
Introduction to Deep
Learning

Armand Joulin

What is deep learning?

“person”

image label

Bounding box

“person running in the street”

scene description

Why do we need Deep Learning?

Powering the revolution in knowledge accessibility

“Grandma knitted a portal to hell” “Ikea instructions for fMRI machine” …

How does Deep learning work?

Cover in this lecture

• Basic supervised deep learning

• Modeling and training

• Introduction to sequence modeling

Supervised deep learning

Supervised classification

Linear classifier

Classification loss

Perceptron algorithm

Doesn’t converge!

Purple: logistic regression

Properties: smooth and convex

Gradient descent

• Take step in direction of gradient to minimize loss
• Guarantee to converge to global minimum if loss is convex

Logistic regression with gradient descent

non-linear classifier = linear classifier of non-linear features.

Which non-linear features?

Why not learn the non linear features too?

 That is the goal of deep learning

Training a neural network

Backpropagation

Backpropagation – chain rule

Backpropagation – chain rule

Backpropagation - memoization

Backpropagation - memoization

Computing gradient from end to beginning à re-use partial computation

Optimal computation of gradient at the cost of memory

Can be generalized and automated along a DAG (autograd)

V W

forward

backward

Backpropagation = chain rule + memoization

Impact of deeper network on gradients

Going deeper

Going deeper

Going deeper – vanishing gradient problem

Why?

• Non linearity puts gradient to 0

• Matrix multipliciation with eigenvalues < 1

Going deeper – vanishing gradient problem

Use non-linearity with less zero-region

Going deeper – vanishing gradient problem

NN

norm

Optimization

Gradient descent

• Require pass over entire dataset
• Dataset contains millions/billions examples

Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD)

What are the pros and cons?

Stochastic gradient descent (SGD)

i.i.d. sampling + stochastic gradients = full gradient in expectancy (no bias)

• pros:
• For one full gradient, time to do N updates with SGD -> N times faster
• works on infinite data or online

• cons:
• introduces variance in gradients

Batch SGD

Weight regularization

Why is it important?

• Many networks produce same results

• Examples: permutations of weights, invariant to multiplication…

• We can reduce space of exploration to smaller set of networks

à Faster convergence

Weight regularization

3 complementary approaches:
• Initialziation
• Normalization of activations
• Regularizing the weights

Initialization

Initialization

Fan-in initialization

Data normalization (whitening)

Intermediate normalization

Normalize intermediate features to keep
values in range of non-linearities

• Different solutions:
• Batch normalization
• Layer normalization
• RSMnorm
• …

NN

norm

Example: batch normalization

Example: batch normalization

• Normalization reduces space of
parameters to explore

• faster convergence

• Layer norm is prefered over batch norm

Weight decay

Setting learning rate

Solution 0: fixed learning rate

Solution 1: linear decay

Solution 2: cosine scheduler

• Same as linear linear decay with a cosine function: αt = α0 cos(t/Tpi/2)

• Last learning rate often equals to 0.1 of initial value

Beyond vanilla SGD

Not all direction are equal

Not all direction are equal

We want to go fast in some directions, slow in others

Vectorized SGD: one step size per dimension

Example: Adagrad

• No need to set a learning rate schedule
• Gt,i is the accumulation of the squared gradients
• Squared norm avoids exploding or vanishing gradient
• ε avoids numerical issues.

Use previous gradients

Previous gradients are not bad estimates of current curvature

Example: momentum (or heavy ball)

Example: momentum (or heavy ball)

Momentum + vectorized stepsize = ADAM

Avoiding gradient explosion

Why it exists?

• Multiplying matrices with eigenvalues > 1

• Numerical unstability when dealing with large number of params

Gradient clipping

Solution is to clip the value of gradient below some norm:

Warm-up

• Most gradient explosition happens at the beginning of training

• Because matrices are poorly set and learning rates are large

• Solution: start with small learning and increases it

Warm-up

Summary of optimization

Standard optimization:
• ADAM (or AdamW)
• clipping
• cosine scheduler
• Warm-up
• Init based on fan-in
• greed search over initial learning rate and weight decay

Underfitting and overfitting

What is it?

• Underfitting:
• not enough parameters to express complexity in data
• low performance on training and test set

• Overfitting:
• too many parameters match too well complexity in training data
• high performance on training set, low on test set

True in the ``low’’ data regime

• Problem is that training set is small (few millions data)

• Easy to memorize training set

• No generalization

Not true in the ``infinite’’ data regime

• Overfitting on infinite data is good, most models underfit

• In this setting, there is no more ``test’’ set

• Example: large language models are in the ``infinite’’ data regime

What to do in this regime?

• Find scaling rules of parameters versus data

• Estimate numbers of parameters when scaling in data

Switching to sequence modeling…

