of the input images. The
flow and matchability prediction networks are fully convolutionnal networks
composed of three Conv+Relu+BN blocks (Convolution, Relu activation and
Batch Normalization [22]) with 512, 256, 128 filters respectively and a final
convolutional layer. The output flows and matchability are bilinearly upsampled
to the resolution of the input images. Note we tried using up-convolutions, but
this slightly decreased the performance while increasing the memory footprint.

For image pair selection and training, all images were resized so that their
minimum dimension is 480. The hyper-parameters of our objective are set to λ =
0.01, µ = 1. The entire fine alignment model is learned from random initialization
using the Adam optimizer [26] with a learning rate of 2e-4 and momentum terms
β1, β2 set to 0.5, 0.999. We trained only with Lrec for the first 150 epochs then
added Lc for another 50 epochs and finally trained with all the losses (Equation 1)
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(a) Input (b) Predicted (c) Ground truth (d) Error map

Fig. 3: Visual results on KITTI [42]. We show the predicted flow, ground-truth flow and
the error map in (b), (c) and (d) respectively.

Table 1: Dense correspondences evaluation on Hpatches and KITTI 2015. We report
the AEE (Average Endpoint Error, lower is better) and Fl-all (Ratio of pixels where
flow estimate is wrong by both 3 pixels and ≥ 5%, lower is better). Note that the
computational time for EpicFlow and FlowField is 16s and 23s respectively, while our
approach takes approximately 4s. Supervised optical flow methods are trained on the
FlyingChairs [13], FlyingThings3D [40] and Sintel [7] for Hpatches and KITTI train.
Cao et al.[8] uses 2D object bounding boxes annotations.

Method
Viewpoint (AEE)

1 2 3 4 5
Supervised Approaches

SPyNet [51,41] 36.94 50.92 54.29 62.60 72.57
FlowNet2 [21,41] 5.99 15.55 17.09 22.13 30.68
PWC-Net [68,41] 4.43 11.44 15.47 20.17 28.30

Rocco [57,41] 9.59 18.55 21.15 27.83 35.19
DGC-Net [41] 1.55 5.53 8.98 11.66 16.70

DGC-Nc-Net [31] 1.24 4.25 8.21 9.71 13.35
Weakly Supervised Approaches

ImageNet [19] + H 1.33 3.34 3.71 6.04 10.07
Unsupervised Approaches

Moco [18] + H 1.47 2.96 3.43 7.73 10.53
DeepMatching [56,41] 5.84 4.63 12.43 12.17 22.55

Moco Feature
Ours 0.52 2.13 4.83 5.13 6.36

w/o fine-tuning 0.53 2.04 2.32 6.54 6.79
ImageNet Feature

Ours 0.51 2.36 2.91 4.41 5.12
w/o fine-tuning 0.51 2.37 2.64 4.49 5.16

(a) Hpatches [5]

Method
Train (AEE) Test (Fl-all)
noc all noc all

Supervised Approaches
SPyNet [51] - - 26.71 35.07

FlowNet2 [21,78] 4.93 10.06 6.94 10.41
FlowNetS [13,78] 8.12 14.19 - -
PWC-Net [68] - 10.35 6.12 9.60

Weakly Supervised Approaches
ImageNet[19] + H 13.49 17.26 - -

Cao et al. [8] 4.19 5.13 - -
Unsupervised Approaches

Moco[18] + H 13.86 17.60 - -
DSTFlow [53] 6.96 16.79 - 39
OAFlow [75] - 8.8 - 31.2
GeoNet [78] 6.77 10.81 - -

DeepFlow [77] - - 18.35 28.48
EpicFlow [55,78] 4.45 9.57 16.69 26.29
CPMFlow [20] - - 13.85 22.40
FlowField [4] - - 10.98 19.80

Moco Feature
Ours 4.15 12.63 14.60 26.16

w/o fine-tuning 4.67 13.51 - -
w/o Multi-H 7.04 14.02 - -

ImageNet Feature
Ours 3.87 12.48 14.12 25.76

w/o fine-tuning 4.55 13.51 - -
w/o Multi-H 6.74 13.77 - -

(b)KITTI 2015 [42]

for the final 50 epochs. We use a mini-batch size of 16 for all the experiments.
The whole training converged in approximately 30 hours using a single GPU
Geforce GTX 1080 Ti for the 20k image pairs from the MegaDepth dataset. For
fine-tuning on the target dataset, we used a learning rate of 2e-4 for another 10K
iterations.

4 Experiments

In this section, we evaluate our approach in terms of resulting correspondences
(Sec 4.1), downstream tasks (Sec 4.2), as well as applications to texture transfer
and artwork analysis (Sec 4.3).

4.1 Direct correspondences evaluation

Optical flow. We evaluate the quality of our dense flow on the Hpatches [5]
and KITTI 2015 flow [42] datasets and report the results in Table 1.
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(a) Souce (b) Target (c) Coarse alignment (d) Fine alignment (e) Flows

Fig. 4: Visual results on RobotCar [39] (first line), Megadepth [32] (second line) and
Hpatches [5] (third line) using a single homography. We show the source, target in (a)
and (b). The results of (c) coarse and (d) fine alignment are represented as overlapped
images with zoomed details and flow maps. The coarse (top) and fine (bottom) flows
are visualized in (e)

Hpatches is especially adapted to our method since it consists of planar scenes
and our hypothesis of using homography approximation of the alignment is
thus valid, which explains that we obtain very strong results outperforming any
baseline method by a clear margin. Note however that adding the fine flow network
significantly boosts the results compared to using only our coarse approach (”
ImageNet [19] +H” and ” MoCo [18] +H”). This can be understood by looking
at the qualitative results in Figure 4 (last raw): the fine flow predicts a flow very
similar to an homography which really improves alignment. Note that since the
scenes are planar we always obtain a single homography for coarse alignment.
Also note that fine-tunning on the HPatches images makes little difference in
these results.

On KITTI, we evaluated both on the 200 training pairs and on the test set
since other approaches report results on one or the other. Note we could not
perform ablation study on the test set since the number of submissions to the
online server is strictly limited. We report results both on non-occluded (noc) and
all regions. Our results are on par with state of the art unsupervised and weakly
supervised results on non-occluded regions, outperforming for example the recent
approach of [8]. Unsurprisingly, our method is much weaker on occluded regions
since our algorithm is not desgined specifically for optical flow performances and
has no reason to handle occluded regions in a good way. From the qualitative
results in Figure 3, we can see the largest errors are actually in occluded regions
and near the occlusion and image boundaries. Interestingly, our ablations show
that the use of multiple homographies is critical to the quality of our results even
if the input images appear quite similar.
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Table 2: Evaluation of sparse correspondences on the RobotCar [39,30] and
MegaDepth [32] dataset. We report the accuracy over all annotated alignments (∼340M
correspondences for RobotCar and ∼367K for MegaDepth) for pixel error smaller than
d pixels with d = 1, 3, 5. Note that, all the test images are with the original aspect
ratio and resized to have minimum dimension 480 pixels.

Method Test Acc(%, ≤ d pixels)
RobotCar MegaDepth

d = 1 d = 3 d = 5 d = 1 d = 3 d = 5
ImageNet [19]+H 1.03 8.12 19.21 3.49 23.48 43.94

Moco [18]+H 1.08 8.77 20.05 3.70 25.12 45.45
SIFT-Flow3 [33] 1.12 8.13 16.45 8.70 12.19 13.30

NcNet [58]+Homography 0.81 7.13 16.93 1.98 14.47 32.80
NcNet [58]+Bilinear 0.61 5.32 14.04 1.09 9.42 24.04

DGC-Net [41] 1.53 11.80 24.92 8.29 31.94 43.35
DGC+M-Net [41] 1.19 9.35 20.17 3.55 20.33 34.28

Moco Feature
Ours 2.10 16.07 31.66 53.47 83.45 86.81

w/o Multi-H 2.06 15.77 31.05 50.65 78.34 81.59
w/o Fine-tuning 2.09 15.94 31.61 52.60 83.46 86.80

ImageNet Feature
Ours 2.10 16.09 31.80 53.15 83.34 86.74

w/o Multi-H 2.06 15.84 31.30 50.08 77.84 81.08
w/o Fine-tuning 2.09 16.00 31.90 52.80 83.31 86.64

While this results demonstrate that our approach is reasonable, these datasets
only contain very similar and almost aligned pairs while the main goal of our
approach is to be able to handle challenging cases with strong viewpoint and
appearance variations.

Sparse correspondences. Dense correspondence annotations are typically
not available for extreme viewpoint and imaging condition variations. We thus
evaluated our results on sparse correspondences available on the RobotCar [39,30]
and MegaDepth [32] datasets. In Robotcar, we evaluated on all the 6 511 pairs
images the correspondences provided by [30], which leads to approximately 340M
correspondences. The task is especially challenging since the images correspond
to different and challenging conditions (dawn, dusk, night, etc.) and most of the
correspondences are on texture-less region such as roads where the reconstruction
objective provides very little information. However, viewpoints in RobotCar are
still very similar. To test our method on pairs of images with very different
viewpoints, we used pairs of images from scenes of the MegaDepth [32] dataset
that we didn’t use for training and validation. Note that no real ground truth
is available and we use as reference the result of SfM reconstructions. More
precisely, we take 3D points as correspondences and randomly sample 1 600 pairs
of images that shared more than 30 points, which results in approximately 367K
correspondences.

On both datasets, we evaluated several baselines which provide dense cor-
respondences and were designed to handle large viewpoint changes, inluding
SIFT-Flow [33], variants of NcNet [58] and DGC-Net [41]. In the results provided
in Table 2, we can see that our approach consistently improves performances by
a large margin on both datasets. Using multiple homographies provides a much
clearer boost on MegaDepth [32] than on RobotCar [39], which can be explained
by the large viewpoint variations on this dataset. This qualitative difference
between the datasets can be seen in the visual results using a single homography
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(a) Query (b) Matched images (c) Localization

Fig. 5: Visual results of Aachen day-night dataset. We show the 3D points in yellow in
(a) and (b), the localisation map with all the camera in red in (c).

Table 3: (a) Two-view geometric estimation for 4 scenes from YFCC100M [70] dataset.
(b) Results on Visual Localization on Aachen nighttime [60,61]. The benchmark is
referred from R2D2 [54].

Method mAP@5◦ mAP@10◦ mAP@20◦

SIFT [35] 46.83 68.03 80.58
Contextdesc [37] 47.68 69.55 84.30
Superpoint [12] 30.50 50.83 67.85
PointCN [45,79] 47.98 - -

PointNet++ [49,79] 46.23 - -

N3Net [47,79] 49.13 - -
DFE [50,79] 49.45 - -
OANet [79] 52.18 - -

Moco Feature
Ours 64.88 81.75 91.33

w/o multi-H 61.10 79.90 89.58
w/o fine-tuning 63.48 82.40 91.63

ImageNet Feature
Ous 62.45 78.38 88.58

w/o multi-H 59.90 77.70 87.23
w/o fine-tuning 62.10 79.45 88.75

(a) Two-view geometry, YFCC100M [70]

Method 0.5m,2◦ 1m,5◦ 5m,10◦
Upright RootSIFT [35] 36.7 54.1 72.5

DenseSfM [60] 39.8 60.2 84.7
HAN + HN++ [43,44] 39.8 61.2 77.6

Superpoint [12] 42.8 57.1 75.5
DELF [46] 39.8 61.2 85.7
D2-net [14] 44.9 66.3 88.8
R2D2 [54] 45.9 66.3 88.8

Moco Feature
Ours 44.9 68.4 88.8

w/o Multi-H 42.9 68.4 88.8
w/o Fine-tuning 41.8 68.4 88.8

ImageNet Feature
Ous 44.9 68.4 88.8

w/o Multi-H 43.9 66.3 88.8
w/o Fine-tuning 44.9 68.4 88.8

(b) Localization, Aachen night-time [60,61]

provided in Figure 4 (first and second rows). Note that we can clearly see the
effect of fine flows on the zoomed overlapped images.

4.2 Evaluation for downstream tasks.

Given the limitations of the correspondence benchmarks discussed in the previous
paragraph, and to demonstrate the practical interest of our results, we now
evaluate our correspondences on two standard geometry estimation benchmarks
where many results from competing approaches exist. Note that competing
approaches typically use only sparse matches for these tasks, and being able to
perform them using dense correspondences is a demonstration of the strength
and originality of our method.

Two-view geometry estimation. Given a pair of views of the same scene,
two-view geometry estimation aims at recovering their relative pose. To validate
our approach, we follow the standard setup of [79] evaluating on 4× 1000 image
pairs for 4 scenes from YFCC100M [70] dataset and reporting mAP for different
thresholds on the angular differences between ground truth and predicted vectors
for both rotation and translation as the error metric. For each image pair, we
use the flow we predict in regions with high matchability (> 0.95) to estimate
an essential matrix with RANSAC and the 5-point algorithm [17]. To avoid
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(a) Source (b) Target (c) Texture transfer

Fig. 6: Texture transfer. We show the (a) source, (b) target and (c) texture transferred
result from source to target.

(a) Source (b) Coarse align. (c) Fine align. (d) Animation

Fig. 7: Aligning a group of Internet images from the Medici Fountain, similar to [66].
(a) source images; (b) average after coarse alignment (homography); (c) average after
fine alignment, please zoom to see the high quality details; (d) animation (view with
Acrobat Reader).

correspondences in the sky, we used the pre-trained the segmentation network
provided in [81] to remove them. While this require some supervision, this is
reasonable since most of the baselines we compare to have been trained in a
supervised way. As can be seen in Table 3, our method outperforms all the
baselines by a large margin including the recent OANet [79] method which is
trained with ground truth calibration of cameras: our mAP at 5◦ is 64.88%,
improving the performance on this benchmark by more than 12%. Interestingly,
we found that the self-supervised MoCo [18] feature allows us to achieve better
performance than features trained on ImageNet [11] classification. Also note that
using multiple homographies consistently boosts the performance of our method.

Once the relative pose of the cameras has been estimated, our correspondences
can be used to perform stereo reconstruction from the image pair as illustrated
in Figure 2(c) and in the project webpage. Note that contrary to many stereo
reconstruction methods, we can use two very different input images.

Day-Night Visual Localization. Another task we performed is visual local-
ization. We evaluate on the local feature challenge of the Visual Localization
benchmark [60,61]. For each of the 98 night-time images contained in the dataset,
up to 20 relevant day-time images with known camera poses are given. We
followed evaluation protocol from [60] and first compute image matching for a
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(a) Inputs (b) W/o alignment (c) Coarse alignment (d) Fine alignment (e) Flows

Fig. 8: Aligning pairs of similar artworks from the Brueghel collection [1]: (a) source and
target; (b) average w/o alignment; (c) average after coarse alignment (homography);
(d) average after fine alignment; (e) flows for coarse (top) and fine (bottom) alignments.

(a) Source (b) ArtMiner [64] (c) Coarse align. (d) Fine align. (e) Animation

Fig. 9: Aligning groups of patterns discovered by ArtMiner [64]: (a) source images; (b)
average from [64]; (c) average after coarse alignment (homography); (d) average after
fine alignment; (e) animation (view with Acrobat Reader).
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Fig. 10: Analyzing copy process from flow. From the middle painting to the right one,
the flow is smooth while from the middle painting to the left one, the flow is more
irregular, which suggests two different copy processes.

list of image pairs and then give them as input to COLMAP [63] that provides a
localisation estimation for the query nighttime images. To limit the number of
correspondences we input to COLMAP we use only correspondences on a sparse
set of keypoints, selected using the Superpoint [12] keypoints. Our results are
reported in Table 3(b) and are on par with state of the art results. As can be
seen in the examples of Figure 5, our approach discovers large number of 3D
points under significant appearance and viewpoint variations.

4.3 Applications

We believe that one of the most exciting aspect of our approach is that it enables
new applications based on the fine alignment of historical, Internet or artistic
images, that showcase the robustness of our approach.

Texture transfer. Because it provides dense correspondences, our approach
can be used to transfer texture between images. In Figure 6 and Figure 2(f) we
show results using historical and modern images from the LTLL dataset [15]. We
use the pre-trained segmentation network of [82], and transfer the texture from
the source image to the target building regions.

Internet images alignment. As visualized in Figures 2(d) and 7, we can
align sets of Internet images, aligning them and computing their average image,
similar to [66]. Even if our image set is not precisely the same, we note that much
more details can be seen in the average of our fine-aligned images.

Artwork analysis. Finding and matching near-duplicate patterns in a histor-
ical body of artwork is an important problem for art historians. Computationally,
it is difficult because the duplicate appearance can be very different [64]. In
Figure 8, we show visual results of aligning different versions of artworks from
the Brueghel dataset [64] with our coarse and fine alignment. We can clearly see
that a simple homography is not sufficient and that the fine alignment improves
results by identifying complex displacements. The fine flow can thus be used to
provide insights on Brueghel’s copy process for each individual artwork. Indeed,
we found that some artwork were copied in a spatially consistent way, while in
others, different parts of the picture were not aligned with each other. This can
be immediately and clearly seen in the flows, which are either very regular or
very discontinuous, as illustrated in Figure 10. The same process can, of course,
be applied to more than a single pair of images, as illustrated in Figure 2(e)
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and 9 where we align together many examples of similar details identified by [64].
Visualizing the succession of the finely aligned images allows to easily identify
their differences.

5 Conclusion

We have introduced a new unsupervised approach for generic dense image align-
ment which is able to perform well on a wide range of tasks. Our main insight is
to combine the advantages of parametric and non-parametric methods in a two
stage approach and to use multiple homography estimations as initializations for
fine flow prediction. Our method can predict accurate dense correspondences for
challenging image pairs, exhibiting large appearance and viewpoint variations,
and performs on par with state of the art methods both on classical optical flow
benchmarks and on difficult two-view geometry and localization benchmarks. We
also demonstrated it allows completely new applications of computer vision for
art4work analysis.
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