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Why?

• Example of temporal sequences:
• videos
• robot moving in an environment
• video games...



...but first an introduction to language modeling



What is language modeling

• Language modeling assigning probability to a text

• A text is a sequence of tokens

• tokens can be words, characters or group of characters.

• For example:

{a cat} = {a, cat},

= {a, , c, a, t},
= {a, , ca, t}.

• For most of this lecture, we assume that tokens are words
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What is language modeling

• Given a sequence {w1, . . . ,wT} of tokens, a language model
estimates its probability:

P(w1, . . . ,wT )

• P depends on a vocabulary, i.e., the set of unique tokens.

• P can be conditioned on an external variable, i.e.,
P(.) = P(. | C )



Applications of language modeling

Language models are applied in several fields:

• Speech recognition:

P(”Vanilla, I scream”) < P(”Vanilla ice cream”).

• Machine translation:

P(”Déçu en bien” | ”Pleasantly surprised”) <

P(”Agréablement surpris” | ”Pleasantly surprised”)

• Optical Character Recognition:

P(”m0ve fast”) < P(”move fast”)



Applications of language modeling

• Language models are just models of sequences

• they can apply to any sequence, like video or audio



Probabilistic language model
• Sequence probability as a product of token probabilities:

P(w1, . . . ,wT ) =
T∏
t=1

P(wt | wt−1, . . . ,w1)

• Indeed we have:

P(a, b) = P(a)P(b | a)

• Recursively applied to a sequence:

P(w1,w2,w3) = P(w1)P(w2,w3 | w1)

= P(w1)P(w2 | w1)P(w3 | w2,w1).

• Language models estimate probability of upcoming token
given past:

P(wt | wt−1, . . . ,w1).
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Preliminaries: words as vectors

• We assume a fixed vocabulary of V words

• we represent the i-th word by a V dimensional vector wi :

wi [j ] =

{
1 if j = i ,

0 otherwise

• These word vectors are:
• independent: wT

i wj = 0 if i ̸= j
• normalized: wT

i wi = 1

• We call this representation “one-hot vectors”

• For now on, the notation wt represents the one-hot vector of
the word at the t-th position in the sentence



A linear model for bigrams

• The input is the 1-hot vector of the previous word: xt = wt−1

• The output is the 1-hot vector of the upcoming word: yt = wt

• Linear model z = Ax

• Build a probability over all possible words:

f (y, z)[k] =
exp(z[k])∑V
i=1 exp(z[i ])

• A cross-entropy loss: ℓ(q,p) = −qT log(p)

• Learning a linear bigram model is equivalent to:

min
A∈RV×V

1

T

T∑
t=1

ℓ(yt , f (Axt))



Limitations of linear models

min
A∈RV×V

1

T

T∑
t=1

ℓ(yt ,Axt)

• The matrix A is O(V 2)

• Example: V = 10k → 100, 000, 000 parameters

• Difficult and slow to scale to longer n-grams



Neural bigram model

• feedforward network:

ht−1 = σ(Awt−1)

pt = f (Bht−1)

σ(x) = 1/(1 + exp(−x)) pointwise sigmoid

function

• A: V × H matrix; B: H × V matrix

• H << V

• Minimization problem:

min
A, B

1

T

T∑
t=1

ℓ(wt , f (Bσ(Awt−1)))



Neural n-gram model

Generalization to any fixed n-gram:

• The input is the contactenation
of previous words:

xt = [wt−n+1, . . . ,wt−1]

• A: nV × H matrix

• Minimization problem:

min
A, B

1

T

T∑
t=1

ℓ(wt , f (Bσ(Axt)))



Recurrent Neural Network
• Recurrent network: Keep memory of past in the hidden
variables

Feedforward Recurrent Network

ht−1 = σ (A[wt−k , . . . ,wt−1]) ht−1 = σ (Awt−1 + Rht−2)
pt = f (Bht−1) pt = f (Bht−1)



Recurrent Neural Network

• Recurrent equation: ht = σ (A[ht−1,wt ])

• Unfold over time: very deep feedforward with weight
sharing

• Potentially capture long term dependencies



Recurrent Neural Network: training

• Backpropagation through time (BPTT): same as
backpropagation through a very deepfeedforward network



Recurrent Neural Network: training

• batch BPTT: forward/backward for many words
simultaneously



Recurrent Neural Network: training

• Problem with BPTT: Computing 1 gradient is O(T ). Too
slow.



Recurrent Neural Network: training

• Truncated BPTT: Go back in time for k step: O(k).



Transformer Networks



Motivation

• In recurrent networks, we have

ht = f (ht−1,wt).

• RNNs encode the whole history in single vector ht−1

• Instead, can we use all token representations to compute ht?

• Technical challenge:

need to combine a variable number of representations!



Convolutional Neural Networks?

• Pros
• easy to parallelize
• exploits local context

• Cons
• span of context increase linearly with number of layers
• need to be very deep to have large context

from Vaswani and Huang:
http://web.stanford.edu/class/cs224n/slides/

http://web.stanford.edu/class/cs224n/slides/


Combining vectors with attention

• Solution: use the (self) attention mechanism

• Given a set of vectors w1, ..., wT ∈ Rd representing tokens

ht =
T∑
i=1

aitVwi

where
∑T

i=1 ait = 1.

• We could use ait =
1
T and get a BoW



Combining vectors with attention

• Introducing matrix W ∈ Rd×T where columns correspond to
wi ,

ht = VWat

• And finally
H = VWA



Combining vectors with attention

• How to compute the matrix A?

A = softmax(W⊤K⊤QW)

where the softmax is applied column-wise.

• Why softmax? to get positive entries, and columns summing
to 1.

• Why W⊤K⊤QW? Bilinear form over the input



Combining vectors with attention

• Putting everything together:

H = VWsoftmax(W⊤K⊤QW)

where H,W ∈ Rd×T and V,K,Q ∈ Rd×d

• V,K,Q are parameters to be learned.

• This operation is called self-attention

• It can be generalized to multiple heads:
• Split input vectors into n subvectors of dimension d/n,
• Apply self attention (with different V,K,Q) over these smaller

vectors
• Concatenate the results to get back d dimensional vectors



Combining vectors with attention

from Vaswani and Huang:
http://web.stanford.edu/class/cs224n/slides/

http://web.stanford.edu/class/cs224n/slides/


Combining vectors with attention

• Goal: use all the context to update a word

• Idea: look for the most important words in the context

• Solution: self-attention on the sequence of inputs



Combining vectors with attention
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Combining vectors with attention
• “query vector” for word i
(“drinks”):

qi = Qwi

• “key vector” for word t (“milk”):

kt = Kwt

• Their similarity score is then:

sit = q⊤i kt

• Normalize over sequence with
softmax:

ait =
exp(sit)∑
k exp(sik)
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Combining vectors with attention

• “value vector” for word t (“milk”):

vt = Vwt

• Finally, compute output for
“drinks”:

yi =
∑
t

aitvt
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Transformer network

Transformer block:

• Multi-head attention layer with skip
connection and normalization

• Followed by feed forward with skip
connection and normalization

Skip connection+normalization:

• Given a network block nn and input x

• The output y is computed as

y = norm(x+ nn(x))

where norm normalize the input

Vaswani et al.
(2017)



Transformer network

Feed forward block

• Two layer network, with ReLU activation

y = W2ReLU(W1x)

• Usually, W1 ∈ R4d×d and W2 ∈ Rd×4d

• i.e. hidden layer of dimension 4d .
Vaswani et al.

(2017)



Position embeddings

• Limitation: self attention does not take position into
account!

• Indeed, shuffling the input gives the same results

• Solution: add position encodings.

• Replace the matrix W by W + E, where E ∈ Rd×T

• E can be learned, or defined using sin and cos:

e2i ,j = sin

(
j

100002i/d

)
e2i+1,j = cos

(
j

100002i/d

)



Transformer network: take away

Transformer network:

• Token embeddings + Position embeddings

• Then N transformer blocks (e.g. N = 12)

• Softmax classifier

Vaswani et al.
(2017)
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