
The Learnable Typewriter: A Generative Approach to Text Analysis
(Supplementary Material)

Ioannis Siglidis Nicolas Gonthier Julien Gaubil Tom Monnier Mathieu Aubry
LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France

https://imagine.enpc.fr/˜siglidii/learnable-typewriter

This supplementary material provides additional qualita-
tive results and details on our method and experiments. First
we present random results similar to the ones presented in
Figure 3 and 4 of the paper, both in the supervised and the
unsupervised setting. Second, we detail the Gaussian pool-
ing of the encoder features and the spatial transformation
of the sprites onto the target canvas. Third, we present the
algorithm and the methodology we have used to associate
sprites to characters for our quantitative evaluation in the
unsupervised setting. Finally, we detail the way we adapted
MarioNette [3] and DTI-Sprites [2] to construct unsuper-
vised baselines for our task.

1. Additional results

We provide further randomly drawn examples of recon-
structions both for Google1000 Figure 1 and for the Copiale
cipher Figure 2 from their respective test sets for both the su-
pervised and the unsupervised version of our method. In the
beginning of each figure we locate the sprites learned by each
method and to which unique colors have been assigned. Be-
low it follow triplets of ground-truth images, reconstructed
images and colored segmentations (with the same colors as
the ones displayed in the beginning) for a set of randomly
drawn examples for each dataset. Note that really similar
characters will be assigned to different colors if they are
reconstructed by different sprites.

2. Method Details

Gaussian Pooling In order to compress (channel-wise)
the two dimensional H/4 × W/4 output of the encoder to a
one dimensional W/16 vector, we use a Gaussian pooling.
Concretely, we perform the convolution of the output with a
Gaussian kernel κ of size H/4× 4, with no padding and with
a horizontal stride of 4. The kernel κ is defined ∀(i, j) ∈
[1,H/4]× [1, 4] as κ[i, j] = κ̂[i, j]/

∑
ij κ̂[i, j], where:

κ̂[i, j] = exp

[
−1

2

(
(i− H/8)

2
+ (j − 2)

2
)]

(1)

Sprite Positioning We parametrize the scale and trans-
lation transformations by a scaling parameter σ and a 2D
translation vector τ ∈ R2. We define the affine transfor-
mation matrix M from the sprite space to the image space,
using image coordinate systems centered at the middle of
each feature’s receptive field and a sprite coordinate system
centered at the middle of the sprite:

M =
H

h

[1
σ 0 τ1

2
0 1

σ
τ2
2

]
, (2)

where h is the height of the (square) sprites, H is the height
of the line. We obtain the values for isotropic scaling σ and
2D translation τ as the output of the transformation network
tθ (three out of six outputs, the three other being the color
of the sprite) to which we apply different non-linearities.
For the translation τ , the two corresponding outputs of the
linear layer are clamped between -1 and 1. For the scale σ,
we apply a non-linearity x → exp(x) to the corresponding
output of the linear layer.

3. Unsupervised Evaluation
A simple way to quantify the performance of the unsuper-

vised version of our method is to assign sprites to characters
and use this association to perform OCR/HTR. Note that in
the supervised case this assignment is already known since
we associate a sprite to each character at the beginning of
training. In practical scenarios, in the unsupervised setting,
the association between the sprites and a characters could
be performed by a user. Instead, for quantitative evalua-
tion, we want to perform this association automatically, and
using only annotated text lines. Since we have to handle
sequences of variable lengths, since our predictions include
errors, and since the mapping between sprites and characters
is not necessarily bijective, obtaining an optimal assignment
is challenging. In this section, we propose a simple algorithm
to find an approximate solution.

Formalization. We assume that each sprite corresponds
to a character (i.e. we do not consider cases such as a sprite

1

https://imagine.enpc.fr/~siglidii/learnable-typewriter

(a) Supervised (b) Unsupervised

Figure 1: Random results on Google1000 [4] with and without supervision. The top of the figure shows the sprites learned
by our method, colored as in the semantic segmentation. Then, for each input line (top) we show the reconstruction provided
by our method (middle) and the corresponding semantic segmentation (bottom). This figure extends Figure 3 of our paper.

2

(a) Supervised (b) Unsupervised

Figure 2: Random results on the Copiale cipher [1]. The layout is the same as Figure 1, extending Figure 4 of our paper.

3

Algorithm 1 Learning Sprite Alphabet Correspondences

Input: Y ▷ g.t. (characters), pred. (sprites) pairs
Output: Ã ▷ optimal assignment
Initialization: A ∼ U(0, 1)K×N ▷ assignment matrix
for (y, ŷ) ∈ Y do

Find the optimal alignment between y and ŷ given A
Perform a gradient step to minimize LM (y, ŷ, A)

return argmax(A, axis = 1)

corresponding to only part of a character or a sprite includ-
ing two characters). Our problem can thus be formulated as
the optimization of an assignment matrix Ã ∈ {0, 1}K×N

where K is the number of sprites and N is the size of the
alphabet, and where for each sprite s there is a unique char-
acter c for which As,c = 1, when sprite s corresponds
to character c, and zero otherwise. We relax the problem
by optimizing instead a matrix Ã ∈ [0, 1]K×N which we
parametrize as the column-wise softmax of a matrix A, i.e.
Ãs,· = softmax(As,·). We will compute the final assign-
ment matrix Ã by associating to each sprite s the character c
for which As,c is maximal. We assume that we are given as
input a collection Y , where each element is a pair of a ground
truth sequence of characters y and a predicted sequence of
sprites ŷ.

Algorithm overview. We propose an iterative mapping
optimization scheme, outlined in Algorithm 1. Given a pair
(y, ŷ) ∈ Y and an assignment matrix A we define a match-
ing loss LM (y, ŷ, A). Our algorithm, iterates over pairs
(y, ŷ) ∈ Y and for each pair, it computes the loss as a func-
tion of A and then performs a gradient step on A. After
the optimization has converged, we extract the mapping by
applying an argmax operator to A in the dimension corre-
sponding to the alphabet. As a final refinement step, we
ignore sprites that work as visual wild-cards, i.e. sprites that
only improve reconstruction without corresponding to any
character. To do so, we sort the sprites by increasing usage
frequency, iterate over each sprite and discard it if removing
it improves the character error rate in the training set.

Matching Loss. Given a matrix A, associated to a matrix
Ã, we define a cost matrix C for associating sprites and
characters as C = 1 − Ã and a cost Cskip for skipping a
character or a sprite when aligning two sequences. The
matching loss LM (y, ŷ, A) is defined as a minimum cost of
alignment between y and ŷ.

We define the cost of a given alignment between a char-
acter sequence and a sprite sequence as the sum of the cost
of all the sprites to character associations in the alignment
added to the sum of the cost Cskip for all the characters and
sprites skipped in the alignment. Intuitively, as illustrated on
Figure 3, one can see an alignment between a sprite and a

Algorithm 2 LM(y, ŷ, A) Matching Loss Computation

Input: y, ŷ, A ▷ g.t., pred., assignment matrix
Constants: Cskip = 1 ▷ skipping cost
Output: The computed Matching Loss
C = 1− softmax(A), D = ∞|y|×|ŷ| ▷ initialization
for i, j ∈ {0, ..., |y|} × {0, ..., |ŷ|} do

if i ?
= 0 ∨ j

?
= 0 then

D[i, j] = (i+ j) · Cskip

else

D[i, j] = min

D[i− 1, j − 1] + C[yi−1, ŷj−1]

D[i− 1, j] + Cskip

D[i, j − 1] + Cskip

return D[|y|, |ŷ|]

character sequence as path in a 2D grid, where the two di-
mensions of the grid are associated to the sequence of sprites
ŷ and characters y extended by start symbols which we use to
initialize the association between the two sequences. Diago-
nal displacements in the grid are interpreted as an association
between sprites and characters, and horizontal or vertical
displacements as skipping sprites or characters.

One can thus compute the cost of an alignment by moving
along the associated path from the top left corner of the grid
to the bottom right which can be decomposed to a sequence
of two types of steps: (1) a diagonal step to the bottom right
direction toward a cell associated to sprite s and character
c, that corresponds to matching the sprite and character and
is associated to a cost Cs,c, and; (2) a horizontal or vertical
step, that corresponds to skipping either an element of the
sequence y or of the sequence ŷ and is associated in both
cases to a cost Cskip. An optimal alignment between the
sequences corresponds to a path from the top left position
of the grid to the bottom right position (like the one colored
green in Figure 3) which has the minimum cost. Such an
optimal path can be computed through a dynamic program-
ming algorithm, which we detail in Algorithm 2. We use
Cskip = 1.

Training Details All sprite-character matching models
have been trained with a learning rate of 1, a batch size of 256
and for a total of 5 epochs using standard stochastic gradient
descent. In practice we don’t notice major differences after
1 epoch.

4. Baseline
To construct a baseline for our unsupervised method,

we examined two available sprite-based methods on
Google1000: DTI-Sprites [2] and MarioNette [3]. We train
both methods on square crops of 64×64 crops from our line
images using the original code provided by the authors with
K = 80 sprites. We show the resulting sprites in Figure 4.

4

Figure 3: Sprite-Character Matching. An example of a
case of misalignment due to a transcription error (in red).
In this example the optimal place to ”skip” is after sprite
1 as in all the other cases the cost will be higher. With
green we denote the best path for which: LM (y, ŷ, As,c) =
C2,T + C1,h + Cskip + C3,e.

MarioNette didn’t produce satisfying sprites, which demon-
strates the changes we propose in our paper are critical. On
the contrary, DTI-sprite produced good looking sprites and
so we applied it repeatedly on line crops and aggregated the
results to produce a baseline for our approach (reported in
Table 1 in the paper).

MarioNette [3]. MarioNette splits the input image into a
grid and predicts sprites and transformations around each po-
sition of this grid. Its main hyperparameter is the layer size
parameter defining the resolution of this grid, which also
implicitly defines the sprite-size as a rectangle with height
2H/layer size (where 2 accounts for the overlap). At each
position of the grid we have a maximum of n objects lay-
ered objects. Finally the background can either be constant
(inferred as the color of the largest class when applying K-
means on the color space) or learned (i.e. a parameter of the
overall architecture).

We tune the hyperparameters of MarioNette by trying
layer size ∈ {2, 4, 8}, n objects ∈ {3, 4} and either a
learned or a constant background. Our best results, ob-
tained with a constant background, n objects = 4 and
layer size = 2 can be seen in Figure 4a. While we have
letter-like sprites, the model is not able to well-separate
background from characters.

DTI-Sprites [2]. DTI-Sprites reconstructs the input canvas
by layering a sequence of sprites in front of a background.
We freeze the color of sprites and use L = 4 layers. As can
be seen in Figure 4, the learned sprites are of high quality,
even if a lot of the sprites are duplicates of common letters.

There is no trivial mechanism to extend DTI-sprite to vari-
able size images. Moreover, the number of possible layers is
strongly limited by the computational cost of sprite selection
which is exponential in the number of layers. To produce
results on complete lines we thus simply concatenate the

(a) Marionette [3] (b) DTI-Sprites [2]

Figure 4: Baseline Sprites. Left: sprites from MarioNette,
for the best model: n objects = 4 and layer size =
2. Right: Sprites from DTI-Sprites, both trained on
Google1000.

predictions from crops across the whole line. In case sprites
intersect with the border for two nearby crops we select the
one which has the largest mask inside each crop. We also
ignore any sprite which has more than 90% of its total mask
overlayed by another sprite.

References
[1] Kevin Knight, Beata Megyesi, and Christiane Schaefer. The

Copiale Cipher. In Proceedings of the ACL Workshop on
Building and Using Comparable Corpora, pages 2–9, 2011. 3

[2] Tom Monnier, Elliot Vincent, Jean Ponce, and Mathieu Aubry.
Unsupervised Layered Image Decomposition into Object Pro-
totypes. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 8640–8650, Apr. 2021. 1,
4, 5

[3] Dmitriy Smirnov, Michael Gharbi, Matthew Fisher, Vitor
Guizilini, Alexei A. Efros, and Justin Solomon. MarioNette:
Self-Supervised Sprite Learning. arXiv:2104.14553 [cs], Apr.
2021. 1, 4, 5

[4] L. Vincent. Google Book Search: Document Understanding
on a Massive Scale. In Ninth International Conference on Doc-
ument Analysis and Recognition (ICDAR 2007) Vol 2, pages
819–823, Curitiba, Parana, Brazil, Sept. 2007. IEEE. 2

5

