# Sequence modeling 

Armand Joulin

Google DeepMind<br>ajoulin@google.com

## Why?

- Example of temporal sequences:
- videos
- robot moving in an environment
- video games...
...but first an introduction to language modeling


## What is language modeling

- Language modeling assigning probability to a text
- A text is a sequence of tokens
- tokens can be words, characters or group of characters.
- For example:

$$
\{\mathrm{a} \text { cat }\}=\{\mathrm{a}, \mathrm{cat}\}
$$

## What is language modeling

- Language modeling assigning probability to a text
- A text is a sequence of tokens
- tokens can be words, characters or group of characters.
- For example:

$$
\begin{aligned}
\{\mathrm{a} \text { cat }\} & =\{\mathrm{a}, \mathrm{cat}\} \\
& =\{\mathrm{a}, \mathrm{c}, \mathrm{a}, \mathrm{t}\}
\end{aligned}
$$

## What is language modeling

- Language modeling assigning probability to a text
- A text is a sequence of tokens
- tokens can be words, characters or group of characters.
- For example:

$$
\begin{aligned}
\{\mathrm{a} c a t\} & =\{\mathrm{a}, \mathrm{cat}\}, \\
& =\{\mathrm{a}, \mathrm{c}, \mathrm{a}, \mathrm{t}\}, \\
& =\{\mathrm{a},, \mathrm{ca}, \mathrm{t}\} .
\end{aligned}
$$

## What is language modeling

- Language modeling assigning probability to a text
- A text is a sequence of tokens
- tokens can be words, characters or group of characters.
- For example:

$$
\begin{aligned}
\{\mathrm{a} \text { cat }\} & =\{\mathrm{a}, \mathrm{cat}\} \\
& =\{\mathrm{a}, \mathrm{c}, \mathrm{a}, \mathrm{t}\} \\
& =\{\mathrm{a},, \mathrm{ca}, \mathrm{t}\} .
\end{aligned}
$$

- For most of this lecture, we assume that tokens are words


## What is language modeling

- Given a sequence $\left\{w_{1}, \ldots, w_{T}\right\}$ of tokens, a language model estimates its probability:

$$
P\left(w_{1}, \ldots, w_{T}\right)
$$

- $P$ depends on a vocabulary, i.e., the set of unique tokens.
- $P$ can be conditioned on an external variable, i.e., $P()=.P(. \mid C)$


## Applications of language modeling

Language models are applied in several fields:

- Speech recognition:

$$
P(\text { "Vanilla, I scream" })<P(\text { "Vanilla ice cream" })
$$

- Machine translation:

$$
\begin{array}{r}
P(\text { "Déçu en bien" | "Pleasantly surprised") }< \\
P(\text { "Agréablement surpris" | "Pleasantly surprised") }
\end{array}
$$

- Optical Character Recognition:

$$
P(\text { "m0ve fast" })<P(\text { " move fast" })
$$

## Applications of language modeling

- Language models are just models of sequences
- they can apply to any sequence, like video or audio


## Probabilistic language model

- Sequence probability as a product of token probabilities:

$$
P\left(w_{1}, \ldots, w_{T}\right)=\prod_{t=1}^{T} P\left(w_{t} \mid w_{t-1}, \ldots, w_{1}\right)
$$

## Probabilistic language model

- Sequence probability as a product of token probabilities:

$$
P\left(w_{1}, \ldots, w_{T}\right)=\prod_{t=1}^{T} P\left(w_{t} \mid w_{t-1}, \ldots, w_{1}\right)
$$

- Indeed we have:

$$
P(a, b)=P(a) P(b \mid a)
$$

## Probabilistic language model

- Sequence probability as a product of token probabilities:

$$
P\left(w_{1}, \ldots, w_{T}\right)=\prod_{t=1}^{T} P\left(w_{t} \mid w_{t-1}, \ldots, w_{1}\right)
$$

- Indeed we have:

$$
P(a, b)=P(a) P(b \mid a)
$$

- Recursively applied to a sequence:

$$
\begin{aligned}
P\left(w_{1}, w_{2}, w_{3}\right) & =P\left(w_{1}\right) P\left(w_{2}, w_{3} \mid w_{1}\right) \\
& =P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{2}, w_{1}\right)
\end{aligned}
$$

## Probabilistic language model

- Sequence probability as a product of token probabilities:

$$
P\left(w_{1}, \ldots, w_{T}\right)=\prod_{t=1}^{T} P\left(w_{t} \mid w_{t-1}, \ldots, w_{1}\right)
$$

- Indeed we have:

$$
P(a, b)=P(a) P(b \mid a)
$$

- Recursively applied to a sequence:

$$
\begin{aligned}
P\left(w_{1}, w_{2}, w_{3}\right) & =P\left(w_{1}\right) P\left(w_{2}, w_{3} \mid w_{1}\right) \\
& =P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{2}, w_{1}\right)
\end{aligned}
$$

- Language models estimate probability of upcoming token given past:

$$
P\left(w_{t} \mid w_{t-1}, \ldots, w_{1}\right)
$$

## Preliminaries: words as vectors

- We assume a fixed vocabulary of $V$ words
- we represent the $i$-th word by a $V$ dimensional vector $\mathbf{w}_{i}$ :

$$
\mathbf{w}_{i}[j]= \begin{cases}1 & \text { if } j=i \\ 0 & \text { otherwise }\end{cases}
$$

- These word vectors are:
- independent: $\mathbf{w}_{i}^{T} \mathbf{w}_{j}=0$ if $i \neq j$
- normalized: $\mathbf{w}_{i}^{T} \mathbf{w}_{i}=1$
- We call this representation "one-hot vectors"
- For now on, the notation $\mathbf{w}_{t}$ represents the one-hot vector of the word at the $t$-th position in the sentence


## A linear model for bigrams

- The input is the 1-hot vector of the previous word: $\mathbf{x}_{t}=\mathbf{w}_{t-1}$
- The output is the 1-hot vector of the upcoming word: $y_{t}=\mathbf{w}_{t}$
- Linear model $\mathbf{z}=\mathbf{A x}$
- Build a probability over all possible words:

$$
f(\mathbf{y}, \mathbf{z})[k]=\frac{\exp (\mathbf{z}[k])}{\sum_{i=1}^{V} \exp (\mathbf{z}[i])}
$$

- A cross-entropy loss: $\ell(\mathbf{q}, \mathbf{p})=-\mathbf{q}^{T} \log (\mathbf{p})$
- Learning a linear bigram model is equivalent to:

$$
\min _{\mathbf{A} \in \mathbb{R}^{V \times V}} \frac{1}{T} \sum_{t=1}^{T} \ell\left(\mathbf{y}_{t}, f\left(\mathbf{A} \mathbf{x}_{t}\right)\right)
$$

## Limitations of linear models

$$
\min _{\mathbf{A} \in \mathbb{R}^{V \times V}} \frac{1}{T} \sum_{t=1}^{T} \ell\left(\mathbf{y}_{t}, \mathbf{A} \mathbf{x}_{t}\right)
$$

- The matrix $\mathbf{A}$ is $O\left(V^{2}\right)$
- Example: $V=10 \mathrm{k} \rightarrow 100,000,000$ parameters
- Difficult and slow to scale to longer $n$-grams


## Neural bigram model

- feedforward network:

$$
\begin{aligned}
\mathbf{h}_{t-1} & =\sigma\left(\mathbf{A} \mathbf{w}_{t-1}\right) \\
\mathbf{p}_{t} & =f\left(\mathbf{B} \mathbf{h}_{t-1}\right)
\end{aligned}
$$

$\sigma(x)=1 /(1+\exp (-x))$ pointwise sigmoid function

- A: $V \times H$ matrix; B: $H \times V$ matrix
- $H \ll V$
- Minimization problem:

$$
\min _{\mathbf{A}, \mathbf{B}} \frac{1}{T} \sum_{t=1}^{T} \ell\left(\mathbf{w}_{t}, f\left(\mathbf{B} \sigma\left(\mathbf{A} \mathbf{w}_{t-1}\right)\right)\right)
$$



## Neural $n$-gram model

Generalization to any fixed n-gram:

- The input is the contactenation of previous words:

$$
\mathbf{x}_{t}=\left[\mathbf{w}_{t-n+1}, \ldots, \mathbf{w}_{t-1}\right]
$$

- A: $n V \times H$ matrix
- Minimization problem:

$$
\min _{\mathbf{A}, \mathbf{B}} \frac{1}{T} \sum_{t=1}^{T} \ell\left(w_{t}, f\left(\mathbf{B} \sigma\left(\mathbf{A} \mathbf{x}_{t}\right)\right)\right)
$$



## Recurrent Neural Network

- Recurrent network: Keep memory of past in the hidden variables


## Feedforward

$$
\begin{gathered}
\mathbf{h}_{t-1}=\sigma\left(\mathbf{A}\left[\mathbf{w}_{t-k}, \ldots, \mathbf{w}_{t-1}\right]\right) \\
\mathbf{p}_{t}=f\left(\mathbf{B h}_{t-1}\right)
\end{gathered}
$$

$$
\begin{gathered}
\mathbf{h}_{t-1}=\sigma\left(\mathbf{A} \mathbf{w}_{t-1}+\mathbf{R} \mathbf{h}_{t-2}\right) \\
\mathbf{p}_{t}=f\left(\mathbf{B} \mathbf{h}_{t-1}\right)
\end{gathered}
$$



## Recurrent Neural Network



- Recurrent equation: $\mathbf{h}_{t}=\sigma\left(\mathbf{A}\left[\mathbf{h}_{t-1}, \mathbf{w}_{t}\right]\right)$
- Unfold over time: very deep feedforward with weight sharing
- Potentially capture long term dependencies


## Recurrent Neural Network: training



- Backpropagation through time (BPTT): same as backpropagation through a very deepfeedforward network


## Recurrent Neural Network: training



- batch BPTT: forward/backward for many words simultaneously


## Recurrent Neural Network: training



- Problem with BPTT: Computing 1 gradient is $O(T)$. Too slow.


## Recurrent Neural Network: training



- Truncated BPTT: Go back in time for $k$ step: $O(k)$.


## Transformer Networks

## Motivation

- In recurrent networks, we have

$$
\mathbf{h}_{t}=f\left(\mathbf{h}_{t-1}, w_{t}\right)
$$

- RNNs encode the whole history in single vector $\mathbf{h}_{t-1}$
- Instead, can we use all token representations to compute $\mathbf{h}_{t}$ ?
- Technical challenge:
need to combine a variable number of representations!


## Convolutional Neural Networks?



- Pros
- easy to parallelize
- exploits local context
- Cons
- span of context increase linearly with number of layers
- need to be very deep to have large context
from Vaswani and Huang: http://web.stanford.edu/class/cs224n/slides/


## Combining vectors with attention

- Solution: use the (self) attention mechanism
- Given a set of vectors $\mathbf{w}_{1}, \ldots, \mathbf{w}_{T} \in \mathbb{R}^{d}$ representing tokens

$$
\mathbf{h}_{t}=\sum_{i=1}^{T} a_{i t} \mathbf{V} \mathbf{w}_{i}
$$

where $\sum_{i=1}^{T} a_{i t}=1$.

- We could use $a_{i t}=\frac{1}{T}$ and get a BoW


## Combining vectors with attention

- Introducing matrix $\mathbf{W} \in \mathbb{R}^{d \times T}$ where columns correspond to $\mathbf{w}_{i}$,

$$
\mathbf{h}_{t}=\mathbf{V W} \mathbf{a}_{t}
$$

- And finally
$\mathbf{H}=$ VWA


## Combining vectors with attention

- How to compute the matrix $\mathbf{A}$ ?

$$
\mathbf{A}=\operatorname{softmax}\left(\mathbf{W}^{\top} \mathbf{K}^{\top} \mathbf{Q} \mathbf{W}\right)
$$

where the softmax is applied column-wise.

- Why softmax? to get positive entries, and columns summing to 1 .
- Why $\mathbf{W}^{\top} \mathbf{K}^{\top} \mathbf{Q W}$ ? Bilinear form over the input


## Combining vectors with attention

- Putting everything together:

$$
\mathbf{H}=\mathbf{V} \mathbf{W} \text { softmax }\left(\mathbf{W}^{\top} \mathbf{K}^{\top} \mathbf{Q} \mathbf{W}\right)
$$

where $\mathbf{H}, \mathbf{W} \in \mathbb{R}^{d \times T}$ and $\mathbf{V}, \mathbf{K}, \mathbf{Q} \in \mathbb{R}^{d \times d}$

- $\mathbf{V}, \mathbf{K}, \mathbf{Q}$ are parameters to be learned.
- This operation is called self-attention
- It can be generalized to multiple heads:
- Split input vectors into $n$ subvectors of dimension $d / n$,
- Apply self attention (with different $\mathbf{V}, \mathbf{K}, \mathbf{Q}$ ) over these smaller vectors
- Concatenate the results to get back $d$ dimensional vectors


## Combining vectors with attention


from Vaswani and Huang: http://web.stanford.edu/class/cs224n/slides/

## Combining vectors with attention

- Goal: use all the context to update a word
- Idea: look for the most important words in the context
- Solution: self-attention on the sequence of inputs


## Combining vectors with attention

embeddings


## Combining vectors with attention

output
embeddings

$\square$


## Combining vectors with attention

output


## Combining vectors with attention

output


## Combining vectors with attention



## Combining vectors with attention

- "query vector" for word $i$
("drinks"):

$$
\mathbf{q}_{i}=\mathbf{Q} \mathbf{w}_{i}
$$

- "key vector" for word $t$ ("milk"):

$$
\mathbf{k}_{t}=\mathbf{K} \mathbf{w}_{t}
$$



## Combining vectors with attention

- "query vector" for word $i$
("drinks"):

$$
\mathbf{q}_{i}=\mathbf{Q} \mathbf{w}_{i}
$$

- "key vector" for word $t$ ("milk"):

$$
\mathbf{k}_{t}=\mathbf{K} \mathbf{w}_{t}
$$



- Their similarity score is then:

$$
s_{i t}=\mathbf{q}_{i}^{\top} \mathbf{k}_{t}
$$

## Combining vectors with attention

- "query vector" for word $i$
("drinks"):

$$
\mathbf{q}_{i}=\mathbf{Q} \mathbf{w}_{i}
$$

- "key vector" for word $t$ ("milk"):

$$
\mathbf{k}_{t}=\mathbf{K} \mathbf{w}_{t}
$$



- Their similarity score is then:

$$
s_{i t}=\mathbf{q}_{i}^{\top} \mathbf{k}_{t}
$$

- Normalize over sequence with softmax:

$$
a_{i t}=\frac{\exp \left(s_{i t}\right)}{\sum_{k} \exp \left(s_{i k}\right)}
$$

$$
a_{i t} \square=\mathrm{A}(\square, \square)
$$

## Combining vectors with attention



- "value vector" for word $t$ ("milk"):

$$
\mathbf{v}_{t}=\mathbf{V} \mathbf{w}_{t}
$$



## Combining vectors with attention



- "value vector" for word $t$ ("milk"):

$$
\mathbf{v}_{t}=\mathbf{V} \mathbf{w}_{t}
$$



- Finally, compute output for "drinks":

$$
\mathbf{y}_{i}=\sum_{t} a_{i t} \mathbf{v}_{t}
$$



## Transformer network

Transformer block:

- Multi-head attention layer with skip connection and normalization
- Followed by feed forward with skip connection and normalization

Skip connection+normalization:

- Given a network block nn and input $\mathbf{x}$
- The output $\mathbf{y}$ is computed as

$$
\mathbf{y}=\operatorname{norm}(\mathbf{x}+\mathbf{n n}(\mathbf{x}))
$$


where norm normalize the input

## Transformer network

Feed forward block

- Two layer network, with ReLU activation

$$
\mathbf{y}=\mathbf{W}_{2} \operatorname{ReLU}\left(\mathbf{W}_{1} \mathbf{x}\right)
$$

- Usually, $\mathbf{W}_{1} \in \mathbb{R}^{4 d \times d}$ and $\mathbf{W}_{2} \in \mathbb{R}^{d \times 4 d}$
- i.e. hidden layer of dimension 4d.



## Position embeddings

- Limitation: self attention does not take position into account!
- Indeed, shuffling the input gives the same results
- Solution: add position encodings.
- Replace the matrix $\mathbf{W}$ by $\mathbf{W}+\mathbf{E}$, where $\mathbf{E} \in \mathbb{R}^{d \times T}$
- E can be learned, or defined using sin and cos:

$$
\begin{aligned}
e_{2 i, j} & =\sin \left(\frac{j}{10000^{2 i / d}}\right) \\
e_{2 i+1, j} & =\cos \left(\frac{j}{10000^{2 i / d}}\right)
\end{aligned}
$$

## Transformer network: take away

Transformer network:

- Token embeddings + Position embeddings
- Then $N$ transformer blocks (e.g. $N=12$ )
- Softmax classifier



## References I

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems, pages 5998-6008.

