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Neural Networks
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Last week: Introduction to neural networks 

(A. Joulin) 

This week: Neural networks for visual recognition 

(G. Varol) 

Next week: Beyond classification: Object detection, Segmentation, Human pose estimation 

(G. Varol)



First words that come to your mind when hearing 
“neural networks for visual recognition”?
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Disclaimer: Terminology
• Deep learning 

• Neural networks? 

• Artificial neural networks? 

• Multilayer neural networks? 

• …
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This lecture

Computer Vision

Machine Learning

“Deep” Learning

“AI”

Slide credit: Justin Johnson 6
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Definitions

NLP

Computer Vision

Machine Learning

“Deep” Learning

“AI”

Slide credit: Alexander Amini

Any technique that enables computers to mimic human behavior

Ability to learn without explicitly being programmed

Extract patterns from data using neural networks

Extracting meaning from visual signals

Extracting meaning from textual signals
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Agenda
• 1. Recap: Bag of Visual Words, Analogy with NNs 

• 2. Neural networks (NNs) for computer vision: 
• Applications  
• A brief history: from perceptron to MLPs to CNNs 

• 3. Convolutional neural networks (CNNs) 
• Standard layers 
• Recap: Training NNs 
• Visualizing CNNs 
• Pretraining & finetuning NNs 
• Typical CNN architectures 

• 4. Beyond CNNs 
• Attention & Transformer 
• Vision Transformers 

• 5. Beyond classification
9
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Recap: Image recognition so far
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Category Recognition
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Car: present 
Cow: present 
Bike: not present 
Horse: not present 
…

Slide: C. Schmid

• Image classification: assigning a class label to the image



Category Recognition
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Car: present 
Cow: present 
Bike: not present 
Horse: not present 
…

• Object localization: define the location and the category

Car Cow
Location 

Category

Slide: C. Schmid

• Image classification: assigning a class label to the image



Difficulties: within-class variations
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Why machine learning?
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• Early approaches: simple features + handcrafted models 
• Can handle only few images, simple tasks 

L. G. Roberts, Machine Perception of Three Dimensional Solids,  
Ph.D. thesis, MIT Department of Electrical Engineering, 1963. 

Slide: C. Schmid



Why machine learning?
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• Early approaches: manual programming of rules 
• Tedious, limited, and does not take data into account

Y. Ohta, T. Kanade, and T. Sakai, “An Analysis System for Scenes Containing objects with Substructures,”  
International Joint Conference on Pattern Recognition, 1978. Slide: C. Schmid



Why machine learning?
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• Today lots of data, complex tasks 

Internet images,  
personal photo albums

Movies, news, sports

• Instead of trying to encode rules directly, learn them from examples of 
inputs and desired outputs  

Slide: C. Schmid



Texture Classification
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• Profound observation: Grass and sea pictures don’t look the same! 

• Basic idea: Model the distribution of “texture” over the image (or over a 
region) and classify in different classes based on the texture models learned 
from training examples.

Grass Sea



Image categorization
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• Profound observation: Cows and buildings don’t look the same! 

• Basic idea: Model the distribution of “texture” over the image (or over a 
region) and classify in different classes based on the texture models learned 
from training examples.

Cow Building



Bag-of-features for image classification
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Origin: texture recognition 
• Texture is characterized by the repetition of basic elements or textons 
  

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
 Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Bag-of-features for image classification
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Universal texton dictionary

histogram



Analogy with Text Analysis
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Political observers say that the government of Zorgia does not control the 
political situation. The government will not hold elections …

Analogy: 
Text fragment !" Image region 

Word !" Texton
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Analogy with Text Analysis
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The ZH-20 unit is a 200Gigahertz 
processor with 2Gigabyte memory. 
Its strength is its bus and high-
speed memory……
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Classification

  SVM

 Extract regions Compute 
descriptors

 Find clusters 
and frequencies

Compute distance 
matrix

!"#$%&'()*('+,(-./011234(!567'&()*('+,(8""9/1:34((!;<'=>()*('+,(?@"9/1A3

Bag-of-features for image classification
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Classification

  SVM

 Extract regions Compute 
descriptors

 Find clusters 
and frequencies

Compute distance 
matrix

Step 1 Step 2 Step 3

Bag-of-features for image classification
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Sparse sampling 
• SIFT as interest point detector 

Dense sampling 
• Interest points do not necessarily capture “all” features

Step 1: feature extraction
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Sparse sampling 
• SIFT as interest point detector 

Dense sampling 
• Interest points do not necessarily capture “all” features 
• Spatial pyramid (Lazebnik, Schmid & Ponce, CVPR 2006)

Step 1: feature extraction
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Classification

  SVM

 Extract regions Compute 
descriptors

 Find clusters 
and frequencies

Compute distance 
matrix

Step 1 Step 2 Step 3

Bag-of-features for image classification
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Step 2: Quantization
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Cluster descriptors 
• K-means  
• Gaussian mixture model 

Assign each visual word to a cluster 
• Hard or soft assignment  

Build frequency histogram



Examples for visual words
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Airplanes

Motorbikes

Faces

Wild Cats

Leaves

People

Bikes



…..

fre
qu

en
cy

codewords

• Each image is represented by an aggregated histogram vector, typically 
1000-4000 dimensional 
• Normalized with L2 norm 
• Fisher Vectors [Perronnin et al. ECCV’10]: improvements over Bag of Features                                                                

Image representation

31



Classification

  SVM

 Extract regions Compute 
descriptors

 Find clusters 
and frequencies

Compute distance 
matrix

Step 1 Step 2 Step 3

Bag-of-features for image classification
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positive negative

Train classifier,e.g. SVM

Training data: Vectors are histograms, one from each image

Step 3: Classification

33



Step 3: Classification
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Learn a decision rule (classifier) assigning bag-of-features 
representations of images to different classes

Zebra

Non-zebra

Decision 
boundary



Traditional Recognition Approach
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Hand-designed 
feature 

extraction

Trainable 
classifier

Image/ 
Video 
Pixels

Object 
Class

Slide: R. Fergus / S. Lazebnik



SIFT + BOF SVM
Image/ 
Video 
Pixels

Object 
Class

• SIFT features 
• BOF: Bag of Features / Visual Words (inspired by Bag of Words in NLP) 
• SVM: Support Vector Machines for classification

Lowe (1999, 2004)

fre
qu

en
cy

codewords Cortes, Vapnik (1995)

Traditional Recognition Example
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Analogy to the traditional visual recognition pipeline
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•Features are not learned (e.g., HOG, SIFT, Bag of Features) 
•Trainable classifier is often generic (e.g., SVM, Random Forest)

Slide: R. Fergus / S. Lazebnik
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Analogy to the traditional visual recognition pipeline

•Features are learned “end-to-end” (i.e., pixels are input) 
•”Feature hierarchy” all the way from pixels to classifier 
•Each layer extracts features from the output of previous layer 
•Train all layers jointly

What about learning the features?

Slide: R. Fergus / S. Lazebnik
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Analogy to the traditional visual recognition pipeline

•Features are learned “end-to-end” (i.e., pixels are input) 
•”Feature hierarchy” all the way from pixels to classifier 
•Each layer extracts features from the output of previous layer 
•Train all layers jointly

Slide: R. Fergus / S. Lazebnik



“Shallow” vs. “deep” models
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Hand-designed 
feature extraction

Trainable 
classifier

Image/ 
Video 
Pixels

Object 
Class

Layer 1 Layer N Simple 
classifier

Object 
Class

Image/ 
Video 
Pixels

Traditional recognition: “Shallow” architecture

Deep learning: “Deep” architecture

…

Slide: R. Fergus / S. Lazebnik



Agenda
• 1. Recap: Bag of Visual Words, Analogy with NNs 

• 2. Neural networks (NNs) for computer vision: 
• Applications  
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Neural Networks 
in Production

42



Face detection

43Slide credit: Kosta Derpanis



Self-driving cars / Autonomous vehicles
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“We’ve built an AV that is seamlessly integrating 
into traffic in Munich, Paris, Detroit, Jerusalem, 
New York, Tokyo, and other cities across the globe.”



Shopping

45Slide credit: Kosta Derpanis



Google Translate
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What is “Deep” 
Learning?

47



Recap: Basics of supervised learning
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•n training data pairs 

•Learn a predictor/decision function 

•By minimizing

f̂ : X ! A

(x1, y1), ..., (xn, yn) 2 X ⇥ Y

nX

i=1

l(f(xi), yi)



Recap: Basics of supervised learning
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•n training data pairs 

•Learn a predictor/decision function 

•By minimizing

f̂ : X ! A

(x1, y1), ..., (xn, yn) 2 X ⇥ Y

nX

i=1

l(f(xi), yi)

LabelInputModelLoss



Deep learning

50

nX

i=1

l(f(xi), yi)

LabelInputModelLoss

Deep learning: 
Model = neural network



What is a “deep” neural network?
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Stacking more than one layer

W1 W2

(Layer 1) (Layer 2)



What is a layer?
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• Fully-connected layer 
• Convolution layer 
• Pooling layer (e.g., Max-pooling) 
• Non-linearity layer (e.g., ReLU) 
• Attention layer 
• …

Typically matrix multiplication! (But the function can take many forms*)

*requirement to be differentiable if optimized with gradient descent algorithm variants



Recap: Perceptrons
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Most basic form of a neural network

[Rosenblatt, 1957]

Bias

Linear combination 
of inputs

Non-linearity



54Slide credit: Lana Lazebnik



Recap: Multi-Layer Perceptron (MLP)

55
Slide: R. Fergus / S. Lazebnik

Linear regression: Perceptron:

W1 W2

(Layer 1) (Layer 2)

W W

X X

X Y

YY

MLP:



Images are numbers

56Slide credit: Alexander Amini



Review: Convolutional Neural Networks (CNN)
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• Neural network with specialized connectivity structure 
• Stack multiple stages of feature extractors 
• Higher stages compute more global, more invariant features 
• Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, 
Proceedings of the IEEE 86(11): 2278–2324, 1998.

Slide: R. Fergus / S. Lazebnik

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf


Progress on ImageNet
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Results

https://www.dsiac.org

https://www.dsiac.org/resources/journals/dsiac/winter-2017-

CNN (AlexNet)

Hand-crafted features



CNNs were not invented overnight

Lecture 1 -  Fei-Fei Li & Justin Johnson & Serena Yeung

GoogLeNet VGG MSRASuperVision

[Krizhevsky NIPS 2012]

Year 2012 Year 2014Year 2010
NEC-UIUC

[Lin CVPR 2011]

[Szegedy arxiv 2014] [Simonyan arxiv 2014]

4/4/201731

Year 2015

Dense descriptor grid: 
HOG, LBP

Coding: local coordinate, 
super-vector

Pooling, SPM

Linear SVM

Lion image by Swissfrog is  
licensed under CC BY 3.0

Image

conv-64

conv-64

maxpool

conv-128

conv-128

maxpool

conv-256

conv-256
maxpool

conv-512

conv-512

maxpool

fc-4096
fc-4096

fc-1000

softmax

conv-512

conv-512

maxpool

Pooling 
Convolution 
Softmax 
Other

[He ICCV 2015]Figure copyright Alex Krizhevsky, Ilya 
Sutskever, and Geoffrey Hinton, 2012. 
Reproduced with permission. 

Lecture 1 -  Fei-Fei Li & Justin Johnson & Serena Yeung

1998

2012

LeCun et al.

Krizhevsky et al.

# of transistors # of pixels used in training

# of transistors # of pixels used in training

107

1014

106

109

GPUs

4/4/201733

K
Input

Image Maps

Convolutions
Subsampling

Output

Fully Connected

Figure copyright Alex Krizhevsky, Ilya 
Sutskever, and Geoffrey Hinton, 2012. 
Reproduced with permission. 

59Slide credit: Fei-Fei Li & Justin Johnson & Serena Yeung



Why now?

Slide credit: Alexander Amini

1952

1958

1986

1995

Stochastic Gradient Descent

Perceptron 
• Learnable Weights

Backpropagation 
• Multi-Layer Perceptron

Deep Convolutional NN 
• Digit Recognition

2012 AlexNet

…

1. Big Data 2. Hardware 3. Software

•Larger datasets 
•Easier collection & 

storage

•Graphics Processing 
Units (GPUs) 

•Massively 
Parallelizable

•Improved Techniques 
•New Models 
•Toolboxes

Neural Networks date back decades.

60

…

…



61Slide credit: Kosta Derpanis

CVPR: 
(Computer Vision Pattern 
Recognition Conference)
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• 1. Recap: Bag of Visual Words, Analogy with NNs 

• 2. Neural networks (NNs) for computer vision: 
• Applications  
• A brief history: from perceptron to MLPs to CNNs 

• 3. Convolutional neural networks (CNNs) 
• Standard layers 
• Recap: Training NNs 
• Visualizing CNNs 
• Pretraining & finetuning NNs 
• Typical CNN architectures 

• 4. Beyond CNNs 
• Attention & Transformer 
• Vision Transformers 

• 5. Beyond classification
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Standard layers

64

• 1. Fully-connected layer 
• 2. Convolution layer 
• 3. Pooling layer (e.g., Max-pooling) 
• 4. Non-linearity layer (e.g., ReLU) 
• 5. Normalization layer (e.g., BatchNorm) 
• …

C
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N
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Pooling
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Fully-connected
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Input 
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C
lass 
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Convolutional block Fully-connected block

Learnable 
parameters}

[224 x 224 x 3]

[1000]



1. Fully-connected layer

65Slide credit: Naila Murray
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2. Convolution layer
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*YPP]�GSRRIGXIH�PE]IV�ZW�GSRZSPYXMSREP�PE]IV
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Slide credit: Naila Murray

Fully-connected 1D Convolutional

• Layer with a special connectivity structure 
• Dependencies are local  
• Translation invariance



2. Convolution layer
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Slide credit: Naila Murray

Fully-connected 1D Convolutional



2. Convolution layer
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Slide credit: Naila Murray

Fully-connected 1D Convolutional



2. Convolution layer
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2D Convolutions
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Slide credit: Naila Murray



2. Convolution layer
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2D Convolutions
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Slide credit: Naila Murray

(1x0) + (0x0) + (0x1) + 
(0x0) + (0x2) + (0x0) + 
(0x1) + (1x1) + (2x0)



2. Convolution layer
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2D Convolutions
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2. Convolution layer
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2D Convolutions
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2. Convolution layer

73

2D Convolutions
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Slide credit: Naila Murray
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v

u

c = 1 c = 2 c = 3

channels

= c
v

u

=

Slide: A. Vedaldi

 The data manipulated by a CNN has the form of 3D tensors. These are interpreted 
as discrete vector fields x, assigning a feature vector (xuv1, …, xuvC) at each 
spatial location (v,u).

 A colour image is a simple example of a vector field with 3D features (RGB):

2. Convolution layer



2. Convolution layer
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✻

Slide: A. Vedaldi

W

H

H
W

q’q q

C C Q

With a bank of 3D filters

Linear convolution applies a bank of linear filters F to the input tensor x.
Input tensor x = H ⨉ W ⨉ C array
Filter bank F = H ⨉ W ⨉ C ⨉ Q array
Output tensor y = (H - H + 1) ⨉ (W - W + 1) ⨉ Q array



76
Credit: Martin Görner

2. Convolution layer



2. Convolution layer
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input features

x

ΣF1

ΣF2

y

2-dimensional  
output featuresa bank of 2 filters

Slide: A. Vedaldi

As a neural network



Filter bank example
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• A bank of 256 filters (learned from data) 
• Each filter has 1 channel (it applies to a grayscale image) 
• Each filter is 16x16 pixels

Slide: A. Zisserman

16 pixels

16 pixels



Filtering
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Each filter generates a “feature map”

Input Feature Map

.

.

.

Slide: R. Fergus / S. Lazebnik

Maximum response when 
filter matches signal



Convolution details
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What is the output size?

Slide: A. Karpathy / L. Fei Fei



Example: What is the output volume?
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Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 201543

Examples time:

Input volume: 32x32x3
Receptive fields: 5x5, stride 3
Number of neurons: 5

Output volume: (32 - 5) / 3 + 1 = 10, so: 10x10x5
How many weights for each of the 10x10x5 
neurons?

Slide: A. Karpathy / L. Fei Fei

Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 201543

Examples time:

Input volume: 32x32x3
Receptive fields: 5x5, stride 3
Number of neurons: 5

Output volume: (32 - 5) / 3 + 1 = 10, so: 10x10x5
How many weights for each of the 10x10x5 
neurons?

10
5

10
32

5
5

32
3



Zero padding (in each channel)

82Slide: A. Karpathy / L. Fei Fei



What is the number of parameters?
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input features

x

F1

F2

y

2-dimensional
output featuresa bank of 2 filters

Σ

Σ

Convolution

• Consider an input gray-scale image of 1000x1000 pixels. 
• What is the number of parameters of a filter bank of 100 7x7 filters? 
• How does it compare to a fully connected layer that considers the entire input image?

Figure: A. Zisserman

Convolution: 
100x 7x7  
= 4900 parameters 

vs. 

Fully connected layer: 
1000x1000  
x 
1000x1000 
= 1B parameters. 



3. Spatial Max Pooling
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Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 2015Fei-Fei Li & Andrej Karpathy Lecture 7 - 21 Jan 201559

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING

Slide credit: Andrej Karpathy & Fei-Fei Li



3. Spatial Max Pooling

Dimensions of pooling outputs

85

Note: pooling happens independently in each channel/slice

Slide: A. Karpathy / L. Fei Fei



4. Non-linearity

86

•The non-linear activation functions are essential. Why?

Sigmoid Tanh ReLU



4. Non-linearity
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•Non-linearities allow us to approximate arbitrarily complex functions. 

•Universal approximation theorem: A two-layer multilayer perceptron (MLP) 
with increasing continuous and bounded non-linearity can approximate any 
continuous function on a compact given enough hidden neurons. [Cybenko 1989] 

•Linear activation functions produce linear decisions no matter what the 
model size, i.e., stacking multiple linear functions can be expressed with a single 
linear function.

Sigmoid Tanh ReLU

Why?



88
Slide: K. Derpanis
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Slide: K. DerpanisSlide: K. Derpanis
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Slide: K. Derpanis
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Slide: K. Derpanis
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Slide: K. Derpanis



93
Slide: K. Derpanis



4. Non-Linearity
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- Per-element (independent) 

- Options: 
•Sigmoid: 1/(1+exp(-x)) 
•Tanh 
•Rectified linear unit  (ReLU) 

•Simplifies backpropagation 
•Makes learning faster 
•Avoids saturation issues 

•Variants of ReLU, e.g. Leaky ReLU

Slide: R. Fergus / S. Lazebnik

TanhSigmoid

ReLU



5. Normalization
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[Wu & He, “Group normalization”, ECCV 2018]



CNN Successes
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• Handwritten text/digits 
• MNIST (0.17% error [Ciresan et al. 2011]) 
• Arabic & Chinese   [Ciresan et al. 2012] 

• Simpler recognition benchmarks 
• CIFAR-10 (9.3% error [Wan et al. 2013]) 
• Traffic sign recognition (0.56% error vs 1.16% for humans [Ciresan et al. 2011]) 

• But until recently, less good at more complex datasets 
• Caltech-101/256 (few training examples) 

Slide: R. Fergus / S. Lazebnik



ImageNet Dataset
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[Deng et al. CVPR 2009] 

• ~14 million labeled images, 20k classes 

• Challenge: 1.2 million training images, 
1000 classes 

• Images gathered from Internet 

• Human labels via Amazon Mechanical Turk 

Slide: R. Fergus / S. Lazebnik



ImageNet Challenge 2012 (ILSVRC)
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• Similar framework to LeCun’98 but: 
• Bigger model (7 hidden layers, 60,000,000 params) 
• More data (106 vs. 103 images) 
• GPU implementation (50x speedup over CPU) 

• Trained on two GPUs for a week 
• Better regularization for training (DropOut)

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

Slide: R. Fergus / S. Lazebnik

AlexNet

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


ImageNet Challenge 2012 (ILSVRC)
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AlexNet – 16.4% error (top-5) 
Next best (non-convnet) – 26.2% error
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Slide: R. Fergus / S. Lazebnik

AlexNet
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Gradient descent

101

• The objective function is an average over all N training data points: 

• Performing a gradient descent is iterating. 

• Need to choose the learning rate policy  

• If the function is not convex, get stuck in a local minimum 

• Each step can be expensive to compute if the dataset is large

!"
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Non-convex

https://winder.ai/blog/2017/img/gradient_descent_issues.svg
https://miro.medium.com/max/1400/1*WGHn1L4NveQ85nn3o7Dd2g.webp


Stochastic gradient descent
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• Instead of computing the gradient, compute an approximation: 

• Can take advantage of large datasets, in particular infinite* datasets! 

• Introduce stochasticity, which might be good to get out of local minima in the non-convex case



Stochastic gradient descent with minibatch
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• Some variance is good, too much can be bad 

• It’s faster to compute several gradients in parallel 

• In practice, using batches as large as possible so that the network fits in the GPU memory (e.g., 
between 1 and 256, depending on the task and network)

(with K << N)
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Summary: Stochastic Gradient Descent (SGD)

Slide credit: Andrea Vedaldi



Quiz: 5 minutes

a. b. c. 

slido.com 
#2549 484

slido.com 
#2871 233

slido.com 
#2871 232
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Let’s consider a training dataset of N samples. How many iterations (i.e., 
parameter updates) are there in one training epoch? 

a. Gradient descent: ___ 
b. Stochastic gradient descent: ___ 
c. Stochastic gradient descent with minibatch of size K: ___



Backpropagation
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Computing the gradients: While in theory, we just have the gradients of composite functions and for that 
apply chain rule, there is an efficient way to do it, called backpropagation. Computing derivatives using the chain rule

Backpropagation 49

ℝx
forward

derror
dw1

derror
dw2

derror
dw3

derror
dw4

derror
dw5

derror
dw6

derror
dw7

derror
dw8

backward

c1 c2 c3 c4 c5 f6 f7 f8 l loss

w1 w2 w3 w4 w5 w6 w7 w8

Slide: A. Vedaldi

Xi : image

Yi : bike

Slide credit: Andrea Vedaldi [Derivatives, Backpropagation, and Vectorization] http://cs231n.stanford.edu/handouts/derivatives.pdf

http://cs231n.stanford.edu/handouts/derivatives.pdf


Training a neural network

107
Slide: A. Joulin



Loss Function
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• Regression: 

• L1 (absolute error) / L2 (squared error) 

• Classification: 

• Cross-entropy loss



Loss Function: Regression
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Estimating a continuous value 

• L1 (absolute error) 

• L2 (squared error)

# = (*((&,  $)  − )&)2

# =  *((&,  $) − )&

Prediction: 
output of 

the network f 
with parameters  

given input Xi

Ground truth: 
(label, annotation)

$



Loss Function: Classification
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• Cross-entropy loss = softmax + negative log-likelihood

Fig: Micheleen Harris

Loss = 0.34+0.02+0.71 = 1.07

e5

e5 + e4 + e2



“Problems” with training
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• Making poor predictions on the training data (underfitting) 

• Not generalizing to unseen data (overfitting)



Example: polynomial regression of degree M

112



Validation set

“Typical” machine learning setup

113

(Sometimes referred as 
“development” set)

Allowed to make statistics, learn models, 
tune hyperparameters

Not allowed to “see”

•Learn models on the training set 
•Evaluate on the validation set many times (run experiments to find good hyperparameters, 

e.g., number of epochs, learning rate, batch size…) 
•(Optional: Learn the final model on the combination of training and validation sets) 
•Evaluate on the test set “once”

Training set Test set

                                              Data split into three sets                                                                _             



A few possible scenarios for learning curves

114Image sources

Good fit: both decreasing, 
converging, minimal gap

Overfit: validation increasing Underfit: training loss not decreasing Underfit: training halted prematurely

Unrepresentative validation set: 
too few examples

Unrepresentative validation set: 
easier than training set

Credit: Jason Brownlee
number of iterations/epochs

lo
ss

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/author/jasonb/


How to avoid overfitting?

•Smaller network, i.e., less parameters 
•Data augmentation 
•Suboptimize, i.e., “early stopping” 
•Force redundancy in hidden units, i.e., “dropout” 
•Penalize parameter norms, i.e., “weight decay”

Deep networks have many parameters. 
Some regularization techniques:

L2 penalty: 
encourages the norm of 
the parameters to be low
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Image source

Data augmentation
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https://www.baeldung.com/wp-content/uploads/sites/4/2022/08/AugmentData.png


Look at your results
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• When you train a network, you should try to really understand what is happening: 
• Train/val/test sets are important 
• Look at loss and performance on train/val sets during training 
• Choose LR, compare networks, try different initialization (random seeds) 

• Very important: Look at your data and results (e.g., visualize predictions) on 
training and testing data.

Slide: M. Aubry



Practical problems
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• Data loading:  
• Loading “on the fly”: needed for big datasets, use efficient database 

structure, fast disk access, e.g., SSD 
• Loading to RAM: possible for smaller datasets, or pre-computed features 

• Speed: use GPUs, parallel data loading 
• Network size: get lots of memory on your GPU or/and use several GPUs 

Good news: you don’t have to do all of it! 
Many ready-to-use and efficient frameworks are available (e.g., Pytorch)

Slide: M. Aubry



NN packages
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• PyTorch (Python) 
• http://pytorch.org/ 

• TensorFlow (Python) - Google 
• https://www.tensorflow.org/ 

• Lua Torch 
• http://torch.ch/ 

• Caffe (C++, pycaffe, matcaffe) 
• http://caffe.berkeleyvision.org/ 

• MatConvNet (Matlab) 
• http://www.vlfeat.org/matconvnet/

…

http://pytorch.org/
https://www.tensorflow.org/
http://torch.ch/
http://torch.ch/
http://torch.ch/
http://caffe.berkeleyvision.org/
http://www.vlfeat.org/matconvnet/
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• The key objects are  
- model,  
- optimizer, 
- dataloader, 
- loss.

Slide: M. Aubry

Let’s look at 
some code

• Key part of  
pytorch code 
for CNN learning

(more in Assignment 2)
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Visualizing CNNs 
What does CNN learn once it is trained?

121



Recap: AlexNet
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• Fully-connected layer 
• Convolution layer 
• Pooling layer (e.g., Max-pooling) 
• Non-linearity layer (e.g., ReLU) 
• …

C
onvolution

N
on-linearity

Pooling

C
onv1

C
onv2

C
onv3

C
onv4

C
onv5

FC
6

FC
7

FC
8

Input 
im

age

C
lass 

probability
Convolutional block

[224 x 224 x 3]

[1000]

AlexNet: [Krizhevsky 2012]

Fully-connected

N
on-linearity

Fully-connected block



Patches from validation images that give 
maximal activation of a given feature map 

Layer 1: Top-9 patches

Learned filters

[Zeiler and Fergus, Visualizing and Understanding 
Convolutional Networks, ECCV 2014]



Layer 2: Top-9 patches



Layer 3: Top-9 patches



Layer 4: Top-9 patches



Layer 5: Top-9 patches



References: Visualizing and understanding NNs
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Analysis tools  
 
Visualizing higher-layer features of a deep network  
Ethan et al. 2009  
[intermediate features] 
 
Deep inside convolutional networks  
Simonyan et al. 2014  
[deepest features, aka “deep dreams”] 
 
DeConvNets 
Zeiler et al. In ECCV, 2014  
[intermediate features] 
 
Understanding neural networks through deep visualisation 
Yosinksi et al. 2015  
[intermediate features]

Slide: A. Vedaldi

Artistic tools  
 
Google’s “inceptionism” 
Mordvintsev et al. 2015

Style synthesis and transfer  
Gatys et al. 2015  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Transferring learnt 
representations

“pretraining”



“Pre-training” and transfer learning
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representation predictor label

Pretained layers Fine-tuned layers

Slide: A. Vedaldi
[Evaluations in A. S. Razavian, 2014, Chatfield et al., 2014] 

CNN as universal representations
First several layers in most CNNs 
are generic
They can be reused when training 
data is comparatively scarce  

Application
Pre-train on ImageNet classification 
1M images
Cut at some deep conv or FC layer 
to get features



“Pre-training” and transfer learning
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c1 c2 c3 c4 c5 f6 f7 f8 class  
label

trained on a reference dataset (eg ImageNet) predictor
class  
label

trained on target dataset (eg PASCAL)

deep feature encoder

Slide: A. Vedaldi

Deep representations are generic

A general purpose deep encoder is obtained by chopping off the last layers of a CNN 
trained on a large dataset.



Example 

133

Learning and Transferring Mid-Level Image 
Representations using Convolutional Neural Networks 

M. Oquab, L. Bottou, I. Laptev, J. Sivic 

In CVPR 2014 
http://www.di.ens.fr/willow/research/cnn/

Slide: A. Vedaldi



ImageNet classification challenge
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ImageNet classification 
challenge

Object centric 
1000 classes 
1.2M images



What about other recognition tasks and datasets?

135

Complex scenes 
20 classes 
10k images

ImageNet classification 
challenge

Object centric 
1000 classes 
1.2M images



Background – Convolutional neural 
network of [Krizhevsky et al. 2012]
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1000

Can we transfer learnt parameters to other tasks with limited 
training data? 

--- image representation
Input: ~1M labelled images (1000 images / 1000 classes) 
Number of parameters: ~60 million 
Training time: ~1 week on one GPU 
 Learn parameters using stochastic gradient descent on 

cross-entropy error function.



Challenge

137Maltese terrier Dog

ImageNet Pascal VOC

Figure 3: Illustration of different dataset statistics between the
source (ImageNet) and target (Pascal VOC) tasks. Pascal VOC
data displays objects embedded in complex scenes, at various
scales (right), and in complex mutual configurations (middle).
Left: Image from ImageNet with label maltese terrier.
Middle and right: Images from Pascal VOC with label dog.

cally contains one object centered and occupying significant
portion of the image with limited background clutter as il-
lustrated in Figure 3(left). The network is trained to predict
the ImageNet object class label given the entire image as
input. Details are given in Section 4.

As discussed above, the network is pre-trained to clas-
sify source task images that depict single centered objects.
The images in the target task, however, often depict com-
plex scenes with multiple objects at different scales and ori-
entations with significant amount of background clutter, as
illustrated in Figure 3 (middle and right). In other words,
the distribution of object orientations and sizes as well as,
for example, their mutual occlusion patterns is very differ-
ent between the two tasks. This issue has been also called
“a dataset capture bias” [47]. In addition, the target task
may contain many other objects in the background that are
not present in the source task training data (a “negative data
bias” [47]). To explicitly address these issues we train the
adaptation layer using a procedure inspired by training slid-
ing window object detectors (e.g. [14]) described next.

We employ a sliding window strategy and extract around
500 square patches from each image by sampling eight dif-
ferent scales on a regularly-spaced grid with at least 50%
overlap between neighboring patches. More precisely, we
use square patches of width s = min(w, h)/� pixels, where
w and h are the width and height of the image, respectively,
and � 2 {1,1.3,1.6,2,2.4,2.8,3.2,3.6,4}. Each patch is rescaled
to 224⇥ 224 pixels to form a valid input for the network.

Sampled image patches may contain one or more ob-
jects, background, or only a part of the object. To label
patches in training images, we measure the overlap between
the bounding box of a patch P and ground truth bounding
boxes B of annotated objects in the image. The patch is la-
belled as a positive training example for class o if there ex-
ists a Bo corresponding to class o such that (i) Bo overlaps
sufficiently with the patch |P \Bo| � 0.2|P |, (ii) the patch
contains large portion of the object |P \Bo| � 0.6|Bo|,
and (iii) the patch overlaps with no more than one object.
In the above definitions |A| measures the area of the bound-
ing box A. Our labeling criteria are illustrated in Figure 4.
Dealing with background. As discussed above, the tar-
get task has an additional background label for patches

Figure 4: Generating training data for the target task. The
input image (top) is divided into multi-scale overlapping patches
(bottom). Each patch is labelled with an object label (green) or
as background (red) depending on the overlap with object bound-
ing boxes. Note that object patches are similar in appearance to
the training data for the source task containing mostly centered
objects.

that do not contain any object. One additional difficulty is
that the training data is unbalanced: most patches from the
training images come from background. This can be ad-
dressed by re-weighting the training cost function, which
would amount to re-weighting its gradients during train-
ing. We opt for a slightly different procedure and instead
re-sample the training patches to balance the training data
distribution. This resampled training set is then used to
form mini-batches for the stochastic gradient descent train-
ing. This is implemented by sampling a random 10% of the
training background patches.

3.3. Classification

At test time we apply the network to each of the (ap-
proximately) 500 overlapping multi-scale patches extracted
from the test image. Examples of patch scores visualized
over entire images are shown in Figures 1 and 5. We use
the following aggregation formula to compute the overall
score for object Cn in the image

score(Cn) =
1

M

MX

i=1

y(Cn|Pi)
k, (1)

where y(Cn|Pi) is the output of the network for class Cn

on image patch Pi, M is the number of patches in the im-
age, and k � 1 is a parameter. Higher values of k focus on
the highest scoring patches and attenuate the contributions
of low- and mid-scoring patches. The value of k = 5 was
optimized on the validation set and is fixed in our experi-
ments.

ha
l-0

09
11

17
9,

 v
er

si
on

 1
 - 

28
 N

ov
 2

01
3

The dataset statistics between the source task (ImageNet) 
and the target task (Pascal VOC) can be very different. 

• Type of objects and labels 
• Object size, object location, scene clutter 
• Object viewpoints, imaging conditions 



Approach
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1000



Approach [Oquab, Bottou, Laptev, 
Sivic, CVPR’14]

139See also [Girshick et al.’13], [Donahue et al.’13], [Sermanet et al. ’14], [Zeiler and Fergus ’13]  
Transfer learning workshop at ICCV’13, ImageNet workshop at ICCV’13

1. Design training/test procedure using sliding windows 
2. Train adaptation layers to map labels



Pre-training helps
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Other "pre-training" 
examples

141



3D hand-object reconstruction

142Hasson et al. "Learning joint reconstruction of hands and manipulated objects", CVPR 2019.

Pretraining Finetuning



Text-to-Video Retrieval

143

Noisy

Bain et al. "Frozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval", ICCV 2021.

Pretraining on millions of images & videos 
Finetuning on MSRVTT with 9K training videos



Sign Language Recognition

144Albanie et al. "BSL-1K: Scaling up co-articulated sign language recognition using mouthing cues", ECCV 2020.

14K clips, 
2K classes

240K clips, 
400 classes

150K clips, 
27 classes

Pretraining on various tasks on different datasets 
Finetuning on 50K videos from BSL-1K sign language dataset



Pretraining Summary
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• Common practice: Pretrain on large data, finetune on small data. 
• Remove the last class-specific layer (e.g. 1000 categories) 
• Add new layer(s) for the new task randomly initialized 
• Either “freeze” the pretrained parameters and train a simple classifier on top, 
• Or train “end-to-end” all parameters. 

• Avoids overfitting 

• Shortens training time 

• Lots of pretrained models available online 

• Task and domain-relevant pretraining is usually better
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A CNN for image classification

147
Slide: A. Vedaldi

c1 c2 c3 c4 c5 f6 f7 f8

w1 w2 w3 w4 w5 w6 w7 w8

prediction

Recall: the goal of this model is to map an input image to a 
class prediction.



Recall: The AlexNet model
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[AlexNet by Krizhevsky et al. 2012]

Slide: A. Vedaldi

A breakthrough in image understanding

 Each large block represents a data 
tensor
 Each smaller block represents a filter
 The filter size and stride are shown

 The number of filters can be deduced 
from the number of feature channels
 There are two parallel streams in this 
network (for efficiency reasons)



How deep is deep enough?
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AlexNet (2012)

5 convolutional layers

3 fully-connected layers

Slide: A. Vedaldi



How deep is deep enough?
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16 conv layers

AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014)

Slide: A. Vedaldi



How deep is deep enough?
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AlexNet (2012) VGG-M (2013) VGG-VD-16 (2014) GoogLeNet (2014)

Slide: A. Vedaldi



How deep is deep enough?
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AlexNet (2012)

VGG-M (2013)

VGG-VD-16 (2014)

GoogLeNet (2014)

ResNet 152 (2015)

ResNet 50 (2015)

152 convolutional layers

50 convolutional layers

16 convolutional layers Krizhevsky, I. Sutskever, and G. E. Hinton. 
ImageNet classification with deep convolutional 
neural networks. In Proc. NIPS, 2012. 

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. 
Anguelov, D. Erhan, V. Vanhoucke, and A. 
Rabinovich. Going deeper with convolutions. In 
Proc. CVPR, 2015. 

K. Simonyan and A. Zisserman. Very deep 
convolutional networks for large-scale image 
recognition. In Proc. ICLR, 2015. 
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual 
learning for image recognition. In Proc. CVPR, 
2016.

Slide: A. Vedaldi



Accuracy
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Slide: A. Vedaldi

3 ⨉ more accurate in 3 years



Speed
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Slide: A. Vedaldi

5 ⨉ slower

 Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers
 Reason: far fewer feature channels (quadratic speed/space gain)
 Moral: optimize your architecture



CNN architectures – notes and details
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•Increased depth of recent architectures 

•Number of parameters matter (How to count parameters?) 

•Power of small filters, e.g. 3x3 convolutions 

•ResNet architecture



The power of small filters
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Suppose we stack two CONV layers with receptive field size 3x3 

Q: What region of input does each neuron in 2nd CONV see?

Answer: [5x5]
Slide: A. Karpathy / L. Fei Fei



The power of small filters
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Suppose we stack three CONV layers with receptive filed size 3x3 

Q: What region of input does each neuron in 3rd CONV see?

Answer: [7x7]
Slide: A. Karpathy / L. Fei Fei



The power of small filters
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Suppose input has depth C & we want output depth C as well.

Slide: A. Karpathy / L. Fei Fei



Residual networks [ResNets]
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Plain net

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image 
Recognition”. CVPR 2016. Slide: K. He



Residual networks [ResNets]
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Residual net

Slide: K. He



Residual networks [ResNets]
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		 is a residual mapping w.r.t. identity

Slide: K. He



Network design
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Basic design (vgg-style) 
• almost all 3x3 conv 
• Spatial size /2 => # filters x2  
• Simple design, just deep 
• No fully connected layers 
• No dropout

PlainNet     ResNet
Slide: K. He



CIFAR-10 experiments
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• Deep ResNets can be trained without difficulties 
• Deeper ResNets have lower training error and lower test error

Slide: K. He
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Do we need convolutions?

165

Do we need convolutions?
• a

ICLR 2022 
submission

ICLR 2021
NeurIPS 2017

https://github.com/KentoNishi/awesome-all-you-need-papers
NeurIPS 2021 arXiv 2022 



Recent Hype#1: Transformers
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Recent Hype #1: Transformers
• Transformers = neural network architectures 

stacking "attention" layers1

• Initially successful for natural language processing
• Then applied to computer vision2. Better 

performance than CNNs given enough data.
• The hype still continues today.
• What is attention?

1 Vaswani et al. "Attention is all you need", NeurIPS 2017.
2 Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale", ICLR 2021.



Attention & Transformer
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• Basic transformer model  

• Image transformers



Attention
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• Motivation: sequence-to-sequence models

d
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• Query and Key dimensionalities are the same. 
• Value dimensionality may be different. 
• Output dimensionality will be the same as Value. 

In "self-attention", (Q, K, V) obtained from the same input, linearly 
projected three times.

X K
Q

V

WQ

WV

WK



https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Self-Attention Example

174

2 4 4

Wk Wv

Wq

Q1

K1 V1

X

Y1

Repeat for Q2 Repeat for Q3

Y2 Y3



A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, I. Polosukhin,  
Attention is all you need, NeurIPS 2017

Basic transformer model

175

• Sequence-to-sequence architecture using only point-wise processing 
and attention (no recurrent units or convolutions)

Encoder: receives entire input 
sequence and outputs encoded 

sequence of the same length

Decoder: predicts next token 
conditioned on encoder output and 

previously predicted tokens

Image source

NLP application: 
Machine Translation 

Masked

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://jalammar.github.io/illustrated-transformer/


Key-Value-Query attention model
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• Key vectors:  

• Value Vectors:  

• Query vectors 
• Similarities: scaled dot-product attention
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(  is the dimensionality of the keys)  
• Attn. weights:  
• Output vectors:  
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Adapted from J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf


Attention mechanisms

177

• Encoder self-attention: queries, keys, and values come from previous layer of encoder 
• Decoder self-attention: values corresponding to future decoder outputs are masked out 
• Encoder-decoder attention: queries come from previous decoder layer, keys and values 

come from output of encoder

Masked



Self-attention

178

• Used to capture context within the sequence

Image source

As we are encoding “it”, we 
should focus on “the animal”

As we are encoding “it”, we 
should focus on “the street”

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


Self-attention layer

179

• Query vectors:  

• Key vectors:  

• Value vectors:  

• Similarities: scaled dot-product attention


  or   

(  is the dimensionality of the keys)  
• Attn. weights:  
• Output vectors:  
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Adapted from J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf


Positional encoding

180

• Self attention doesn’t “know” the order of the vectors it 
is processing! 

• In order to make processing position-aware, 
concatenate input with positional encoding 

• E can be learned lookup table, or fixed function

Adapted from J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf


Positional encoding

181

• To give transformer information about ordering of tokens, add 
function of position (based on sines and cosines) to every input

Image source

position

Embedding dimension

https://distill.pub/2016/augmented-rnns/


Attention mechanisms: Overview

182

N transformer 
blocks

N transformer 
blocks

• Encoder self-attention: queries, keys, and values come from previous layer of encoder 
• Decoder self-attention: values corresponding to future decoder outputs are masked out 
• Encoder-decoder attention: queries come from previous decoder layer, keys and values 

come from output of encoder

Masked



Decoder: Masked self-attention

183

• The decoder should not “look ahead” 
in the output sequence
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Adapted from J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf


Decoder: Masked self-attention
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• The decoder should not “look ahead” 
in the output sequence
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Adapted from J. Johnson

https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf


Decoder: Masked self-attention
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• The decoder should not “look ahead” 
in the output sequence
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https://web.eecs.umich.edu/~justincj/slides/eecs498/FA2020/598_FA2020_lecture13.pdf


Attention mechanisms: Overview

186

N transformer 
blocks

N transformer 
blocks

• Encoder self-attention: queries, keys, and values come from previous layer of encoder 
• Decoder self-attention: values corresponding to future decoder outputs are masked out 
• Encoder-decoder attention: queries come from previous decoder layer, keys and values 

come from output of encoder

Masked



Transformer architecture: Details

187
A. Vaswani et al., Attention is all you need, NeurIPS 2017

Encoder

Decoder

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf


Multi-head attention

188

• Run  attention models in parallel on top 
of different linearly projected versions of 

; concatenate and linearly 
project the results 

• Intuition: enables model to attend to 
different kinds of information at different 
positions (see visualization tool)

h

2,  -,  /

https://github.com/jessevig/bertviz


Transformer blocks

189

• A Transformer is a sequence of 
transformer blocks 

• Vaswani et al.: N=12 blocks, embedding 
dimension = 512,  
6 attention heads 

• Add & Norm: residual connection followed by 
layer normalization 

• Feedforward: two linear layers with ReLUs in 
between, applied independently to each vector 

• Attention is the only interaction between 
inputs!

https://arxiv.org/pdf/1607.06450.pdf


Transformer architecture: Zooming back out

190
A. Vaswani et al., Attention is all you need, NeurIPS 2017

Encoder

Decoder

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf


Transformer implementation
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nn.Linear: 
Learnable params



Transformer implementation
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2 =  (.2

-  =  (.-
/  =  (./



Transformer implementation
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0  =  2-4 / 3

5  =  softmax(0,  dim = 1)

)  =  5/
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Original transformer results on machine translation

195
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


Agenda
• 1. Recap: Bag of Visual Words, Analogy with NNs 

• 2. Neural networks (NNs) for computer vision: 
• Applications  
• A brief history: from perceptron to MLPs to CNNs 

• 3. Convolutional neural networks (CNNs) 
• Standard layers 
• Recap: Training NNs 
• Visualizing CNNs 
• Pretraining & finetuning NNs 
• Typical CNN architectures 

• 4. Beyond CNNs 
• Attention & Transformer 
• Vision Transformers 

• 5. Beyond classification
196



Attention & Transformers

197

• Basic transformer model 

• Image transformers



• Image generation and super-resolution with 32x32 output, 
attention restricted to local neighborhoods

Image transformer – Google 

198N. Parmar et al., Image transformer, ICML 2018

Self-attention only locally

https://arxiv.org/pdf/1802.05751.pdf


Sparse transformers – OpenAI 

199R. Child et al., Generating Long Sequences with Sparse Transformers, arXiv 2019

 scalable approximations to global self-attention in 
order to be applicable to images

https://arxiv.org/pdf/1904.10509.pdf


Image GPT* – OpenAI

200
M. Chen et al., Generative pretraining from pixels, ICML 2020

https://openai.com/blog/image-gpt/

*GPT: Generative pre-trained Transformer

works on reduced resolutions

https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf
https://openai.com/blog/image-gpt/
https://openai.com/blog/image-gpt/
https://openai.com/blog/image-gpt/
https://openai.com/blog/image-gpt/
https://openai.com/blog/image-gpt/


Vision transformer (ViT) - Google

201

• Split an image into patches, feed linearly projected patches into 
standard transformer encoder 

• With patches of 14x14 pixels, you need 16x16=256 patches to represent 224x224 images

A. Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021

Full resolution

https://arxiv.org/pdf/2010.11929.pdf


Vision transformer (ViT)

202

BiT: Big Transfer (ResNet) 
ViT: Vision Transformer (Base/Large/Huge,  
patch size of 14x14, 16x16, or 32x32)

Internal Google dataset (not public)

A. Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021

https://arxiv.org/pdf/1912.11370.pdf
https://ai.googleblog.com/2017/07/revisiting-unreasonable-effectiveness.html
https://arxiv.org/pdf/2010.11929.pdf


Masked autoencoders are scalable vision learners

203K. He et al. Masked autoencoders are scalable vision learners. arXiv 2021

https://arxiv.org/pdf/2111.06377.pdf


Masked autoencoders are scalable vision learners

204K. He et al. Masked autoencoders are scalable vision learners. arXiv 2021

https://arxiv.org/pdf/2111.06377.pdf


• Hybrid of CNN and transformer, aimed at standard 
recognition task

Detection Transformer (DETR)

205
N. Carion et al., End-to-end object detection with transformers, ECCV 2020

https://arxiv.org/pdf/2005.12872.pdf


Do we need attention?

206https://www.reddit.com/r/MachineLearning/comments/n62qhn/r_do_you_even_need_attention_a_stack_of/



Do we need attention?

207

Recent Hype #2: MLPs (!)
• Back to basics

• MLPs perform similar to 
Transformers while being 
more efficient

• CNNs and MLPs 
complexity linear with the 
number of input 
pixels, Transformers 
quadratic

4 M
ay 2021

6 M
ay 2021

17 M
ay 2021
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Recent Hype #2: MLPs (!)
• Back to basics
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Transformers while being 
more efficient

• CNNs and MLPs 
complexity linear with the 
number of input 
pixels, Transformers 
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Summary: Beyond CNNs

209

• CNNs (convolution), Transformers (attention), MLPs (fully connected) 

• There is no answer to which architecture is better. 
• Often depends on the data. 
• If you have infinite data, more complex can be better 

(e.g., MLP ~ Transformers > CNN). 
• Similar performance can be obtained with more 

efficient models (e.g., MLP ~ Transformers) 
• It is possible there will be newer/better architectures/

hypes before you graduate. Stay tuned.



Agenda
• 1. Recap: Bag of Visual Words, Analogy with NNs 

• 2. Neural networks (NNs) for computer vision: 
• Applications  
• A brief history: from perceptron to MLPs to CNNs 

• 3. Convolutional neural networks (CNNs) 
• Standard layers 
• Recap: Training NNs 
• Visualizing CNNs 
• Pretraining & finetuning NNs 
• Typical CNN architectures 

• 4. Beyond CNNs 
• Attention & Transformer 
• Vision Transformers 

• 5. Beyond classification - preview
210



The field makes progress 

Beyond 
Classification

211



Computer vision tasks

*Visual signal: Image, video, depth, 3D point cloud, MRI, scans, …

*

Slide credit: Naila Murray 212



Example tasks

213Slide credit: Naila Murray



Object recognition and localization (detection)

214Slide credit: Naila Murray



Visual question answering

Q: Is this an outdoor scene? 
A: Yes 

Q: What is the weather like? 
A: Cloudy but dry

215Slide credit: Naila Murray



Activity recognition

216Slide credit: Naila Murray



Pose estimation

217Slide credit: Naila Murray



Captioning

218Slide credit: Naila Murray



Semantic segmentation

219Slide credit: Naila Murray



Depth estimation

220Slide credit: Naila Murray



3D shape estimation

221Slide credit: Naila Murray



Visual localization

222Slide credit: Naila Murray



Object detection

223Redmon et al. YOLO, CVPR 2016

https://www.youtube.com/watch?v=NM6lrxy0bxs


Segmentation

224

-RWXERGI�PIZIP�WIKQIRXEXMSR
4STYPEV�QIXLSH���1EWO�6�'22�
Ɣ *YPP]�GSRZSPYXMSREP�FVERGL�JSV�TVIHMGXMRK�FMREV]�QEWOW�JSV�IEGL�HIXIGXIH�MRWXERGI�

��

He et al. Mask R-CNN. ICCV 2017.



Human pose estimation

225Guler et al. DensePose, CVPR 2018

https://www.youtube.com/watch?v=Dhkd_bAwwMc


Text-to-image retrieval

226

Contrastive Language-Image Pretraining (CLIP)

A. Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021 
https://openai.com/blog/clip/

Contrastive objective: in a batch of 
N image-text pairs, classify each 
text string to the correct image and 
vice versa

Contrastive Language-Image Pretraining (CLIP)



Billy reveals the truth to 
Louis about the Duke’s bet 
which changed both their 

lives

Video Gallery
Text Query

Text-video 
retrieval model

Similarity: 0.89

Text-to-video retrieval

227



228[Bain, Nagrani, Varol, Zisserman, ICCV 2021]



Text-based image generation: DALL-E

229

Text-based image generation: DALL-E
• Learn a joint sequential transformer model that can be used to generate 

image based on text prompt

A. Ramesh et al., Zero-Shot Text-to-Image Generation, ICML 2021 
https://openai.com/blog/dall-e/



Summary of today
• 1. Recap: Bag of Visual Words, Analogy with NNs 

• 2. Neural networks (NNs) for computer vision: 
• Applications  
• A brief history: from perceptron to MLPs to CNNs 

• 3. Convolutional neural networks (CNNs) 
• Standard layers 
• Recap: Training NNs 
• Visualizing CNNs 
• Pretraining & finetuning NNs 
• Typical CNN architectures 

• 4. Beyond CNNs 
• Attention & Transformer 
• Vision Transformers 

• 5. Beyond classification
230



Key elements of DL for CV

231

•Model (i.e., architectural definition of connectivity and learnable parameters) 

•Loss 

•Data 

•Optimization algorithm (i.e., variations of SGD)

1

2

3These days in CV !

Initially in CV

Next in CV

ML community



Still many open questions

232

• 3D 

• Videos 

• Visual perception in robotics


