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Abstract—Historical watermark recognition is a highly practical, yet unsolved challenge for archivists and historians. With a large number
of well-defined classes, cluttered and noisy samples, different types of representations, both subtle differences between classes and high
intra-class variation, historical watermarks are also challenging for pattern recognition. In this paper, overcoming the difficulty of data
collection, we present a large public dataset with more than 6k new photographs, allowing for the first time to tackle at scale the scenarios
of practical interest for scholars: one-shot instance recognition and cross-domain one-shot instance recognition amongst more than 16k
fine-grained classes. We demonstrate that this new dataset is large enough to train modern deep learning approaches, and show that
standard methods can be improved considerably by using mid-level deep features. More precisely, we design both a matching score and
a feature fine-tuning strategy based on filtering local matches using spatial consistency. This consistency-based approach provides
important performance boost compared to strong baselines. Our model achieves 55% top-1 accuracy on our very challenging
16,753-class one-shot cross-domain recognition task, each class described by a single drawing from the classic Briquet catalog. In
addition to watermark classification, we show our approach provides promising results on fine-grained sketch-based image retrieval.

Index Terms—Watermark Dataset, One-shot Recognition, Cross-domain Recognition, Fine-grained Sketch-based Image Retrieval

1 INTRODUCTION

ATERMARK instance recognition is a well defined

but challenging pattern recognition problem, due to
similar categories (Figure 1a), extreme appearance variations
(Figure 1b) and the necessity to use different types of
representations (Figure 1c). In this paper, we demonstrate
that leveraging spatial verification of mid-level deep feature
matches both at testing and training time leads to clear
performance improvement over global state-of-the-art CNN
methods. Our approach is an extension and adaptation of
the approach we introduced in [1] for discovering repeated
patterns in artwork collections. It is also reminiscent of clas-
sical geometric verification of local feature matches [1], [2]. It
can be seen as an argument against the intuition that CNNs
rely on high-level arrangements of local patterns, in line
with very recent work showing the performance of CNNs
is mainly based on order-less local features aggregation. [3],
[4].

Recognizing watermarks is also a highly practical
problem for archivists and historians since the date and
location information associated with each watermark is an
important clue to analyse and assess historical documents.
Until now, research on automatic watermark recognition
has been held back by the difficulty of creating a large-scale,
curated, fine-grained and public dataset. Most proposed
techniques have been demonstrated only on a small,
non-public and/or very coarse database. We solved this
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Fig. 1: The key challenges in historical watermark recognition
correspond to important problems in computer vision. We
collected a dataset to evaluate the performance of state-of-
the-art deep learning approaches. Our results show that
watermark recognition is a tractable but difficult task, and
that leveraging explicitly spatial consistency is key to obtain
good results.



problem by collecting a dataset in public notarial archives,
where it was possible: (i) to access a wide variety of different
watermarks from one place and in chronological sequence
; (ii) to have many examples of the same watermark on
papers in different states of conservation and written on
by different hands. This allowed us to collect more than
6k unique samples for hundreds of classes. Moreover, we
searched and photographed systematically the exact original
watermarks corresponding to hundreds of line drawings
printed in Briquet’s classic catalog of approximately 17k
watermarks [5], creating a cross-domain database, which
allows to directly evaluate a task of high practical interest:
cross-domain one-shot fine-grained recognition. Our dataset
is the first watermark dataset with such characteristics,
allowing for the first time to train and evaluate deep learning
algorithms for fine-grained and cross-domain watermark
recognition. We demonstrate results that are of high enough
quality to be of immediate practical interest, recognizing a
watermark from a single photograph amongst more than
16k fine-grained classes described by a single drawing with
55% top-1 accuracy.

The rest of the paper is organized as follows. First
we discuss related work in Section 2. Second, in Section
3, we present in more detail historical watermarks, the
challenges for their recognition and we discuss our dataset
characteristics. Third, in Section 4, we present our method
and its motivation. Finally, in Section 5, we perform an
in-depth analysis of our results on watermark recognition,
including comparisons with baselines for both one-shot
and cross-domain recognition, as well as the results of our
method on a different task, sketch-based image retrieval.

Our main contributions are:

o the creation of a large scale fine-grained public
dataset for historical watermark recognition, with
emphasis on one-shot recognition and cross-domain
recognition;

e a new approach to fine-grained one-shot cross-
domain recognition, which relies on explicitly match-
ing mid-level features and leverages spatial consis-
tency to score matches and fine-tune features;

o an analysis of reasons our approach outperforms stan-
dard deep baselines, demonstrating that we overcome
some of their limitations.

Our data and code are available on our project website '.

2 RELATED WORK

E first review methods for watermark representation
W and recognition, as well as existing datasets. We then
review work related to our two main challenges: few-shot
and cross-domain recognition and give a brief overview of
local feature approaches in recognition, which are the most
related to the approach we propose. Finally, we explain the
main difference between this work and our previous work
ArtMiner [1].

1 http:/ /imagine.enpc.fr/~shenx/Watermark
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Historical watermark imaging and recognition. A
complete review of techniques developed to reproduce
watermarks is outside the scope of this work and can be
found for example in [8]. We will focus on simple approaches:
manual tracing and back-lit photography. Manual tracing
simply consists in copying the watermark pattern on tracing
paper and was used historically to create the main catalogs
of watermarks, such as [5], [9]. The most important of
these catalogs are aggregated in online databases [10], such
as [7] which includes specifically the drawings from [5]
and on which we build. These databases, however, are
hard to leverage without considerable expertise, since the
watermarks are mainly described by subjective verbal terms.
Back-lit photography is the most common and convenient
technique to acquire an actual photograph of a watermark.
While a watermark is often barely visible by looking at the
light reflected on the paper, placing it in front of a light
source and looking at the transmitted light reveals it more
or less clearly, depending on the texture and thickness of the
paper. This can be done simply by placing the paper in front
of the sun or more conveniently using a light-sheet.

This duality between the drawings available in catalogs
and the photographs one would like to identify, is the source
of one of the main challenges of watermark recognition: cross-
modality. Several studies have thus focused on localizing
and extracting the pattern of a watermark from a back-lit
photograph, sometimes also exploiting aligned reflected light
images [11], [12], [13].

These techniques could potentially be used to help match
a photograph to a database of drawings, as proposed in
[14]. It is, however, difficult to separate watermarks from
other lines in the paper. These techniques are thus often
complex, with several parameters to tune, and have not yet
been demonstrated on a large scale. Thus, most work on
watermark recognition focuses on drawings. Older studies
such as [14] use histogram-based descriptors, in a spirit
similar to shape context [15], while more recent work uses
machine learning approaches, such as dictionary learning
[16] or neural networks [17].

The study most similar to ours is probably [17], which
used a non-publicly available database [6] of approximately
106,000 watermark reproductions (around 90,000 of which
are drawings from one of the main watermark catalogs) and
trained a convolutional neural network to classify them into
12 coarse categories. While this is proof that CNNs can be
used to classify watermarks, it is different from our work
in several key aspects. First, the 12 coarse categories do
not correspond to a single watermark, and the results of
the classification are of little practical interest to identify
a specific watermark. On the contrary, each of our classes
corresponds to a single watermark (i.e., each drawing from a
catalog would correspond to a different class). Second, [17]
does not consider how trained features can generalize to
new categories defined by a single example, a key problem
for practical applications. Third, we explicitly separate the
problem of cross-domain recognition, using a photograph to
retrieve an exact watermark using a catalog of drawings. We
designed experiments and acquired images specifically to
evaluate each task, organized them to be easily used with
standard machine-learning frameworks and secured the
rights to distribute them publicly.


http://imagine.enpc.fr/~shenx/Watermark

Dataset Public | Classes Images per class Origin Framing Focus
[6] no 12 ~ 7.5k mixed (~ 90% drawing) aggregation none large scale coarse categories
ours A yes 100 meta 60 photographs notarial archives inside 2:3 box fine-grained categories
100 test | 1 ’clean’ + 2 normal photographs 17th century with context one-shot classification
Briquet [5], [7] yes ~ 17k 1 drawing European archives none catalog
Briquet-ours yes 16,753 1 drawing [5], [7] inside 2:3 box recognition database
associated to a drawing from [5] [5], one-shot
ours B yes 140 train 1-7 photographs (463 total) parisian archives | inside 2:3 box cross domain fine-
100 test 2 photographs 14th-16th century with context grained recognition

TABLE 1: Comparison of ours and existing datasets for watermark recognition.

One-shot recognition. The easiest deep approach
to one-shot recognition [18] is to use a nearest-neighbor
classifier with ConvNet-based features pre-trained on
a different but similar set of categories for which more
training data is available. More advanced approaches try
to compensate for the lack of training data by employing
meta-learning mechanisms that learn how to recognize
an object category from a single example. Similarly to the
nearest-neighbor approach described above, this assumes
that a larger and similar dataset is available to learn
this learn-to-learn meta-task. There is a broad class of
meta-learning-based one-shot recognition approaches,
including: metric-learning-based approaches that, in order
to classify a test example to one of the available categories,
learn a similarity function between the test example
and the available training examples [19], [20], [21], [22],
[23] or learn how to access a memory module with the
training examples [24], [25], [26], [27], [28]; approaches
that learn how to predict one-shot classifier parameters
conditioned on the few available training data [29], [30],
[31], [32], [33]; gradient-descent-based approaches [34], [35],
[36] that learn how to rapidly adapt a model to a given
one-shot recognition task with gradient-descent iterations.
As baselines, we evaluate two recent meta-learning-based
one-shot recognition approaches that have been shown to
exhibit state-of-the-art performance, Matching Networks [19]
and the approach proposed by Gidaris and Komodakis [29].

Cross-domain recognition.  There are many scenarios
in which one would like to classify or search images in
one modality using another as reference. Existing datasets
include datasets of clean stock photographs and their
counterparts in a realistic environment [37], datasets of
synthetic images and real photographs [38] and joint
datasets of drawings and photographs [39], [40], [41].
Compared to these, the specificity of watermark recognition
is that it is a pattern-recognition problem, without any 3D
effects, and that the tracings are faithful to the original
watermarks. It thus allows to focus on a relatively simple
form of the domain-transfer problem, which still proves very
challenging.

A complete review of cross-domain recognition approaches
is outside the scope of this work, a recent survey can
be found in [42]. We have selected as baselines three
very different types of approaches requiring only a small
amount of data. First, we considered an unsupervised
approach, in the spirit of [43], aligning the statistics of
the source and target domains. Second, we experimented
with a supervised approach, directly learning a mapping

between source and target features [44], [45]. Finally, we
used a randomization approach, learning invariance to the
appearance of the watermark by compositing its pattern
with random backgrounds, in a spirit similar to [46].

Local features and recognition. Recent work
analyzing the performance of CNNs [3], [4] suggests that
they might ignore a large part of the spatial information
present in the image, and rather work in a way similar to
classical order-less bags-of-features methods [47], [48], [49].
This might not be suitable for problems such as watermark
recognition, where the actual shape of the watermark is key,
especially for fine-grained classification. To build on the local
features learned by CNNs but consider spatial information,
we follow an approach closely related to the classic spatial
verification step introduced in Video Google [2] with SIFT
features [50]. Rather than using SIFTs, which we found
were not adapted to watermarks, we use intermediary
deep features, which can be thought of as mid-level image
features. Mid-level features [51], [52], [53] have been used in
the context of cross-domain matching in [54]. Our feature
fine-tuning, which also leverages the spatial structure
of images, is related to self-supervised feature learning
methods which use spatial information to define an auxiliary
task [55], [56] and to the recent work of [57] which uses
neighborhood consensus to learn correspondences from the
correlation map, and which we adapted to use as baseline.

Relation to ArtMiner [1].  The method we present is
an extension of our previous work [1], which targets style-
invariant pattern mining in artworks. The main differences
are that in [1] the images were not aligned and no annotations
were available. Here, we can leverage the fact that the
watermarks are coarsely aligned as well as some class-level
supervision. Thus, we can restrict positive local matches
during feature training to matches in images from the same
classes and at similar spatial locations and we can avoid
performing RANSAC to compute potential alignments. The
watermark recognition problem we present here is also more
clearly defined than pattern mining in artworks, with clear
domains and ground truth classes.

3 DATASET CONSTRUCTION

N this section, we explain how we created datasets to
Ievaluate (A) one-shot and (B) cross-domain watermark
recognition. The characteristics of our datasets are
summarized in Table 1 and compared with existing datasets.
Examples of images from our datasets are shown in Figure 2.




(b) Twelve examples (amongst 100) of triplets from our dataset A, with one clean reference and two normal photographs.
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(c) Examples of the 16,753 drawings from our subset of the Briquet catalog. Notice the similarity between the classes.
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(d) Twelve examples (amongst 100) of test triplets from our dataset B, with one drawing reference and two normal photographs.

Fig. 2: Examples of our datasets: (a) 36/60 photographs of the same watermark from a typical training category in our
dataset A; (b) 12/100 test categories in dataset A, the first row is the clean reference photograph, the second and third rows
are the two normal query photographs; (c) 12/100 categories in our dataset B, the first row is the reference drawing, the
second and third rows are the two query photographs; (d) 48/16,753 different classes in our framed subset from the Briquet
catalog. Note the diversity of appearance for the same watermark (a) and the presence of many very similar classes (c,d)



Class definition. Some details of paper fabrication
are important to understand the data variation and class
definition. Watermarks were initially used by workshops to
identify their production, and can thus be used to locate the
origin of paper. They were created by small wires, shaped
around a common model and added to the paper mold.
Because molds were usually made in pairs (for reasons based
on the typical paper-making workflow) and because the wire
patterns became gradually deformed over time, the same
pattern can be found with several small variations, which we
still consider to be the same watermark.

When the watermarks were replaced by new ones, formed
around a new model, the new watermarks for the same
workshop and the same sort of paper often had similar
semantic content, but can be differentiated from the old ones,
and we consider them as a different class. Indeed, being
able to make this distinction is important to date the paper
accurately.

To the best of our knowledge, we are the first ones to
tackle at large scale the fine-grained recognition problem
resulting from this definition, which is also the one from the
main catalogs such as [5] and would be of strong practical
interest.

Photography and pre-processing procedure.  Since
our goal is to develop a procedure that could easily be
applied without using any special or expensive device,
we photographed watermarks with a standard cell phone
camera (Microsoft Lumia 640 LTE). Since knowing the
orientation of the watermark is impossible without
interpreting its content, which is often challenging, we
decided that the orientation would not be constrained. The
back-light was provided by a luminescent sheet. Since it
is easy to visually identify the location of the watermark
on a page, we required the photo to be taken so that the
watermark would cover as much as possible of a rectangle
with an aspect ratio of 2:3 visualized on the screen, with the
largest dimension of the watermark contained within the
largest dimension of the rectangle. We resize all images to
transform the guiding rectangle into a square of size 224 and
crop the surrounding 256 pixels wide square.

Dataset A. The goal of this dataset is to train and
evaluate methods for one-shot fine-grained watermark
recognition from photographs. It thus only includes
photographs and is split into two parts: a first part that can
be used for feature/meta-training, with many examples of
each watermark, and a second part, with few examples, to
evaluate one-shot recognition. Obtaining a large-scale and
diverse dataset of watermarks, with many examples for each
fine-grained class, is very challenging. Our insight was to
use watermarks found in notarial archives. Indeed notaries
regularly bought paper in large quantities, and it was thus
easier to collect many identical examples of many different
watermarks. Because the leaves were left unbound, they are
also easier to photograph. We first collected 50 training and
10 validation images for 100 watermarks, which we found
was large enough to perform pre-training / meta-training of
CNNs. An example of images from the same class is given
Figure 2a. We then collected 3 photographs for 100 other
test classes, one ‘clean’ image without any writing and two
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Fig. 3: Different types of images that we provide and generate
for the classes of dataset B: (a) Photograph; (b) Drawing; (c)
Synthetic Image; (d) Randomized synthetic images
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standard test images (see Figure 2b). We used the ’clean
images as references for one-shot recognition, as they are
representative of what archivists typically collect as reference
images and allow us to ensure that recognition is not related
to the writing style of the document. Note that many of the
training and testing examples are very cluttered and in poor
condition (e.g. Figure 1b), making the task very challenging.

Ours Briquet.  An important challenge is to use the
drawings from existing watermark catalogs to perform
recognition. Indeed, collecting watermarks and information
for such catalogs is very tedious and expensive work,
that cannot easily be reproduced. We focused on the
Briquet catalog [5] whose drawings are entirely available
online [7]. However, the available images include additional
information, such as IDs of watermarks, paper line positions
or complementary marks that can be found at another
position on the paper sheets. While such information can be
very valuable to experts, it cannot easily be used in a simple
automatic recognition system based on a single photograph.
We thus extracted the main part of the watermarks whenever
it was clear and ended up with 16,753 drawings that could
be used as reference for photograph recognition. Examples
of these drawings can be seen in Figure 2c. Notice that many
watermarks are visually very similar to one another, making
the classification task very challenging. Also notice that the
drawings sometimes still include paper lines that are not
part of the watermark but could not easily be removed.

Dataset B.  The challenge that we want to address and
evaluate with this dataset is to recognize photographs from
watermarks based only on the drawing that we extracted
from a catalog. We thus searched the original archives that
provided the material for the Briquet catalog [5], in a specific
city (Paris). We were able to collect photographs for 240
classes, for which we also provide the published drawings
(see examples in Figure 1c and 2d). Because comparing
photographs (Fig. 3a) directly with a line drawing (Fig. 3b)
as reference is very challenging, we also report results using



a synthetic image generated from the drawing simply by
using the average watermark color as background and
making the drawing pattern lighter (Fig. 3c). Finally, we
generated randomized synthetic images (Fig. 3d) from the
drawings. The randomized synthetic image S are generated
by computing S = B+ R x (G E), where B is a background
sampled from photographs of paper without watermarks,
G is a Gaussian filter, R is a random image and E is the
binary watermark pattern extracted from the drawing. We
split our 240 classes into 140 training and 100 validation
classes. In addition to the reference drawing, each of the
validation classes includes two photographs and each of the
training classes includes between one and seven photographs.
The total number of photographs in the training set is
463. This dataset allows to test cross-domain recognition,
using drawings as reference, and recovering the class of a
single test photograph. In our experiments, we first compare
methods for 100-class one-shot cross-domain classification
and then give results for the even more challenging 16,753-
class classification.

4 LOCAL SPATIALLY-AWARE APPROACH

N this section, we explain how we introduced geometric
consistency in deep image matching and feature learning.

4.1

We propose to compare images by computing mid-level CNN
features on the test image and matching each of them densely
in the reference images at five scales. For each local feature
fi, at position z} in the test image I; we consider its most
similar feature f} at all pre-defined scales of the reference
image I3 and write the associated position z5. We propose a
local matching score which uses a combination of a Spatial
Consistency score (SC) measuring the similarity between the
positions 2! and z% and a Feature Similarity (FS) measuring
the distance between f{ and f&:

Local matching similarity score

e — b

S(h,L) =) ¢ 20 s(fi,f3) (1)

i€l sC

FS

where S is the image level similarity we define, s is a feature
level similarity, for which we use cosine similarity in all of
our experiments; Z indexes the set of features in the test
image and o is a tolerance parameter. We can directly use the
difference in absolute position ||z} —x}||? because we assume
that the watermarks were coarsely aligned. If it were not the
case, the above score could easily be used in conjunction with
a RANSAC algorithm to identify candidate transformations,
in a procedure similar to the discovery score proposed in
ArtMiner [1].

Note that for each feature f{ only its best match in the
reference image is considered. This implicitly removes any
contribution for non-discriminative regions and for details
that are only visible in one of the depictions, since the
associated spatial-consistency part of the score (SC) will
typically be zero. This is visualized in Figure 4, where
the brighter patches in the right-hand image correspond
to patches from the left-hand image that have been matched
accurately enough to contribute to our similarity score, their
brightness proportional to their contribution to the score.

Fig. 4: Localization of the features contributing to our
matching score (eq. 1). Left: query image; Right: reference
image, where the brighter patches are the patches matched
to the query

4.2 Learning features for cross-domain recognition

A key element in the matching score defined in the previous
section, obviously, is the feature used for matching. The
simplest approach is to use intermediate features from a
network trained for watermark classification as local features.
Here we aim at improving these features, in particular for
cross-domain recognition.

We follow a metric learning approach. Assuming we have
a set of positive pairs P and a set of negative pairs N, we
learn our features f by minimizing a standard triplet loss:

L= Y max(l—As(f(n),f(n2)))
(n1,m2)EN (2)
— > min(A,s(f(p1), f(p2))
(p1,p2)€EP

where the similarity measure s is the cosine similarity and
A = 1.0 in all our experiments.

The main challenge for learning such a feature is defining
the sets of positive and negative pairs. A natural approach
would be to consider that the local features of a photo-
graph/drawing pair should match everywhere and that
any other match is negative. However, the drawing and
photograph might not be exactly aligned and there might be
errors in the drawing. Additionally, an important proportion
of the local features might not be discriminative. We thus
propose an alternative extraction of positive and negative
pairs, which depends on the current feature f. To define the
positive pairs, we start from a local feature in a drawing
and look for its best match in a photograph from the same
watermark at five scales. We then keep the matching features
as a positive pair only if the spatial distance between the
center of the feature location is less than a threshold 7. This
allows to take into account misalignment between the source
and target images. It also gives robustness to errors and
differences, such as the small lines at the left of figure 3b
which are not clearly visible in the photograph. Once a
positive pair has been identified, we look for hard negatives
by matching the source feature to all the photographs of other
watermarks and select the most similar feature as negative.

As for our matching score, the specificity of this training
procedure is that it is performed at the level of local features,
not at the image level and that it is designed to explicitly
take into account spatial misalignment and differences. We
demonstrate the benefits of this approach in Section 5.2.



4.3 Implementation details

For all our experiments, we use a ResNet-18 [58] architec-
ture, larger networks leading to either similar or worse
performances. Since the photographs might be flipped and
rotated with respect to the references, we consider matches
with four rotated (0°, 90°, 180°, 270°) reference images and
their flipped versions in all the experiments. Both for local
matching and feature fine-tuning, we used conv4 features.
Each source image was resized to 352x352 so that it was
represented by 22x22 features. To be robust to scale discrep-
ancies, we matched the source features to features extracted
from the target image resized at five scales, corresponding to
16, 19, 22, 25 and 28 features. Our models were trained with
the Adam [59] optimizer with 8 = [0.9,0.99] and a learning
rate of 1e-3 for feature initialization and 1e-5 for fine tuning.
Using a single GPU Geforce GTX 1080 Ti, pre-training for
classification converged in approximately 5 hours and fine-
tuning on approximately 2 hours, and matching a pair of
images took approximately 37ms.

5 EXPERIMENTS

N this section, we present our results and compare with

baselines first for one-shot recognition then for cross-
domain one-shot recognition. Finally, we provide a quali-
tative analysis of our results.

For both tasks, we pre-trained a network for classification
on the 100 meta classes of dataset A with 60 images per class,
using 50 for training and 10 for validation. We obtained
the best performances by training with a strong dropout
(0.7 ratio), which is not surprising given the relatively small
size of our dataset. We obtained a validation accuracy of
98.8%, the mis-classified images being only very difficult or
ambiguous cases, which shows that our 6k images dataset
was large enough to train a good network for fine-grained
watermark classification. Note that we also tested features
trained for ImageNet classification [60] as well as the SIFT
features using geometric verification [2], [50], but both lead
to performances close to chance because the features were
not adapted to the task.

For all baseline approaches, images are firstly resized to
256 x 256 then cropped the central 224 x 224 region, which is
the same pre-processing procedure as in the classification on
dataset A. We report the best performance over conv4/convs
features. The optimal parameters and training strategy for
each baseline approach are reported in the supplementary
material®.

5.1 One-shot recognition.

In this section, we evaluate our local matching score (eq. 1)
for one-shot recognition. We first compare our local matching
score with state-of-the-art one-shot recognition approaches
on dataset A for which the domain gap is limited and
standard one-shot recognition approaches can be expected
to work (Table 2). We then compare it with other feature
similarities on the more challenging dataset B (Table 3).

2 http:/ /imagine.enpc.fr/~shenx/Watermark/supp.pdf
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Method \ Features AvgPool | Concat | Local Sim.
Baseline 69 74 75
Cosine Classifier [29], [30] 84 82 84
Matching Networks (scratch) [19] 73 76 80
Matching Networks (ft) [19] 74 76 82
Weights Prediction [29] 86 84 85
Ours (Resolution 256) 85

Ours (Resolution 352) 90

TABLE 2: Comparison with state of the art one-shot recog-
nition approaches on dataset A (200 images to compare
to classify in 100 categories unseen during training and
described by a single clean’ image). Accuracy in %. Our score
based on local matches clearly outperforms all baselines.

Method | A || B-3b | B-3c | Time (s / Query)
Exact features comparison
AvgPool 69 4 12 1
Concat 74 55 61 2
Local Sim. 75 56 65 2
Discovery [1] | 88 51 63 420
Our local matching score
Ours |90 || 66 | 72 | 15

TABLE 3: Comparison of our local matching score (eq. 1)
with alternative feature similarities. We report percentage of
accuracy for one-shot recognition on dataset A (A column)
and on dataset B using either the drawing (B-3b) or our
synthetic image (B-3c).

Comparison to state-of-the-art one-shot recognition
methods. On dataset A, which does not include any
domain shift, we compare our method to some recent one-
shot recognition approaches :

o Baseline : directly using the features learned by train-
ing a network on the classification task.

o Cosine Classifier : recent work [29], [30] has shown that
the performance of the baseline can be improved if
during training the dot-product operation (between
classification weights and features) in the last linear
layer of the network is replaced with the cosine
similarity operation.

e Matching Networks: we tried the metric-learning ap-
proach of Matching Networks [19], performing meta-
training to solve one-shot recognition tasks using a dif-
ferentiable nearest-neighbor-like classifier. We tested
either directly training it from random initialization
("scratch” in Table 2) or fine-tuning it from a network
pre-trained on the classification task of dataset A ("ft”
in Table 2). In the latter case the pre-trained network
uses a cosine-similarity based classifier.

o Weights Prediction: the one-shot recognition approach
of Gidaris and Komodakis [29] predicts classification
weights used by the last linear layer of a cosine-
similarity-based network from a single training exam-
ple of the category. It uses a feature extractor learned
with a cosine-similarity based classifier which remains
frozen during the meta-training procedure.

For each feature, we report three different similarities:

e AvgPool : cosine similarity using the average pooled
features.

o Concat : cosine similarity on the descriptor formed by
the concatenation of all the spatial features.


http://imagine.enpc.fr/~shenx/Watermark/supp.pdf

Method [ B-3b | B3¢
Baselines
w/o Fine-tuning 66 72
Unsupervised (Translation) 63 70
Supervised (Affine) 64 72
Randomization 53 75
Triplet-loss 64 65
NC-Net [57] 61 65
ArtMiner [1] 60 71
Our spatially-aware fine-tuning
T=0 65 72
T=3/22 75 83
7 = inf 61 74

TABLE 4: Accuracy (in %) on one-shot cross-domain recogni-
tion with different methods and different reference images
("B-3c¢” referred to our synthetic image and “B-3b” referred
to drawing). Standard domain adaptation strategies provide
little improvement when combined with our score, while the
fine-tuning described in section 4.2 provides a clear boost.

e Local Sim. : computing the cosine similarity over each
local feature individually, then averaging.

Note that cosine similarity consistently performs better than
dot product.

As can be seen in Table 2, our matching score leads to
85% accuracy which is close to the best one-shot approach,
Weights Predictions [29], but without any specific feature
learning. This demonstrates the interest of our local matching
score for one-shot fine-grained watermark recognition. The
performance can further be boosted to 90% by resizing
image to a larger resolution, 352 x 352 pixels, which we use
in the rest of the paper.

Comparison of feature similarities for one-shot
cross-domain recognition. In Table 3, we compare
our local matching score (eq. 1) with alternative feature
similarities on our two datasets. On dataset B, we use either
the drawing (B-3b) or our synthetic image (B-3c) as reference.
We always used the features trained for classification on
dataset A, and compare on each dataset to the similarities
described in the previous paragraph (AvgPool, Concat and
LocalSim.) and to the discovery score proposed in our
previous work ArtMiner [1]. Similar to our local matching
score, the discovery score from ArtMiner considers the
spatial location of the matches but relies on RANSAC to
fit an affine transformation model. Our local matching
score consistently outperforms all these baseline similarities.
Interestingly, the discovery score [1] works better than
other baselines and very similarly to ours on dataset A
but is clearly worse than ours on dataset B. We think the
reason is that the features are good enough to estimate good
transformations on dataset A but fail on dataset B. In our
naive implementation, our approach is slower than direct
feature comparison, but both can be mixed to obtain fast
results on very large datasets (see large scale experiments in
section 5.2).

5.2 Cross-domain recognition.

We now focus on cross-domain recognition. We first compare
our approach with different feature training strategies for
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one-shot cross-domain 100-class recognition on our dataset B.
We then demonstrate the effectiveness and generality of our
approach by evaluating it on a fine-grained Sketch-Based
Image Retrieval dataset. Finally, we focus on scaling our
watermark recognition method to the full Briquet catalog,
showing we can perform classification with more than 16k
classes.

Feature training. In Table 4, we compare the results
from our fine-tuning strategy to different baselines:

o Unsupervised (translation): in a spirit similar to [43],
we translated the features in our target domain so
that, on our training set, they have the same mean as
the features from the target domain. We then use our
score to perform nearest-neighbor classification.

o Supervised (affine): since we have aligned images from
both domains, we can adapt features from the source
and target domains in a supervised way, similarly to
[44], [45]. We found that a simple affine adaptation
gave the best results, likely because of the small size
of our dataset.

e Randomization: we trained a standard classifier us-
ing random images such as the ones presented in
Figure 3d and generated as described in 3. Such an
approach has been shown to be very successful for
example for 3D pose estimation [46], [61].

o Triplet-loss: similarly to our method, we tried to
improve the features using a triplet loss on local
features, but using as positive all aligned features
in the images from the same category.

e NC-Net [57]: while it was not initially designed
for domain adaptation, we trained NC-Net on our
database because of the intuition that, similarly to
our method, it is able to learn to leverage spatial
information. We use our pre-trained ResNet for the
feature extractor and freeze it during the training. The
other parts are kept the same as the category level
matching model proposed in [57]. The positive pairs
are composed with one image from each domain,
which results in 463 pairs in the training set. The
training converges in 20 epochs. We then consider
the sum of the scores over all correspondences as the
score between a pair of images.

e ArtMiner [1]: the two main differences with our
approach is that ArtMiner does not use the category
supervision and the approximate alignment. Instead,
it leverages spatial consistency in the matches to select
positive and negative training pairs.

All results except for NC-Net are reported with our
local matching score as using different scores (including
the classification score for domain randomization) leads to
worse performances. This might be the reason why standard
domain adaptation approaches only marginally improve
performances over the baseline. Another possible reason
is the small size of our training set (463 photographs, 140
references) for which these methods might not be adapted.
On the contrary our fine-tuning strategy, which is explicitly
designed to handle clutter, misalignment and errors, boosts
performances by a clear margin. In Table 4 we report our
results with no and infinite misalignment tolerance 7. We



Method Shoes Chairs Method Briquet-3c Briquet-3c+Fine-tuning

acc.@l acc.@10 acc.@l acc.@10 acc.@l acc.@1000 acc.@l  acc.@1000
GDH@128bits [62] 35.7 84.3 67.1 99.0 AvgPool 0 16 0 21
TSN [41] 39.1 87.8 69.1 97.9 Concat 27 77 29 82
EdgeMAC [63] - - 85.6 97.9 Local Sim. 28 80 28 83
Ours with ImageNet feature 40.0 85.2 90.7 99.0 Ours N=1000 45 80 54 83
Ours with Fine-tuned feature 52.2 87.8 91.8 1.0 Ours N=inf 44 86 55 91

TABLE 5: Results on fine-grained sketch-based image re-
trieval (dataset V1 in [41]). Our local matching score with
ImageNet trained features provide results similar to the state
of the art, and our fine-tuning provides an additional boost.

provide a full analysis of the dependency of our results on 7
in the supplementary material®.

Fine-grained Sketch-Based Image Retrieval (SBIR).
To demonstrate the generality of our approach we evaluated
it on the SBIR task. We report results on the dataset of
[41] which consists of sketch-photo pairs of shoes and
chairs. The shoes dataset contains 304 sketch-photo pairs
for training and 115 for testing and the chairs dataset 200
pairs for training and 97 pairs for testing. We use our local
matching score with the conv4 features of a ResNet-18 [58]
architecture pre-trained on ImageNet [60] and compare
results with and without fine-tuning. We find that large
image resolution and spatial tolerance o (see equation 1)
achieve better performance. We use images of 384x384
pixels, corresponding to 24x24 feature maps in the conv4
layer and o corresponding to 4 features. The results are
reported in Table 5. Note that our local matching score
alone allows to obtain performances above state of the
art. Our fine-tuning strategy further provides a significant
boost compared to ImageNet pre-trained weights. Our top-1
accuracy with fine-tuned model outperforms other methods
by a significant margin on both datasets, demonstrating the
interest of applying our approach for solving cross-domain
recognition tasks beyond watermark recognition.

Large-scale recognition.  We finally evaluate one-shot
cross-domain recognition using the test photographs of
our dataset B and our full curated version of the Briquet
dataset as reference. This recognition with 16,753 fine-grained
classes is very challenging, but also corresponds to a realistic
scenario for watermark recognition. We use our synthetic
images (Figure 3c) to represent the drawings. Since our local
matching score is computationally expensive, we apply a two-
step procedure for recognition. For each test photograph, we
first select the top-/V candidate classes using direct feature
comparisons and re-rank them using our local matching
score. Table 6 shows the top-1 and top-1000 accuracy using
the different baseline similarities described in Section 5.1.
Using the local similarity, i.e. averaging the cosine distance
between the local features over the images leads to the best
results, 28% top-1 and 83% top-1000 accuracy. We thus use
it to perform the first step of selection. Re-ranking the top
1000 matches with our local similarity score boosts the top-1
accuracy to 54%. The best performance we can achieve is 55%
by ranking all the matches with our local matching score (N
= inf).

3 http:/ /imagine.enpc.fr/~shenx/Watermark/supp.pdf

TABLE 6: Top-1 and top-1000 accuracy on our Briquet
dataset with different models (”Briquet-3c” referred to using
model trained on classification on dataset A and “Briquet-
3c+Fine-tuning” referred to using our fine-tuned model): the
approaches are AvgPool, Concat, Local Similarity and first
applying Local Similarity to obtain N = 1000 top ranked
references then using our score to re-rank the N references.

80

75
70
65
60
55
<s0
45
40
35
30

cc (%)

Local Simi.
Local Simi. + F.T.
N =100, Ours
N =100, Ours + F.T.
N = 1000, Ours
N = 1000, Ours + F.T.
N = inf, Ours

N = inf, Ours + F.T.

% 40 50 100

Fig. 5: Top-K accuracy on Briquet dataset. We first select the
top-N candidates using Local Similarity (blue lines) then
re-rank them with our score (other lines). The dashed lines
correspond to features trained on our dataset A and the solid
lines correspond to our fine-tuned model.

In practice, selecting a small number of candidates is
important to keep computational time low, and a user
could easily look at the top-K results. We thus studied
in detail the dependency of our results with respect to NV
and K and report the results in Figure 5. We can observe
several interesting facts. First, fine-tuning clearly improves
performance when using our local matching scores, but
mostly degrades performance for local similarity. Second,
results with our local matching scores are always clearly
superior and increase with N. Third, accuracy for our local
matching score increases very quickly for the top-10 matches,
suggesting that a large proportion of our failures are actually
due to ambiguous cases with very similar watermarks, which
is verified qualitatively (c.f. (Figure 6 and full results on the
project website).

In terms of computational time, it takes approximately
3s to rank the reference drawings with Local Similarity and
37s to re-rank the top-1000 with our local matching score
on a single GPU Geforce GTX 1080 T. This is acceptable for
practical applications of our algorithm, and leads to 70% top-
10 accuracy. We thus believe the application of our algorithm
will be a game-changer and widen considerably the potential
use of watermark analysis, which until now has been limited
to a small number of experts.

5.3 Qualitative analysis

In this section, we provide a qualitative analysis of our results.
We first focus on our local matching score, then outline the
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Fig. 6: Example of top-5 matches using local similarity (denoted as "Local Sim.”) and our local matching score with and
without feature fine-tuning (denoted as ‘Ours ET.” and 'Ours’ respectively) on the different types of data we use for

cross-domain one-shot retrieval.

effect of fine-tuning and finally discuss the quality of our
results and failure modes. More visual results can be found
on our project website *.

Representative examples of top-5 matches on the
different type of data we experimented with are shown in
Figure 6 for the best similarity baseline (Local Similarity)
and our local matching score before and after fine-tuning.
We identified coarsely two types of watermarks, illustrated
respectively on the left and right of Figure 6: (i) watermarks
that correspond to a common type, with many very similar
classes (ii) watermarks which are more unique.

Local matching score. The advantage of our local
matching score for watermarks is clearest in case (i) where
many similar classes exist. Indeed, the baseline local sim-
ilarity typically gives very similar scores to all similar

4ht’rp: //imagine.enpc.fr/~shenx/Watermark

watermarks, while our local matching score ranks the exact
match much better. To understand why, we visualize in
Figure 7 the contribution of the different parts of the
watermark to different similarity scores: the AvgPool, Concat
and Local similarity baselines described in Section 5.1 and
our score. More precisely, we compute the contribution of
each local feature to the total score, and show the percentage
of contribution of each feature on the watermark contour.
Warmer colors correspond to higher contributions, the scale
is the same in all images. In all the baseline approaches,
the dominant light blue color corresponds to the fact that
many regions have a small but non-negligible contribution
to the final score. On the contrary with our local matching
all regions that are not discriminative or accurate enough
have no contribution (in dark blue) and regions that can be
matched accurately have a similarly high contribution (red).
For example, note on the first line of Figure 7 that the paper
line on the right of the drawing, that is not present in the
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Fig. 7: Visualization of the contribution of each feature to
the similarity on our different datasets. The color map is set
to blue if the contribution is 0 and red if the contribution is
larger than 1% of the similarity score. Note that our score
only values specific regions corresponding to features that
can be matched reliably.
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Fig. 8: Visualization of the effect of fine-tuning. The color
is set to red if the local score is 1, blue if it is 0. Notice
how more regions contribute after fine-tuning and how the
contributions are stronger.

actual watermark, has a non-negligible contribution for all
similarity scores except ours. We believe this is the main
reason for the superiority of our local matching score over
baselines.

Effect of fine-tuning.  Qualitatively, fine-tuning does
not completely change the top matches but again improves
the rank of exact matches, as in the examples of Figure 6. To
outline the effect of our fine-tuning we show in Figure 8 a
visualization of the contribution of each feature similar to
the one described in the previous paragraph, comparing our
score before and after fine-tuning in all four datasets. After
fine-tuning, more discriminative regions have been matched
and their scores become larger.
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Fig. 9: Typical failure examples: strong lighting effect, stain
or cut on the paper, barely visible watermarks.

Results and failure modes.  On the project website,
we provide top-5 matches on dataset-B using the 16,753-
class curated Briquet catalog as reference. One can first
notice the ability of our approach to select the correct class
even when very similar classes exist. Failures are often easy
to understand, we show typical examples in Figure 9. We
identified two main types of failures. First, some failures are
related to effects in the images that were rare in our dataset
A, such as strong lighting effects, stains on the paper, or even
tears. We believe this could be remedied using specific data
augmentation. Second are cases where the watermark is not
easily visible in the photograph, which are expected.

6 CONCLUSION

W E have identified several challenges for the practical
application of automatic watermark recognition. We
overcame the difficulty of data collection and, to the best of
our knowledge, we present the first publicly available dataset
of watermarks providing many photographs of different
instances for a large number of classes. We propose a new
image similarity and feature fine-tuning strategy, improving
over state-of-the-art deep learning approaches for one-shot
and cross-domain watermark recognition, and providing
strong results for one-shot fine-grained cross-domain 16,753-
class watermark classification.
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