Object recognition and computer vision 2023

Reconnaissance d'objects et vision artificielle (RecVis)

Class logistics

Lecturers:

Gül Varol

Jean Ponce

Armand Joulin

Josef Sivic

Ivan Laptev

Cordelia Schmid

Mathieu Aubry

Object recognition and computer vision 2023

TAs:

Ricardo Garcia

Guillaume Le Moing

Charles Raude

Lecturers:

Gül Varol

Jean Ponce

Armand Joulin

Josef Sivic

Ivan Laptev

Cordelia Schmid

Mathieu Aubry

Schedule

Tuesdays 16h - 19h Location: Salle Dussane

Follow updates & exceptions on class webpage

#	Date	Lecturer	Topic and reading materials
1	Oct 3	Gül Varol, Jean Ponce	Class logistics: assignments, final projects, grading (G. Varol); Introduction to visual recognition; Camera geometry; Image processing (J. Ponce)
2	Oct 10 *Salle 1Z18, ENS Paris-Saclay*	Gül Varol	Instance-level recognition: local invariant features, correspondence, image matching materials Assignment 1 out.
3	Oct 17 *Inria, 2 rue Simone IFF, 75012*	TAs	Python/Pytorch tutorial. Attendance is optional.
4	Oct 24	Armand Joulin	Supervised learning and deep learning; Optimization and regularization for neural networks; Introduction to sequence models Assignment 1 due. Assignment 2 out.
5	Oct 31	Gül Varol	Neural networks for visual recognition: CNNs and image classification
6	Nov 7 *starting 16h30*	Gül Varol	Beyond CNNs: Transformers; Beyond classification: Object detection; Pose estimation; Segmentation
7	Nov 14	Josef Sivic	Large-scale image and video search Assignment 2 due. Assignment 3 out.
8	Nov 21	Gül Varol	Generative models: VAEs, GANs, diffusion; Vision & language
9	Nov 28	Ivan Laptev	Weakly-supervised learning; Self-supervised learning; Vision for robotics Assignment 3 due. Final project topics are out.
10	Dec 5 *Amphi Jaures, 29 rue d'Ulm, 75005*	Cordelia Schmid	Human action recognition in videos Final project proposal due.
11	Dec 12	Mathieu Aubry	3D computer vision
12	Jan 8 - Jan 9		Final project presentations The presentations may be virtual. Instructions will be provided. Final project reports due on 15/01.

Practical information: Participation

Class webpage: http://imagine.enpc.fr/~varolg/teaching/recvis23/

Google Classroom: Register with the code wbj5g7w to receive announcements.

Time: 16h00-19h00, Tuesdays, starting Oct 3

Location : Salle Dussane, ENS Ulm, 45 rue d'Ulm 75005, Paris

Format: In-person lectures. Slides provided after each lecture.

For externals: You are welcome to attend the course (either for auditing or validation) provided there are enough free places in the lecture hall. If your school requires a proof of attendance, you need to get signatures from teachers after every lecture.

Practical information: Grading

3 programming assignments (50%)

- A1: Instance-level recognition
- A2: Neural networks
- A3: Image classification competition

Some experience with Python (numpy, pytorch) will be useful, but we will provide an optional crash-lecture on Python/Pytorch for computer vision

Final project (50%)

- More independent work, resulting in a report and a class presentation.
- We will provide Google Cloud credits for each student.

Policy

Assignments are strictly individual

Copy-paste of the code, results, parts of the report

FPs can be done in groups of max 2 people

Assignment I: Instance-level recognition

- Part I: Sparse features for matching specific objects in images
 - Feature detector and descriptor
 - Robust match filtering techniques
 - Augmented reality
- Part II: Compact descriptors for image retrieval

Assignment II: Neural networks

- Part 1: Neural Network's theory:
 - Forward pass, Backward pass
 - Parameter update
- Part 2: Building blocks of convolutional neural networks
- Part 3: Training a CNN on CIFAR-10 dataset with PyTorch

Assignment III: Image classification competition

- Class Kaggle competition
- Example task: Bird image classification the assignment will cover a similar task

Final project

- Can be done individually or as a group of max 2 people
- The proposed project topics are from the recent top-conference publications in computer vision, see example topics from 2022 here: https://www.di.ens.fr/willow/teaching/recvis22/
- Student-defined projects are welcome.
- Final project can be joint with another MVA course.
- We arranged \$100 Google Cloud credits for the project.
 - This will be announced through Google Classroom before projects start

- Select the topic + write project proposal
- Present the work in the class
- Write project report

Practical: Python tutorial

Fill-in the Python tutorial participation form linked from the class webpage by Mon Oct 16.

The tutorial will be on **Tue Oct 17**, starting at **16h00** (until 18h00) at: INRIA/Willow, **2 rue Simone IFF**, **75012 Paris**. **Note there will be no lecture on that day.**

Who should participate?

• Students with no or limited experience with Python. Attendance is optional.

Topics covered:

- Installing Anaconda.
- Brief introduction to Python.
- Introduction to Numpy, PyTorch for computer vision.
- Using Jupyter notebooks.

Course outline

- 1. Instance-level recognition
 - Camera geometry
 - Image processing
 - Image correspondence

- 2. Category-level recognition
 - Supervised learning
 - Neural networks for visual recognition
 - Object recognition, detection, and segmentation

- 3. Advanced topics
 - Large-scale image and video search
 - Generative models
 - Vision for robotics
 - Human action recognition in videos
 - 3D computer vision

Vibrant portrait painting of Salvador
Dali with a robotic half face

Course outline

- 1. Instance-level recognition
 - Camera geometry
 - Image processing
 - Image correspondence

- 2. Category-level recognition
 - Supervised learning
 - Neural networks for visual recognition
 - Object recognition, detection, and segmentation

- 3. Advanced topics
 - Large-scale image and video search
 - Generative models
 - Vision for robotics
 - Human action recognition in videos
 - 3D computer vision

Vibrant portrait painting of Salvador Dali with a robotic half face

Course outline

- 1. Instance-level recognition
 - Camera geometry
 - Image processing
 - Image correspondence

- 2. Category-level recognition
 - Supervised learning
 - Neural networks for visual recognition
 - Object recognition, detection, and segmentation

- 3. Advanced topics
 - Large-scale image and video search
 - Generative models
 - Vision for robotics
 - Human action recognition in videos
 - 3D computer vision

Vibrant portrait painting of Salvador Dali with a robotic half face

3. Advanced topics

Large-scale image and video search

Generative models

Vision for robotics

Vibrant portrait painting of Salvador

Dali with a robotic half face

Human action recognition in videos

• 3D computer vision

- 1. Register on the Google Clasroom
 - Assignment submissions, discussions and announcements will be done on Google Classroom.
 - Assignment 1 Instance-level recognition (due Oct 24 2023)
- 2. Fill-in Python tutorial participation form (by Oct 16)

•

Research

IMAGINE and WILLOW teams are active in computer vision.

http://imagine.enpc.fr

http://www.di.ens.fr/willow/

There will be master internships available. Talk to us if you are interested!