Object recognition and computer vision 2023 -

Neural Networks for Visual Recognition

<u>gul.varol@enpc.fr</u>

http://imagine.enpc.fr/~varolg/

@RecVis, 31.10.2023

With many slides from: J. Sivic, R. Fergus, A. Vedaldi, A. Zisserman, S. Lazebnik, A. Karpathy, L. Fei Fei, M. Aubry, N. Murray, J. Johnson, K. Derpanis, S. Yeung, A. Amini, F. Fleuret

Gül Varol

IMAGINE team, École des Ponts ParisTech

Announcements

Assignment 2 due Tuesday Nov 14 http://imagine.enpc.fr/~varolg/teaching/recvis23/

Neural Networks

Last week: Introduction to neural networks (A. Joulin)

This week: Neural networks for visual recognition (G. Varol)

Next week: Beyond classification: Object detection, Segmentation, Human pose estimation (G. Varol)

First words that come to your mind when hearing "neural networks for visual recognition"?

slido.com #2557 457

Disclaimer: Terminology

• Deep learning

. . .

- Neural networks?
- Artificial neural networks?
- Multilayer neural networks?

This lecture

Computer Vision

Slide credit: Justin Johnson

"AI"

Machine Learning

"Deep" Learning

This lecture

Computer Vision

Slide credit: Justin Johnson

"AI"

NLP

Machine Learning

"Deep" Learning

Definitions

"AI"

Any technique that enables computers to mimic human behavior

Machine Learning Ability to learn without explicitly being programmed

"Deep" Learning Extract patterns from data using neural networks

Extracting meaning from visual signals **Computer Vision**

Extracting meaning from textual signals NLP

Slide credit: Alexander Amini

Agenda

- 1. Recap: Bag of Visual Words, Analogy with NNs
- 2. Neural networks (NNs) for computer vision:
 - Applications
 - A brief history: from perceptron to MLPs to CNNs

• 3. Convolutional neural networks (CNNs)

- Standard layers
- Recap: Training NNs
- Visualizing CNNs
- Pretraining & finetuning NNs
- Typical CNN architectures

• 4. Beyond CNNs

- Attention & Transformer
- Vision Transformers

• 5. Beyond classification

Agenda

• 1. Recap: Bag of Visual Words, Analogy with NNs

- 2. Neural networks (NNs) for computer vision:
 - Applications
 - A brief history: from perceptron to MLPs to CNNs

• 3. Convolutional neural networks (CNNs)

- Standard layers
- Recap: Training NNs
- Visualizing CNNs
- Pretraining & finetuning NNs
- Typical CNN architectures

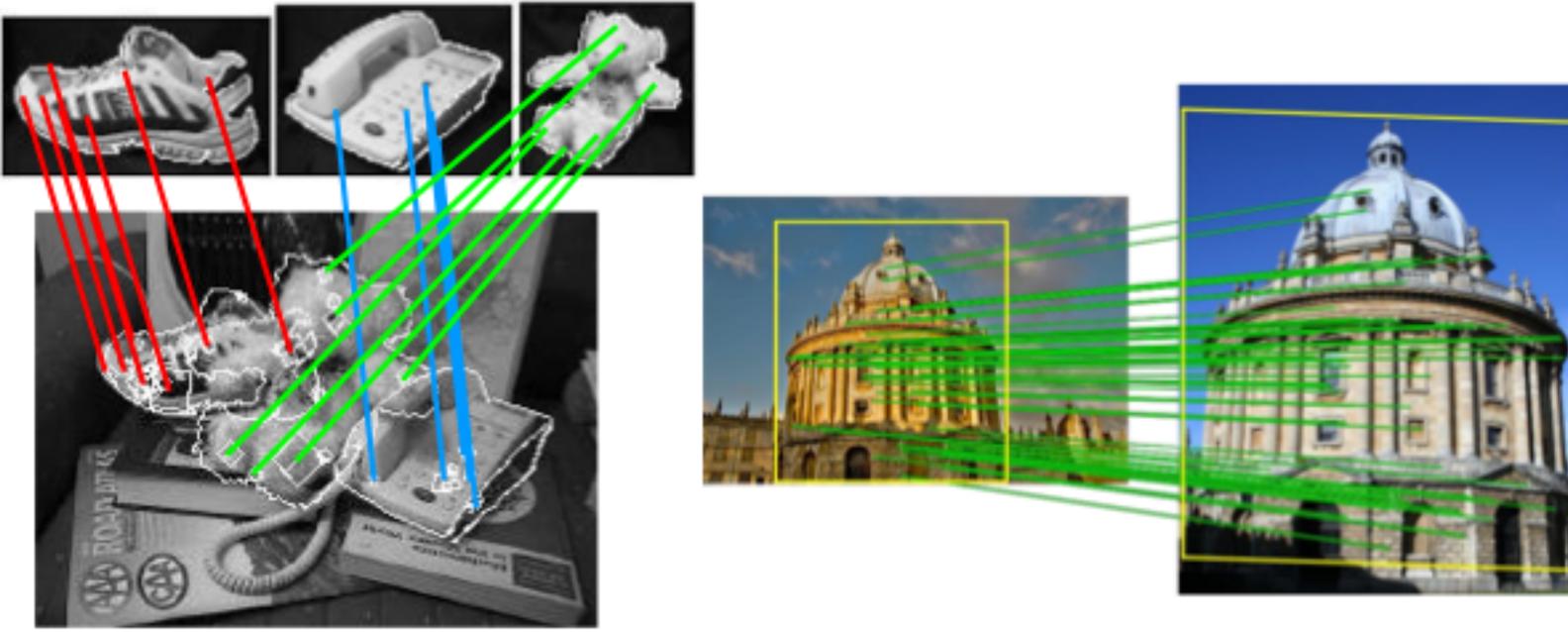
• 4. Beyond CNNs

- Attention & Transformer
- Vision Transformers

• 5. Beyond classification

Recap: Image recognition so far

Instance-level recognition



Category Recognition

• Image classification: assigning a class label to the image

Car: present

Cow: present

Bike: not present

Horse: not present

•••

Slide: C. Schmid

Category Recognition

Image classification: assigning a class label to the image

Car: present

Cow: present

Bike: not present

Horse: not present

Object localization: define the location and the category

 $\bullet \bullet \bullet$

Location

Category

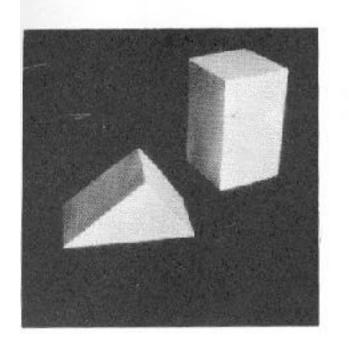
Slide: C. Schmid

Difficulties: within-class variations

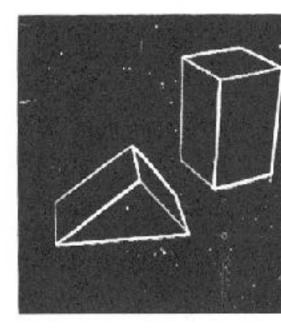
Slide: C. Schmid

Why machine learning?

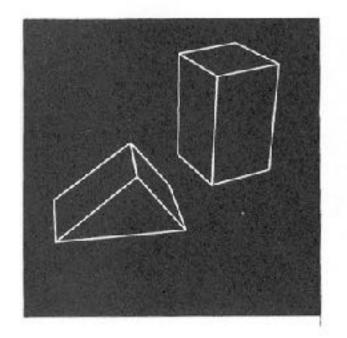
- Early approaches: simple features + handcrafted models
- Can handle only few images, simple tasks



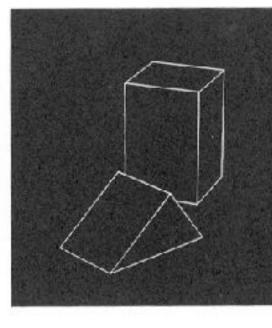
(a) Original picture.



(b) Differentiated picture.



(c) Line drawing.



L. G. Roberts, Machine Perception of Three Dimensional Solids, Ph.D. thesis, MIT Department of Electrical Engineering, 1963.

ABSTRACT

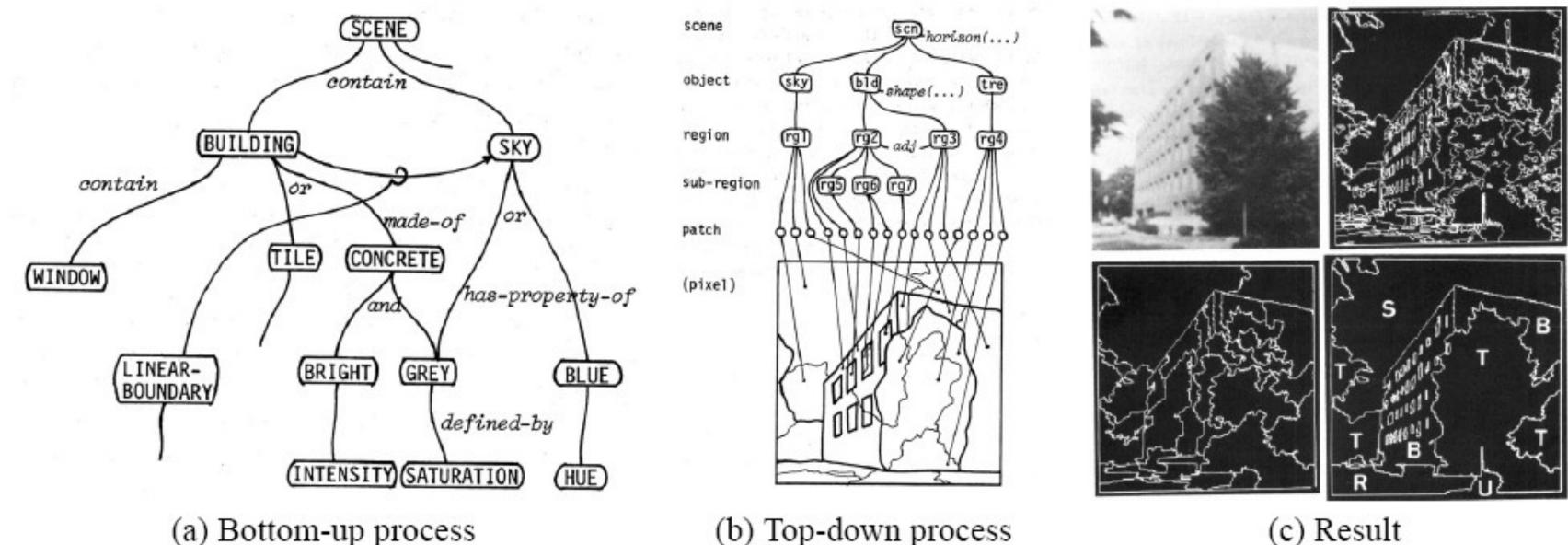
In order to make it possible for a computer to construct and display a three-dimensional array of solid objects from a single two-dimensional photograph, the rules and assumptions of depth perception have been carefully analyzed and mechanized. It is assumed that a photograph is a perspective projection of a set of objects which can be constructed from transformations of known three-dimensional models, and that the objects are supported by other visible objects or by a ground plane. These assumptions enable a computer to obtain a reasonable, three-dimensional description from the edge information in a photograph by means of a topological, mathematical process.

A computer program has been written which can process a photograph into a line drawing, transform the line drawing into a threedimensional representation, and finally, display the three-dimensional structure with all the hidden lines removed, from any point of view. The 2-D to 3-D construction and 3-D to 2-D display processes are sufficiently general to handle most collections of planar-surfaced objects and provide a valuable starting point for future investigation of computer-aided threedimensional systems.

Slide: C. Schmid

Why machine learning?

- Early approaches: manual programming of rules
- Tedious, limited, and does not take data into account



The system is able to label an image (c) into semantic classes: S-sky, T-tree, R-road, B-building, U-unknown.

Y. Ohta, T. Kanade, and T. Sakai, "An Analysis System for Scenes Containing objects with Substructures," Slide: C. Schmid International Joint Conference on Pattern Recognition, 1978.

(b) Top-down process

(c) Result

Figure 3. A system developed in 1978 by Ohta, Kanade and Sakai [33, 32] for knowledge-based interpretation of outdoor natural scenes.

Why machine learning?

Today lots of data, complex tasks

Internet images, personal photo albums

Instead of trying to encode rules directly, learn them from examples of inputs and desired outputs

Movies, news, sports

Slide: C. Schmid

Texture Classification

- Profound observation: Grass and sea pictures don't look the same!
- · Basic idea: Model the distribution of "texture" over the image (or over a from training examples.

region) and classify in different classes based on the texture models learned

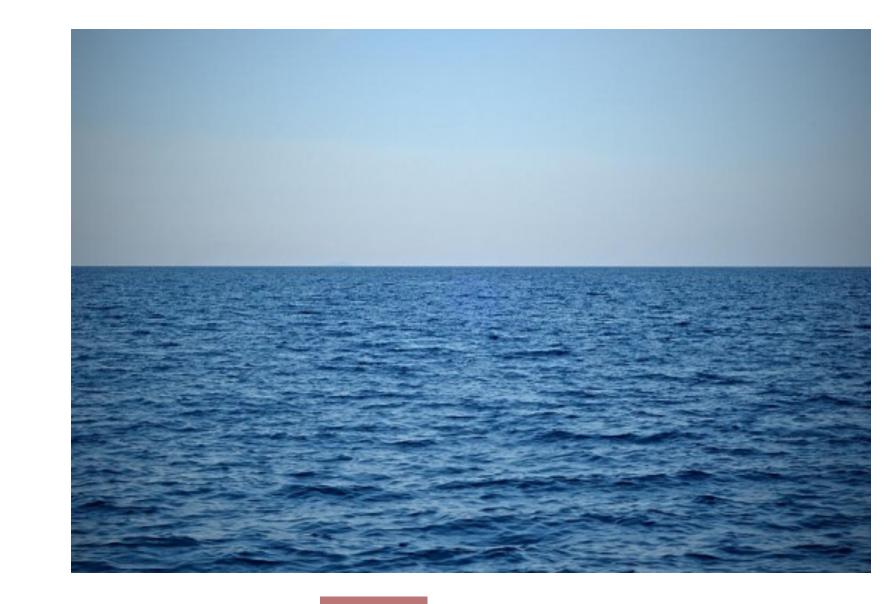


Image categorization

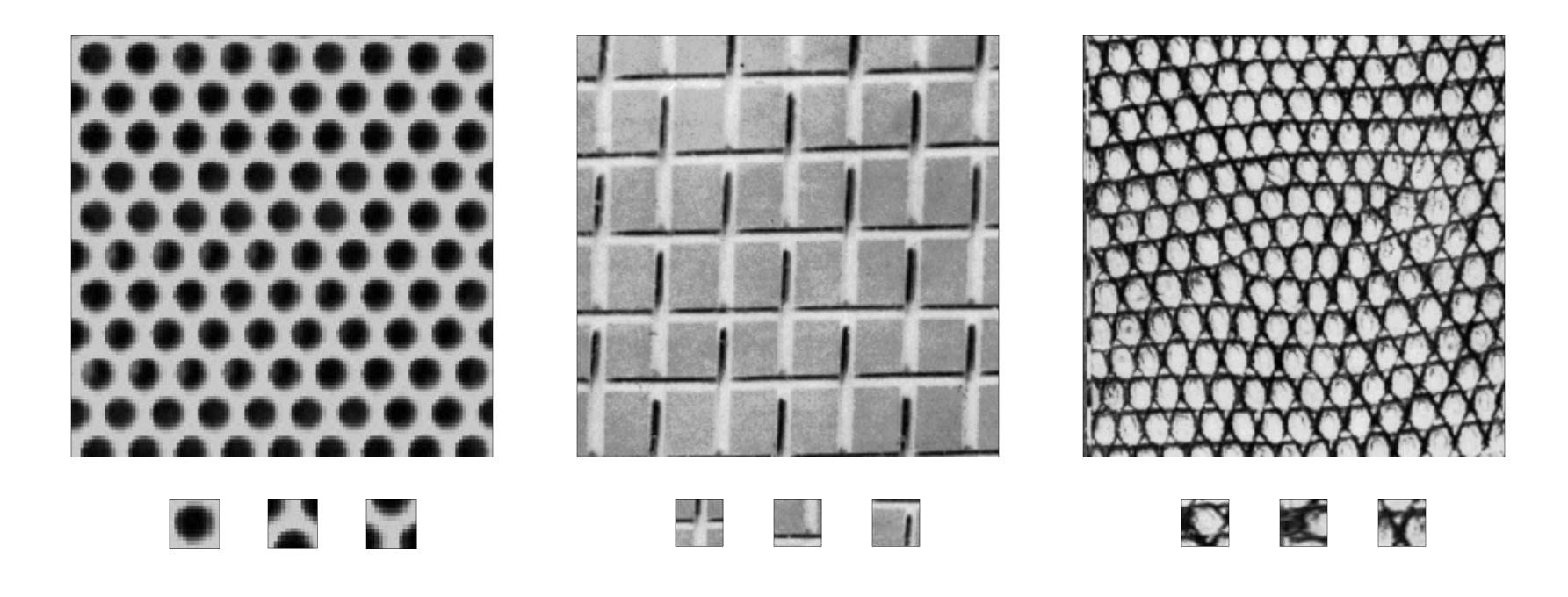
- Profound observation: Cows and buildings don't look the same!
- · Basic idea: Model the distribution of "texture" over the image (or over a from training examples.

region) and classify in different classes based on the texture models learned

Bag-of-features for image classification

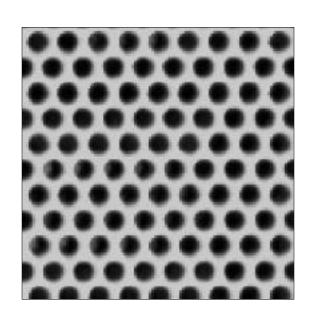
Origin: texture recognition

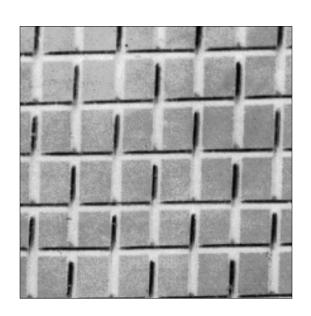
• Texture is characterized by the repetition of basic elements or textons

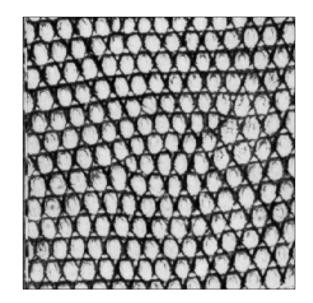


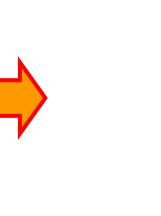
Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

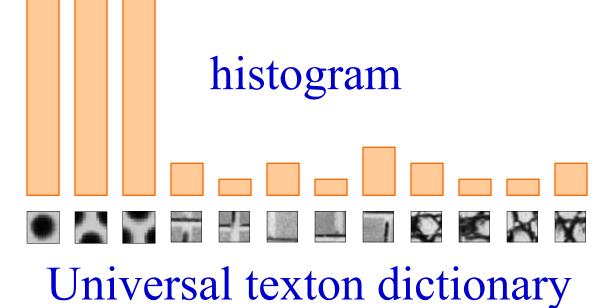
Bag-of-features for image classification

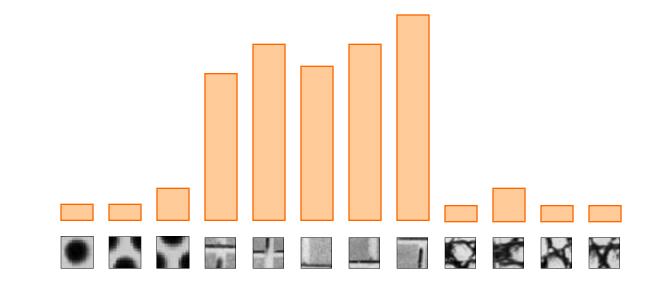


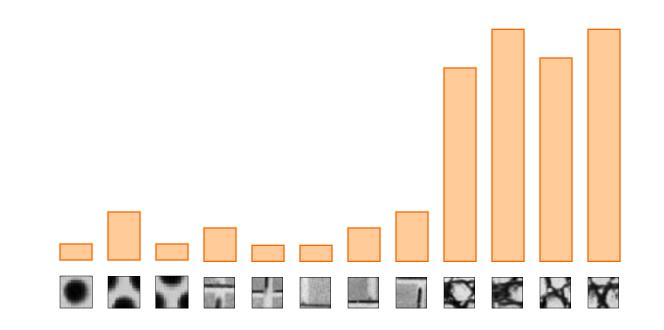






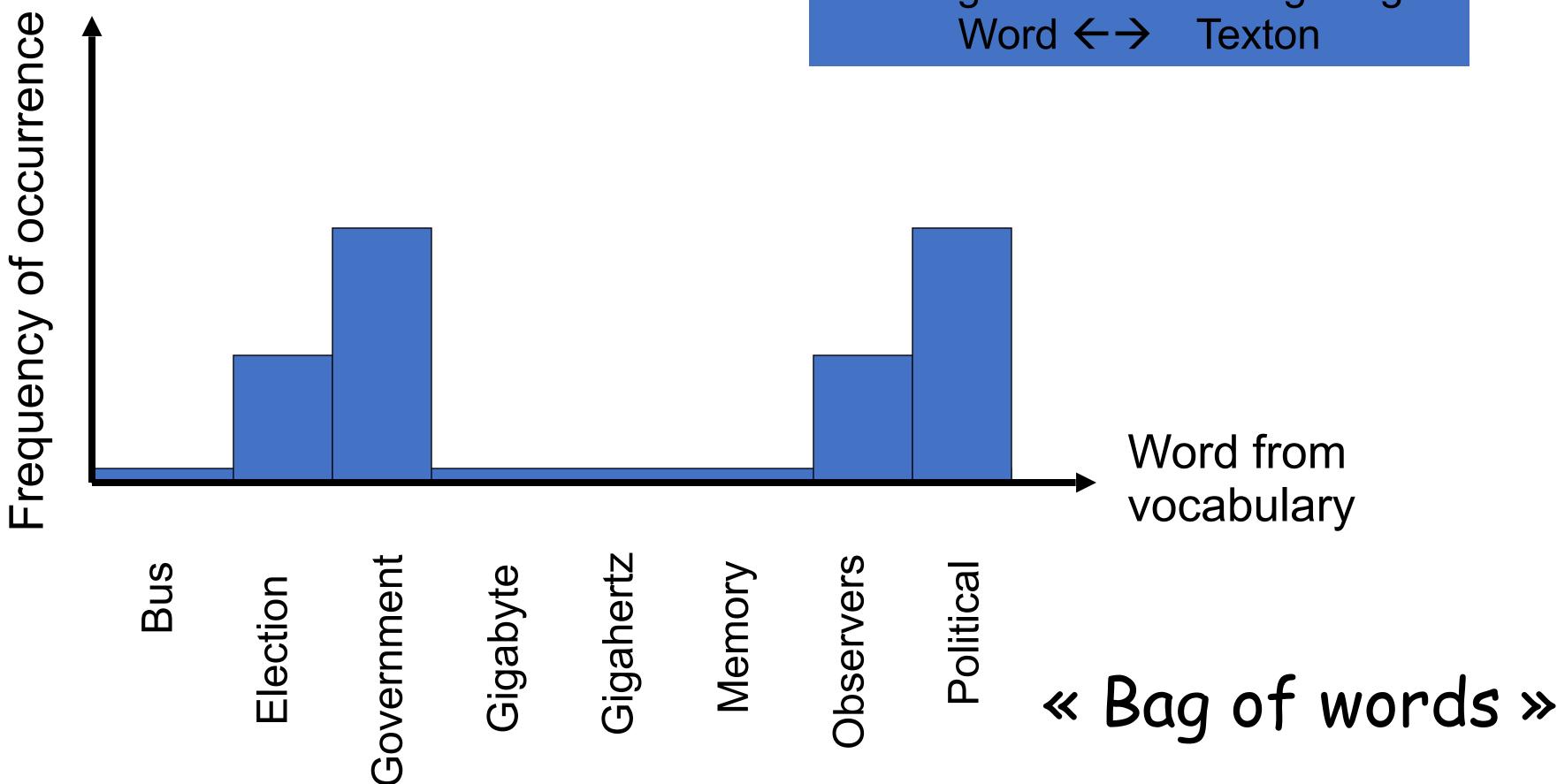




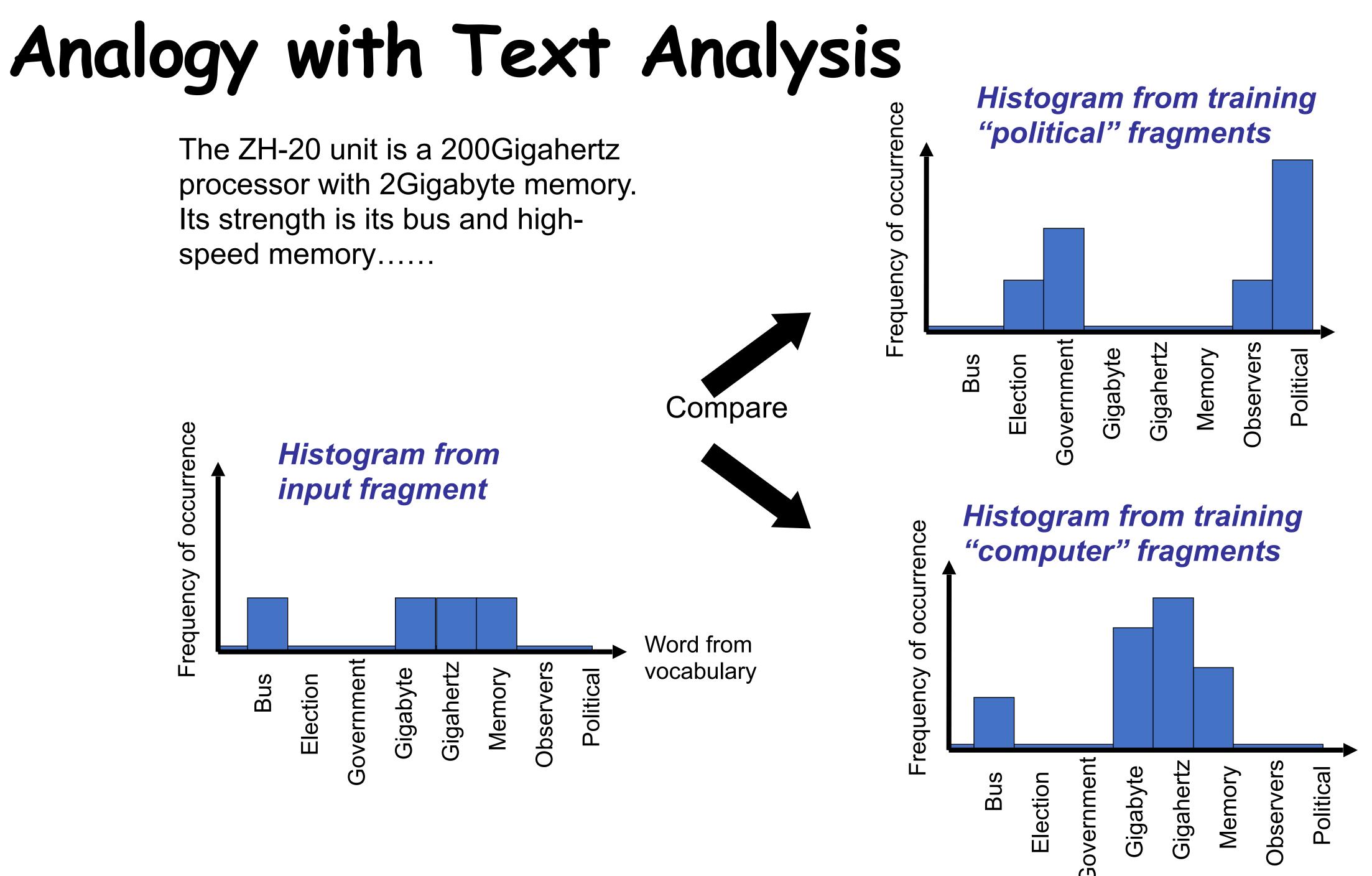


Analogy with Text Analysis

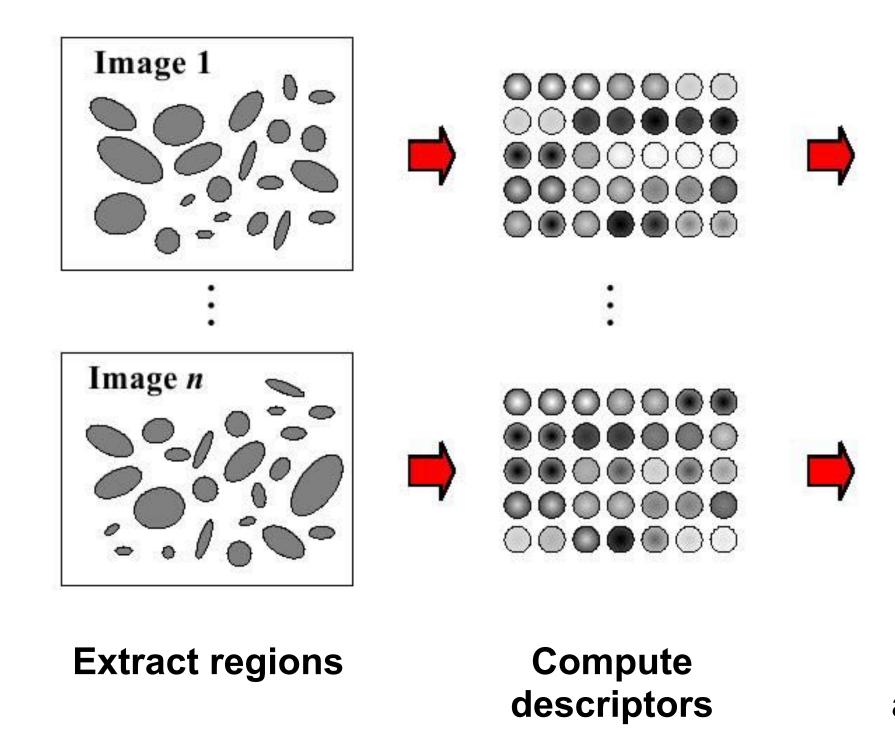
Political observers say that the government of Zorgia does not control the political situation. The government will not hold elections ...



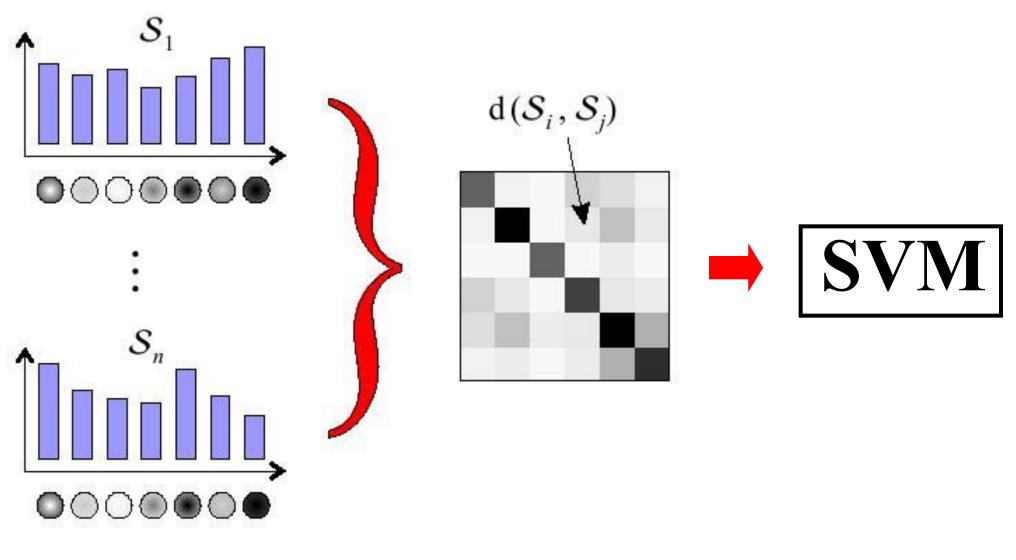
Analogy: Text fragment $\leftarrow \rightarrow$ Image region Word $\leftarrow \rightarrow$ Texton



Bag-of-features for image classification



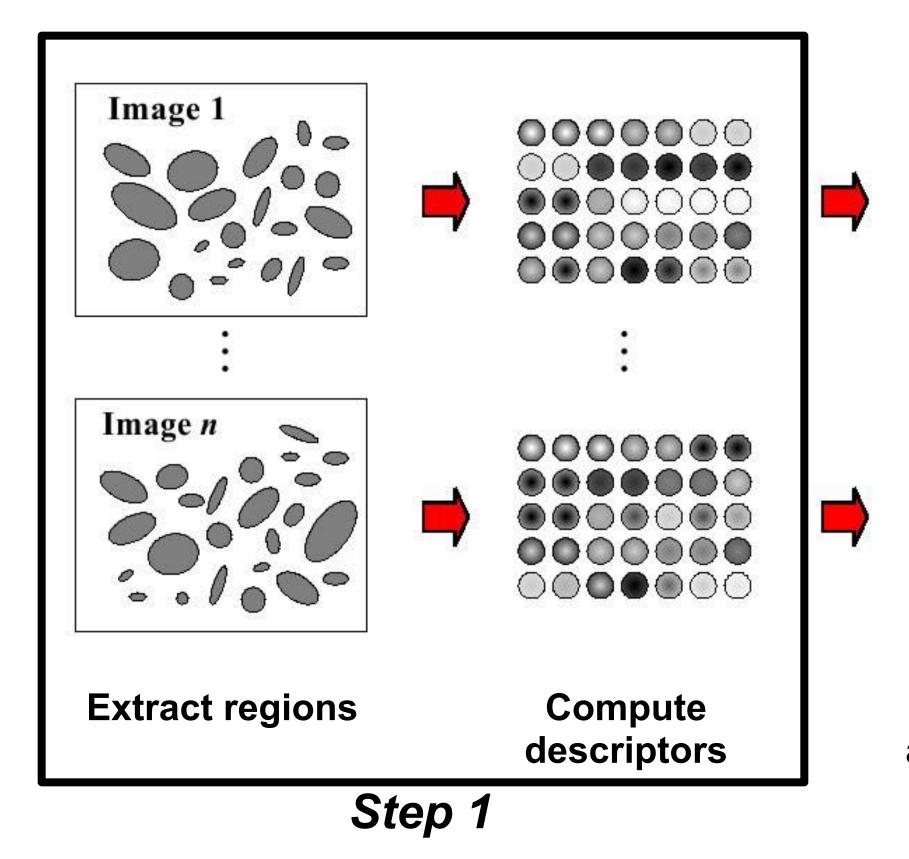
[Csurka et al. WS'2004], [Nowak et al. ECCV'06], [Zhang et al. IJCV'07]

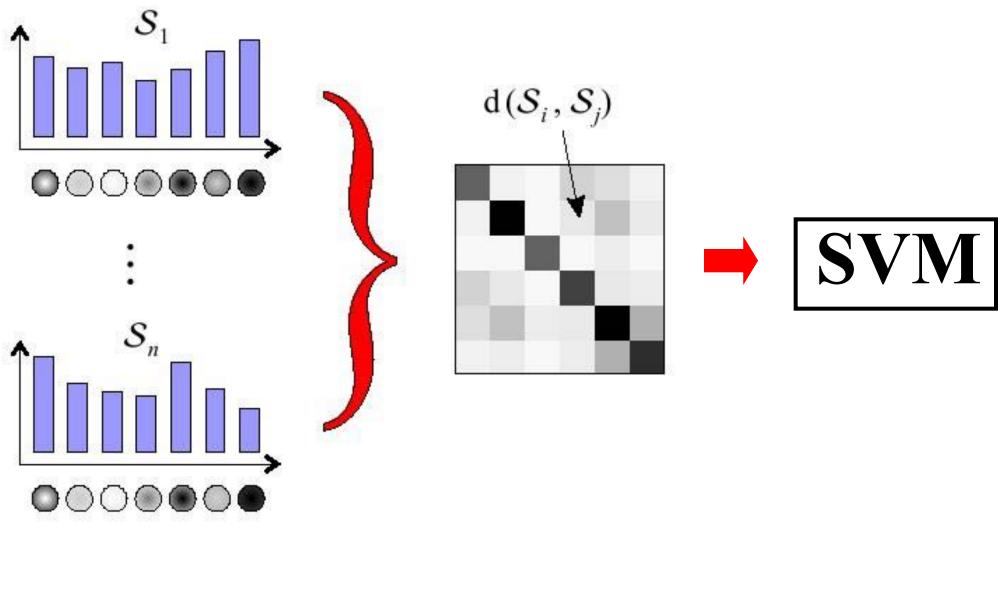


Find clusters and frequencies Compute distance matrix

Classification

Bag-of-features for image classification





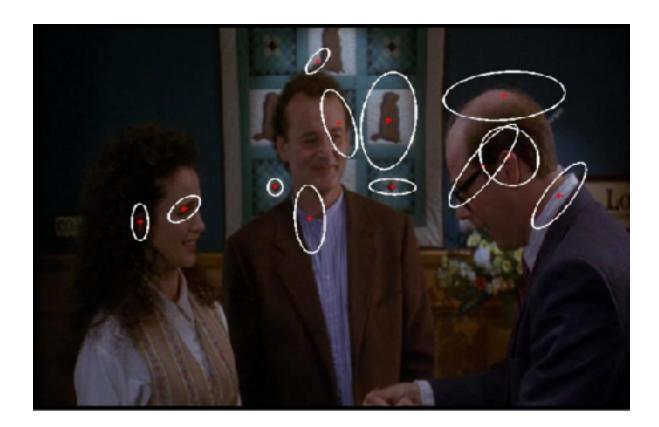
Step 1: feature extraction

Sparse sampling

• SIFT as interest point detector

Dense sampling

Interest points do not necessarily capture "all" features



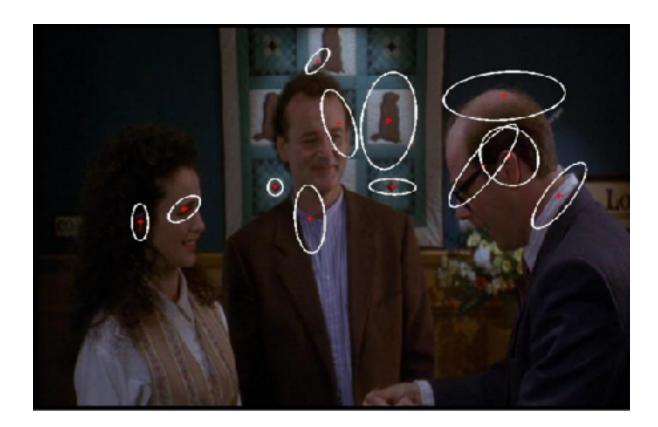
Step 1: feature extraction

Sparse sampling

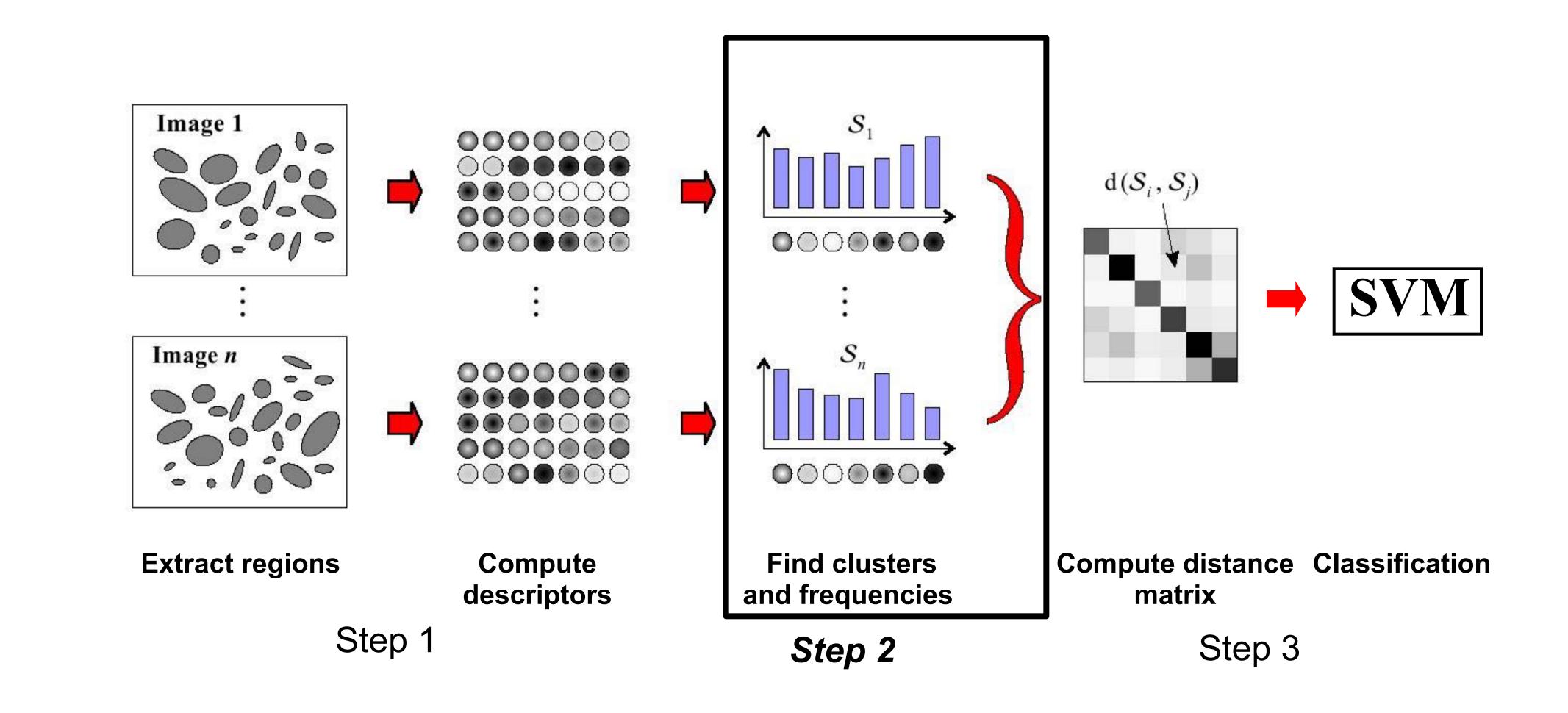
• SIFT as interest point detector

Dense sampling

- Interest points do not necessarily capture "all" features
- Spatial pyramid (Lazebnik, Schmid & Ponce, CVPR 2006)



Bag-of-features for image classification



Step 2: Quantization

Cluster descriptors

- K-means
- Gaussian mixture model

Assign each visual word to a cluster

• Hard or soft assignment

Build frequency histogram

Examples for visual words

Airplanes	
Motorbikes	
Faces	
Wild Cats	
Leaves	
People	
Bikes	

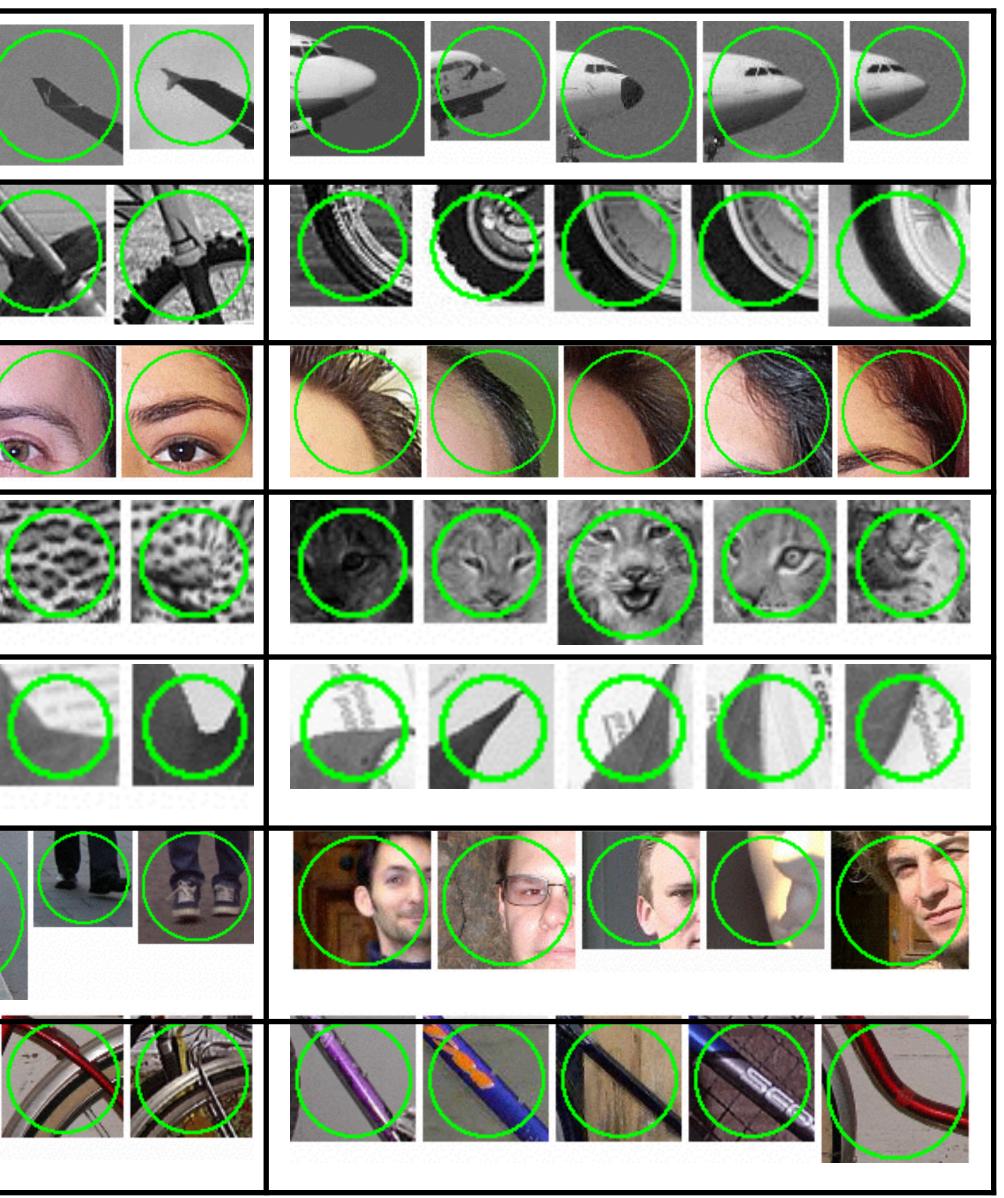
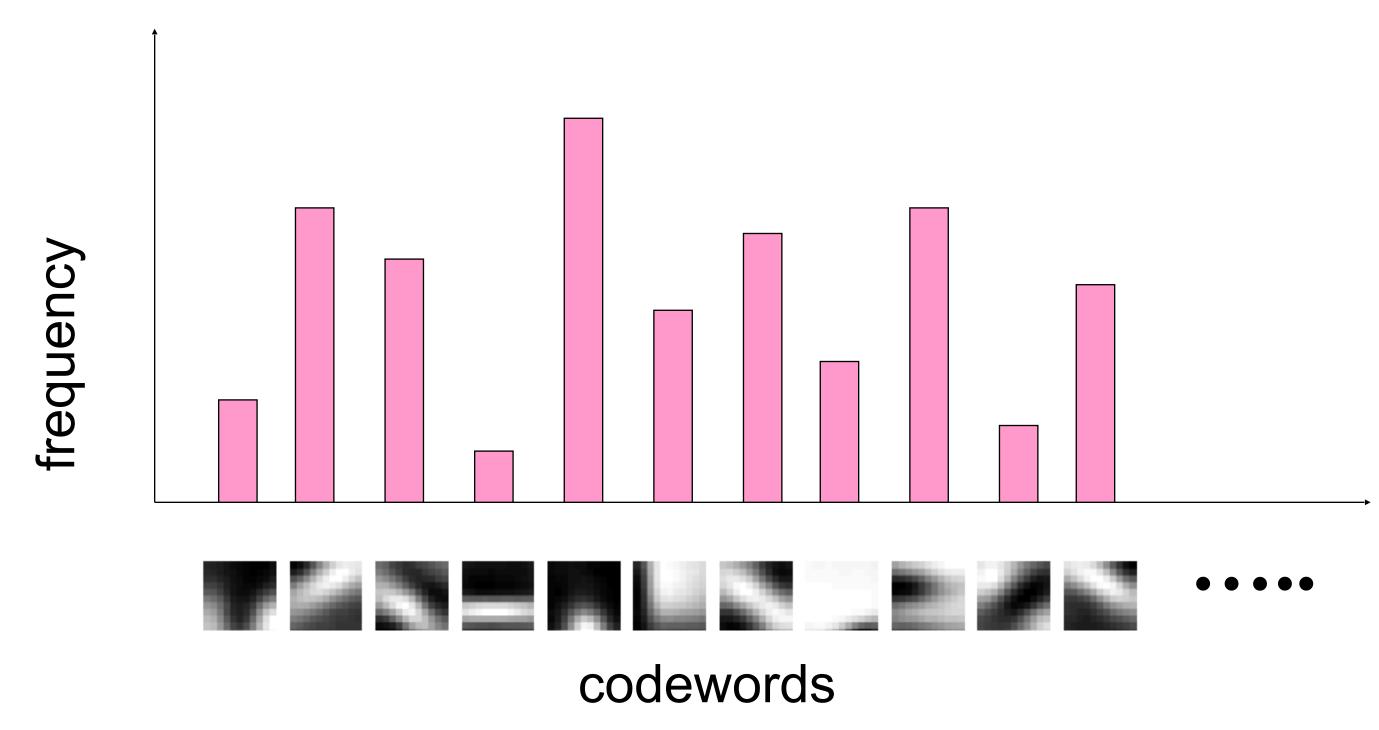


Image representation

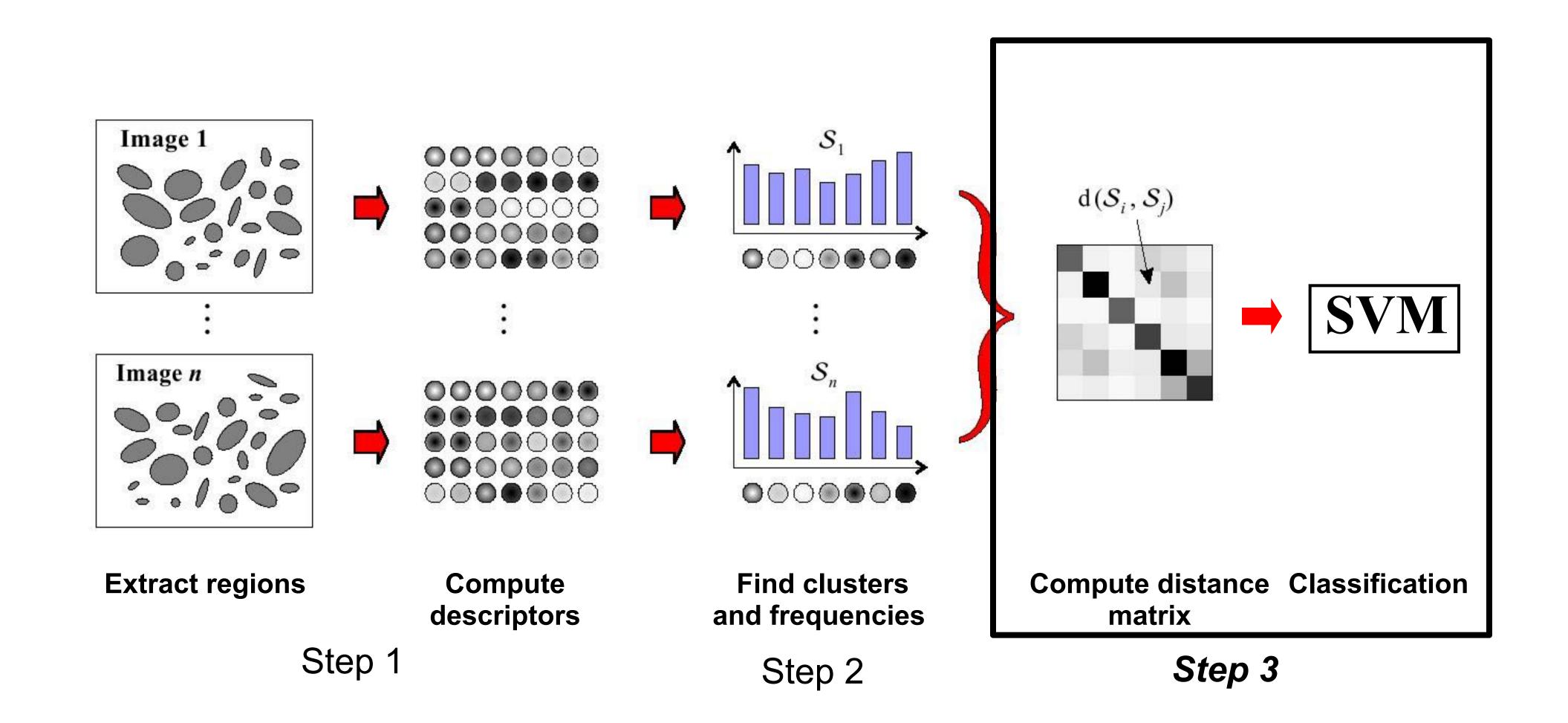


- 1000-4000 dimensional
- Normalized with L2 norm

• Each image is represented by an aggregated histogram vector, typically

• Fisher Vectors [Perronnin et al. ECCV'10]: improvements over Bag of Features

Bag-of-features for image classification



Step 3: Classification

Training data: Vectors are histograms, one from each image

positive

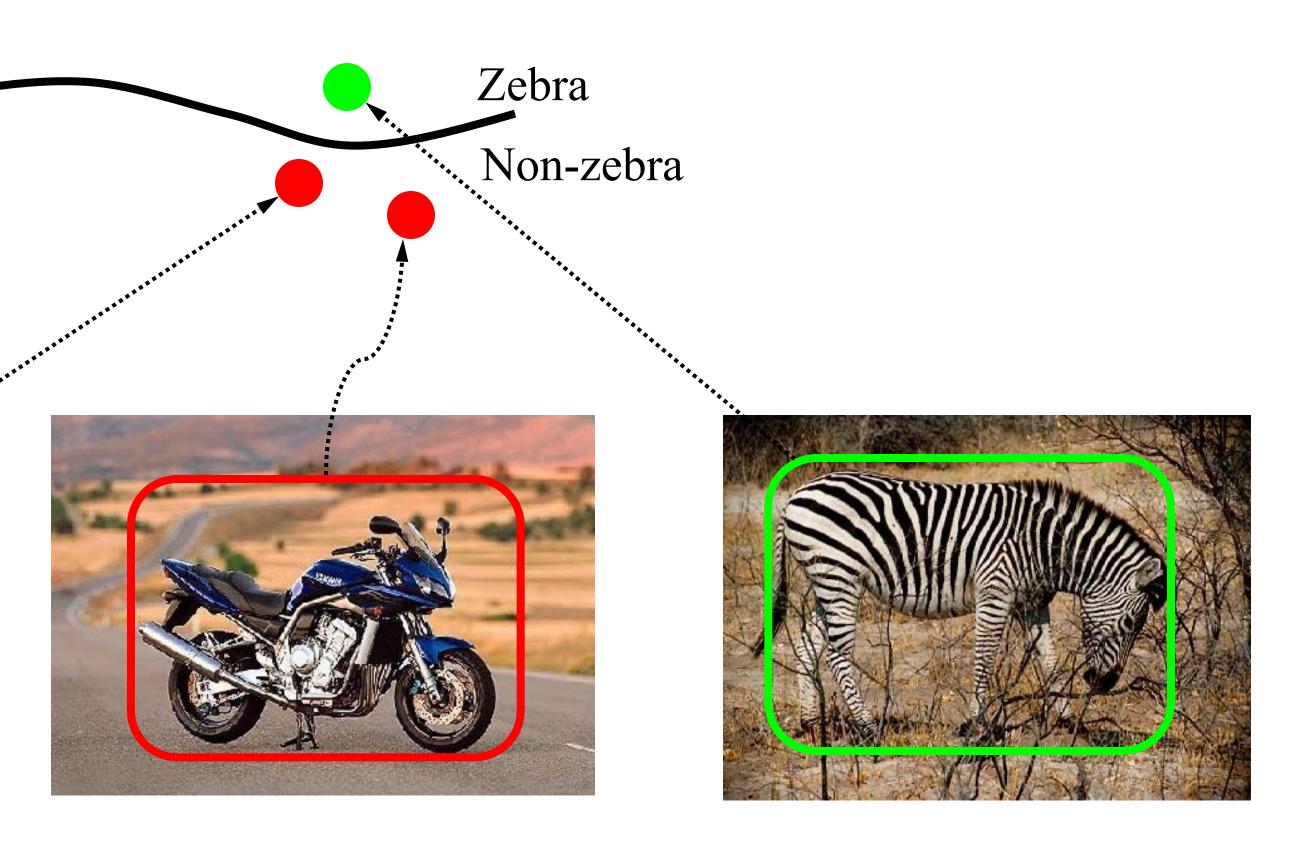
Train classifier, e.g. SVM

negative

Step 3: Classification

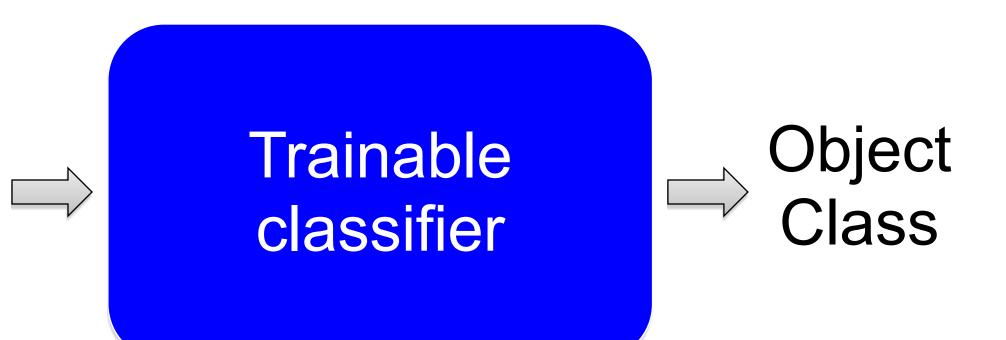
Learn a decision rule (classifier) assigning bag-of-features representations of images to different classes

Decision boundary



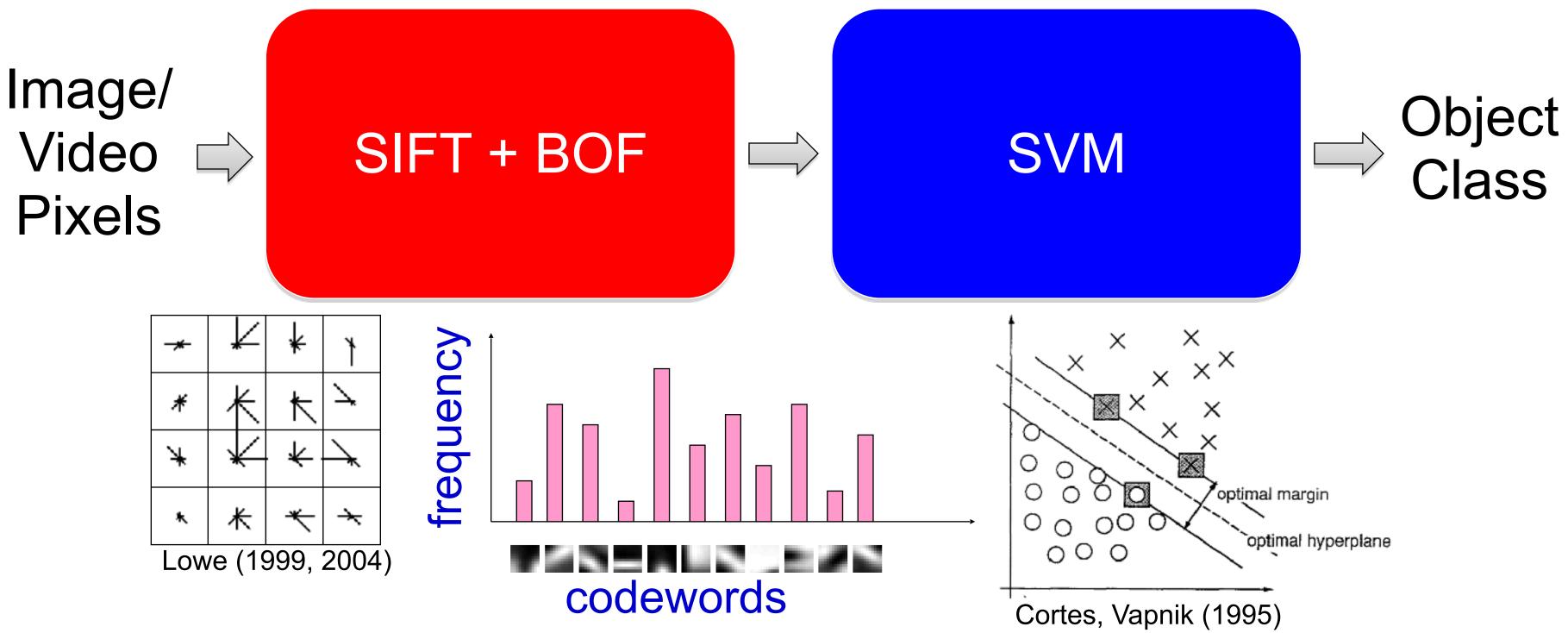
Traditional Recognition Approach

Hand-designed Image/ Video feature Pixels extraction



Slide: R. Fergus / S. Lazebnik

Traditional Recognition Example



- SIFT features
- SVM: Support Vector Machines for classification

• BOF: Bag of Features / Visual Words (inspired by Bag of Words in NLP)

Analogy to the traditional visual recognition pipeline

Image/ Hand-designed Video feature extraction Pixels

• Features are not learned (e.g., HOG, SIFT, Bag of Features) • Trainable classifier is often generic (e.g., SVM, Random Forest)

Slide: R. Fergus / S. Lazebnik

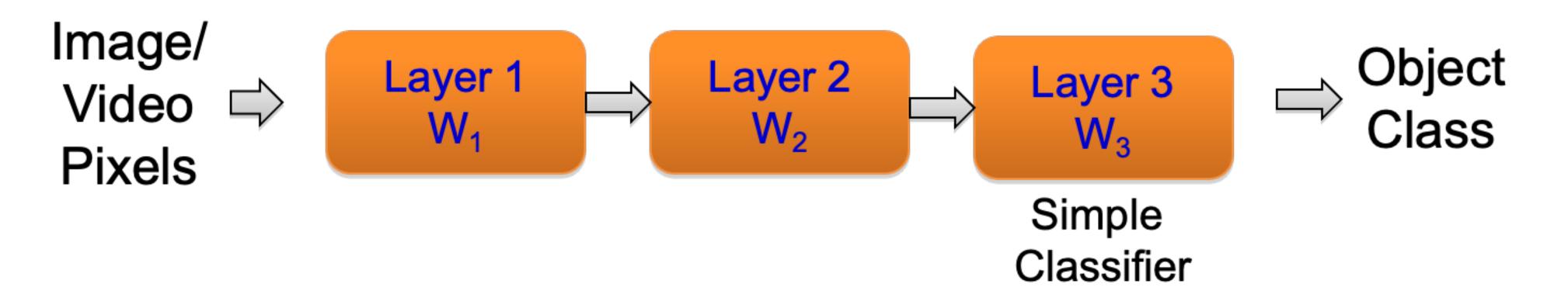
Analogy to the traditional visual recognition pipeline

What about learning the features?

- Train all layers jointly

Features are learned "end-to-end" (i.e., pixels are input) • "Feature hierarchy" all the way from pixels to classifier • Each layer extracts features from the output of previous layer

Analogy to the traditional visual recognition pipeline

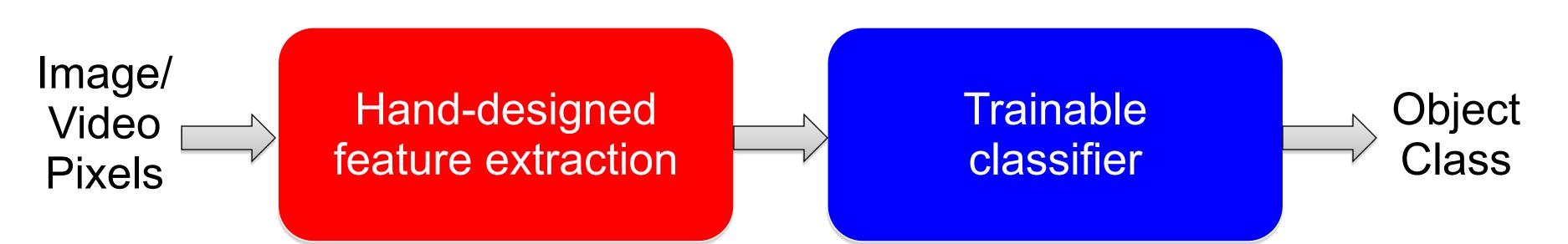


- Train all layers jointly

Features are learned "end-to-end" (i.e., pixels are input) • "Feature hierarchy" all the way from pixels to classifier • Each layer extracts features from the output of previous layer

"Shallow" vs. "deep" models

Traditional recognition: "Shallow" architecture



Agenda

- 1. Recap: Bag of Visual Words, Analogy with NNs
- 2. Neural networks (NNs) for computer vision:
 - Applications
 - A brief history: from perceptron to MLPs to CNNs

3. Convolutional neural networks (CNNs)

- Standard layers
- Recap: Training NNs
- Visualizing CNNs
- Pretraining & finetuning NNs
- Typical CNN architectures

• 4. Beyond CNNs

- Attention & Transformer
- Vision Transformers

5. Beyond classification

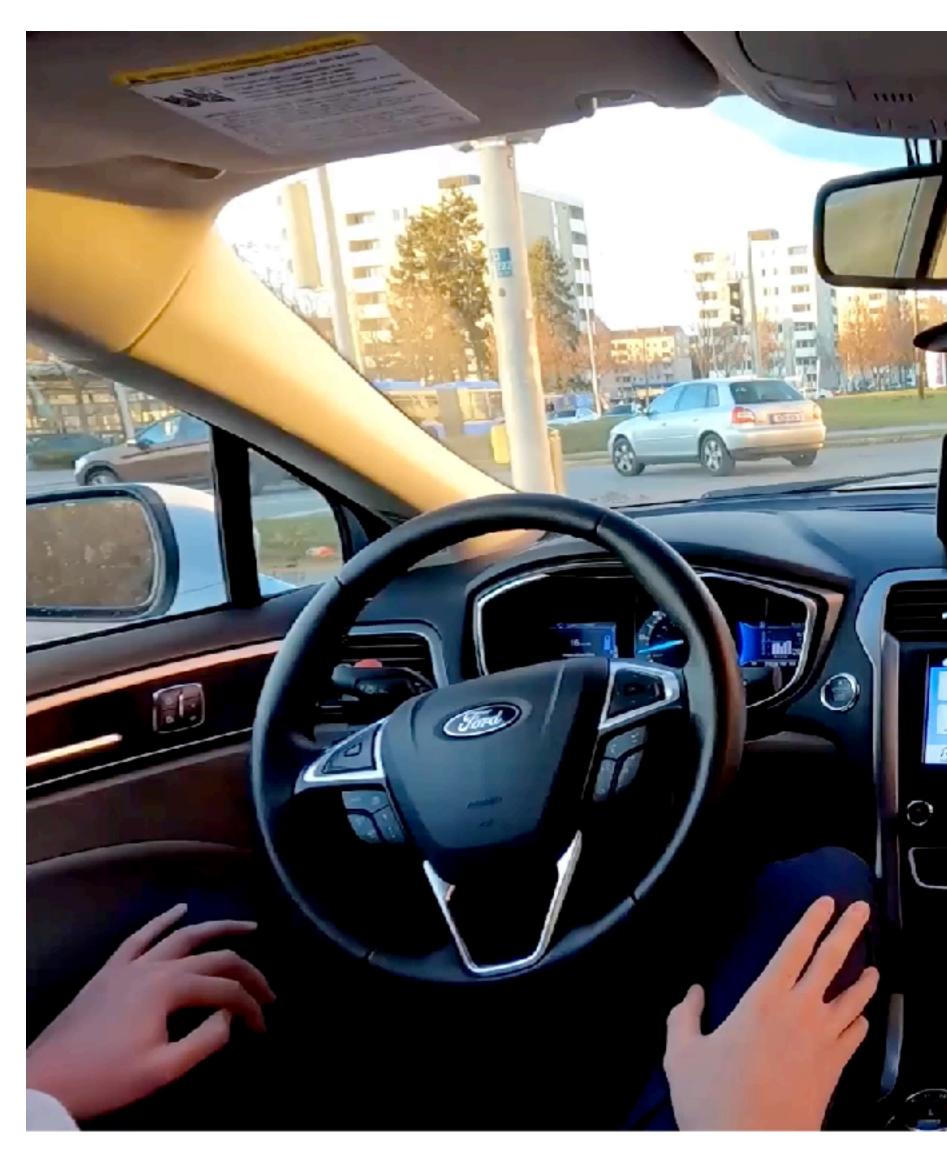
Neural Networks in Production

Face detection

Slide credit: Kosta Derpanis

Self-driving cars / Autonomous vehicles

15



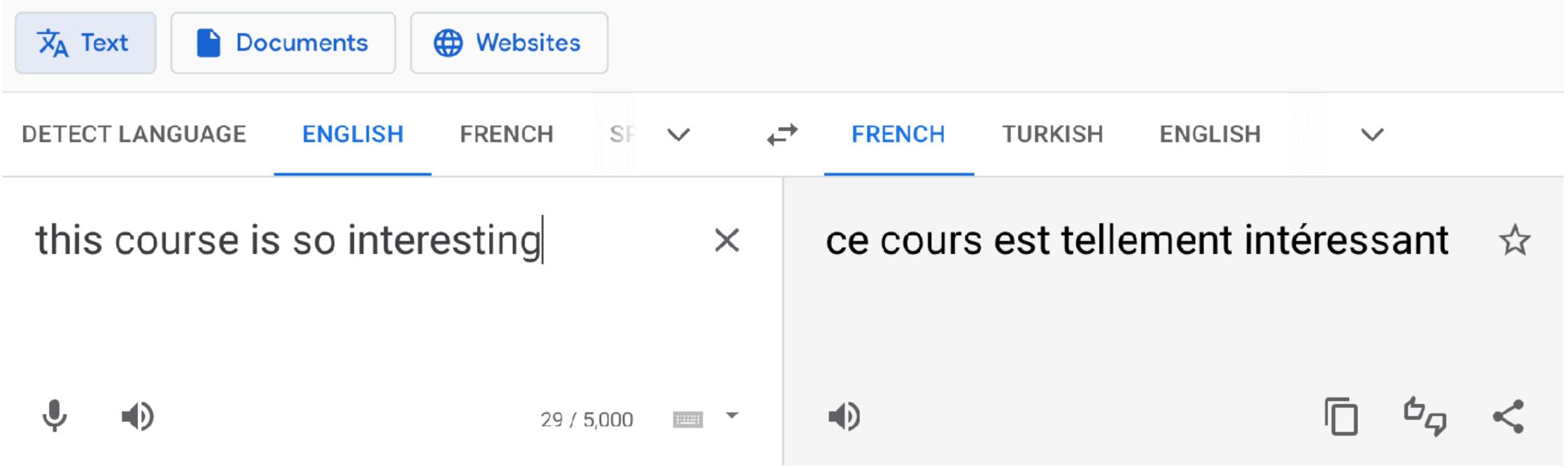
"We've built an AV that is seamlessly integrating into traffic in Munich, **Paris**, Detroit, Jerusalem, New York, Tokyo, and other cities across the globe."

Shopping

Slide credit: Kosta Derpanis

Google Translate

\equiv **Google** Translate



What is "Deep" Learning?

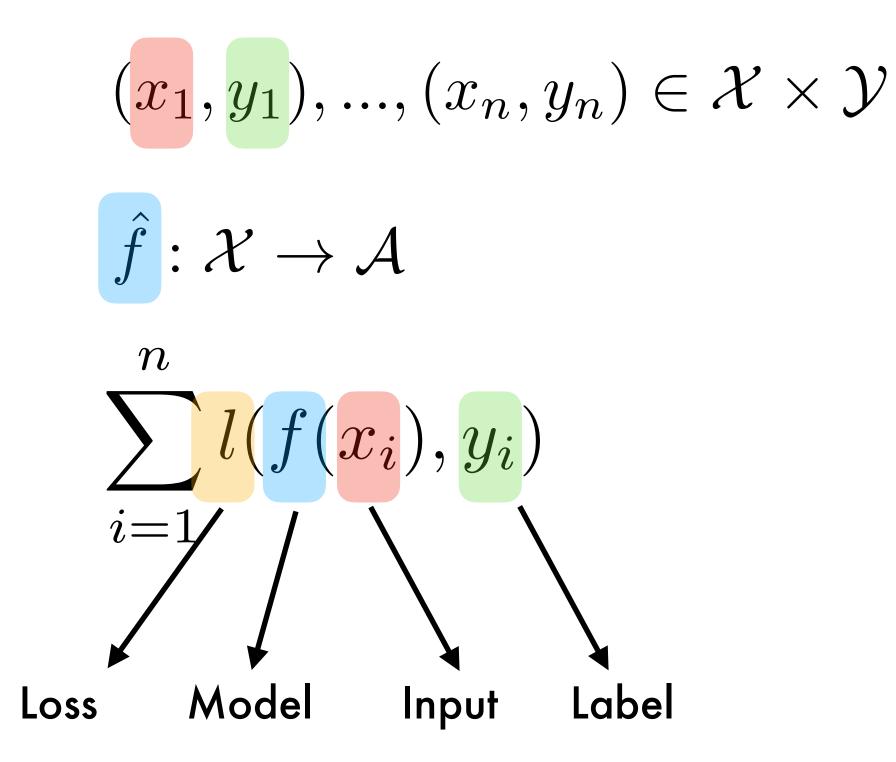
Recap: Basics of supervised learning

- *n* training data pairs
- Learn a predictor/decision function
- By minimizing

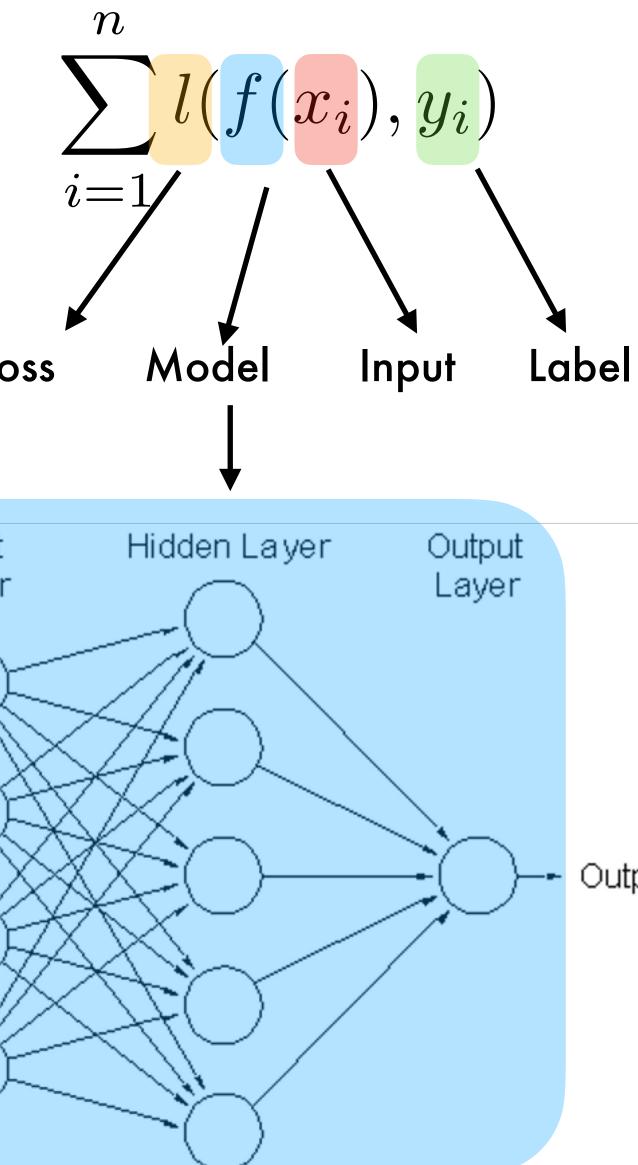
$(x_1, y_1), ..., (x_n, y_n) \in \mathcal{X} imes \mathcal{Y}$ $\hat{f} : \mathcal{X} \to \mathcal{A}$ $\sum_{i=1}^n l(f(x_i), y_i)$

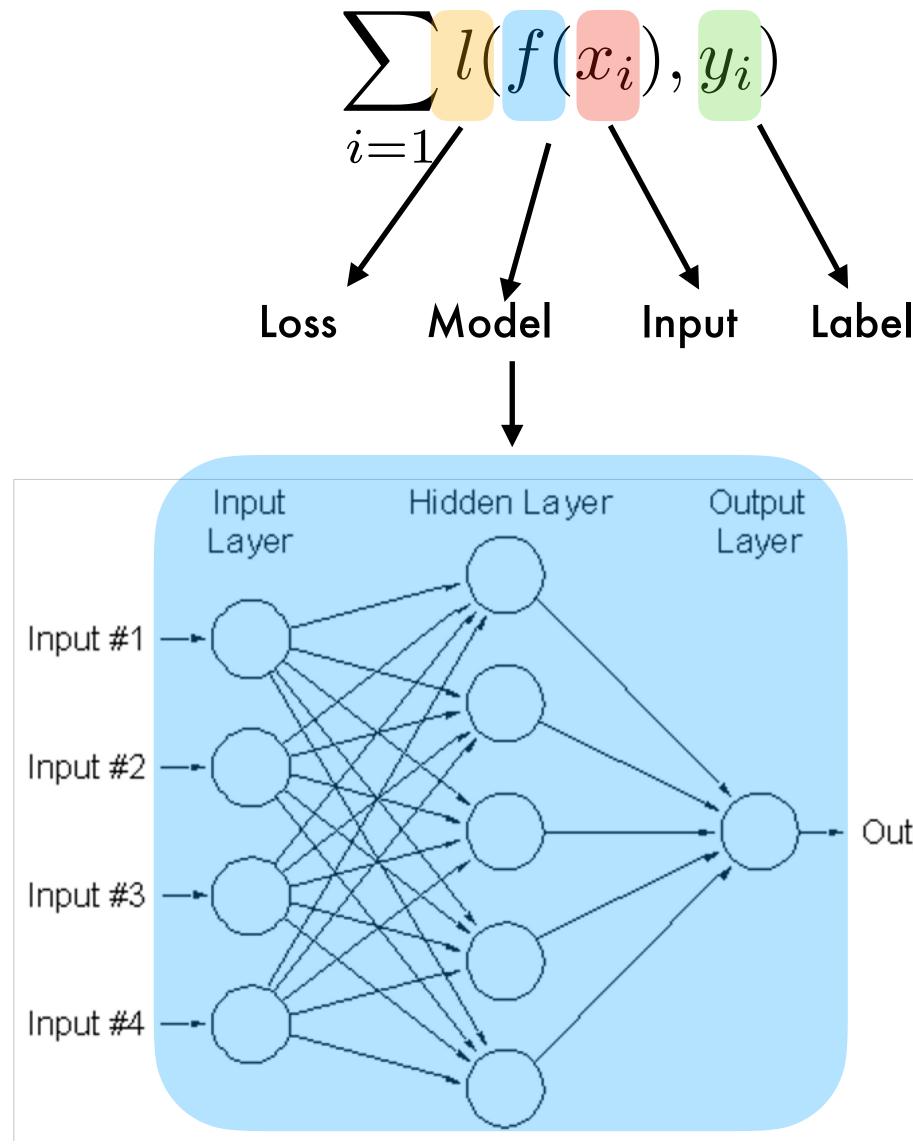
Recap: Basics of supervised learning

- *n* training data pairs
- Learn a predictor/decision function
- By minimizing



Deep learning



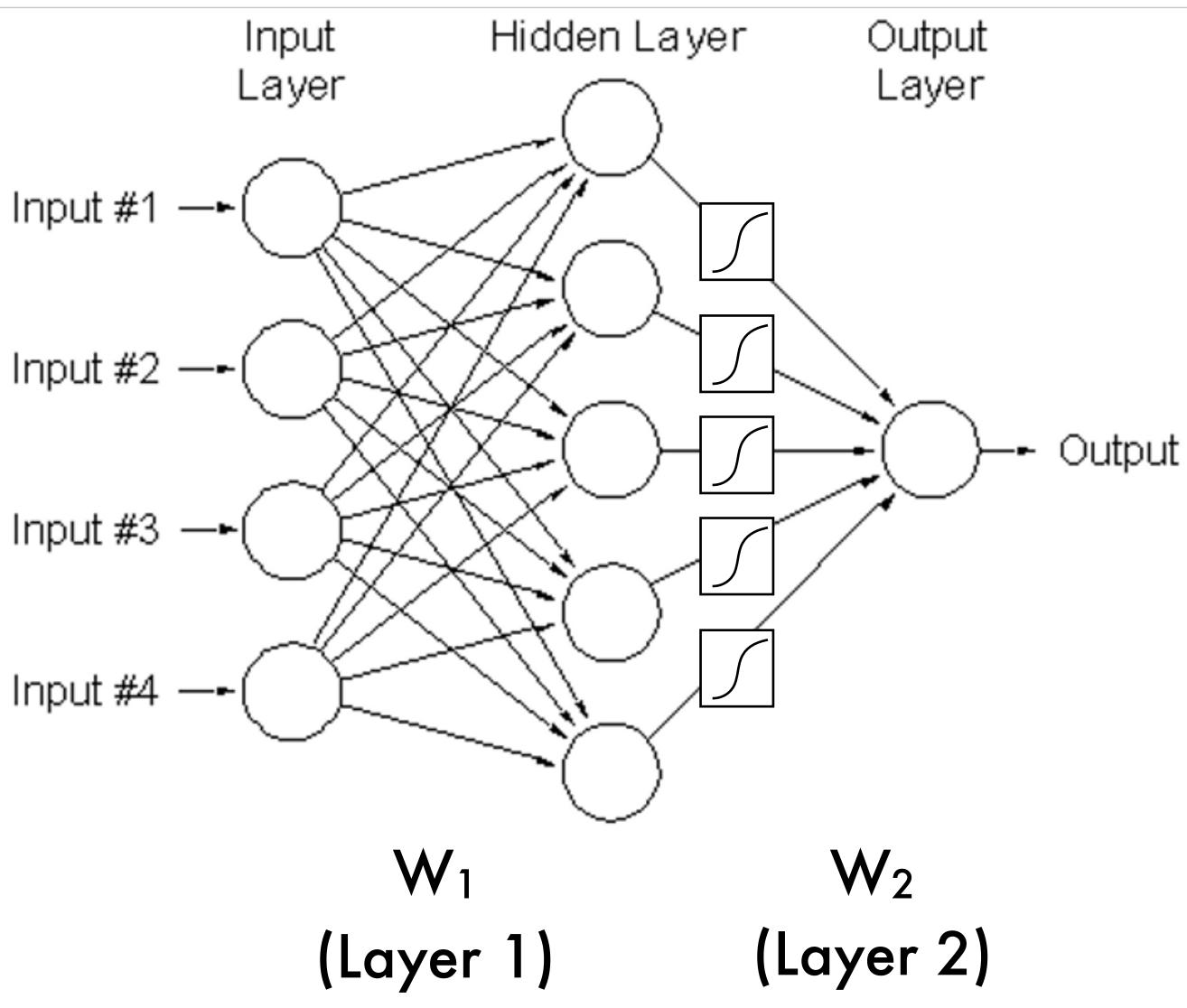


Deep learning: Model = neural network

Output

What is a "deep" neural network?

Stacking more than one **layer**



What is a layer?

Typically matrix multiplication! (But the function can take many forms*)

- Fully-connected layer
- Convolution layer
- Pooling layer (e.g., Max-pooling)
- Non-linearity layer (e.g., ReLU)
- Attention layer

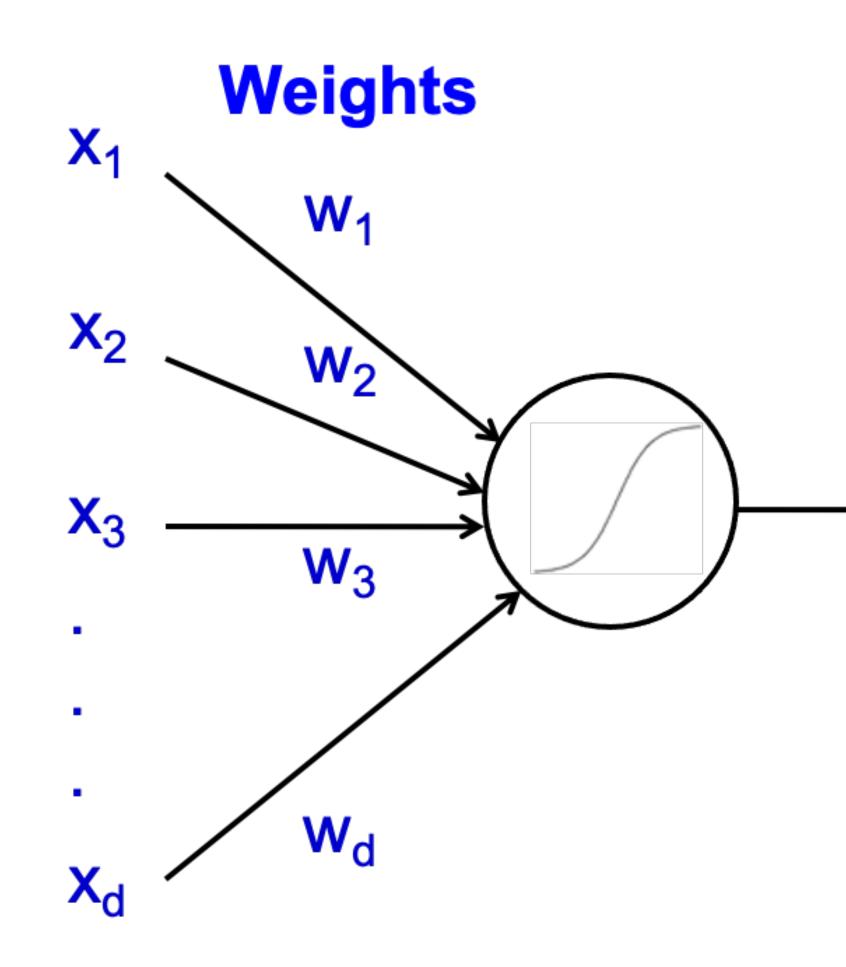
•

*requirement to be differentiable if optimized with gradient descent algorithm variants

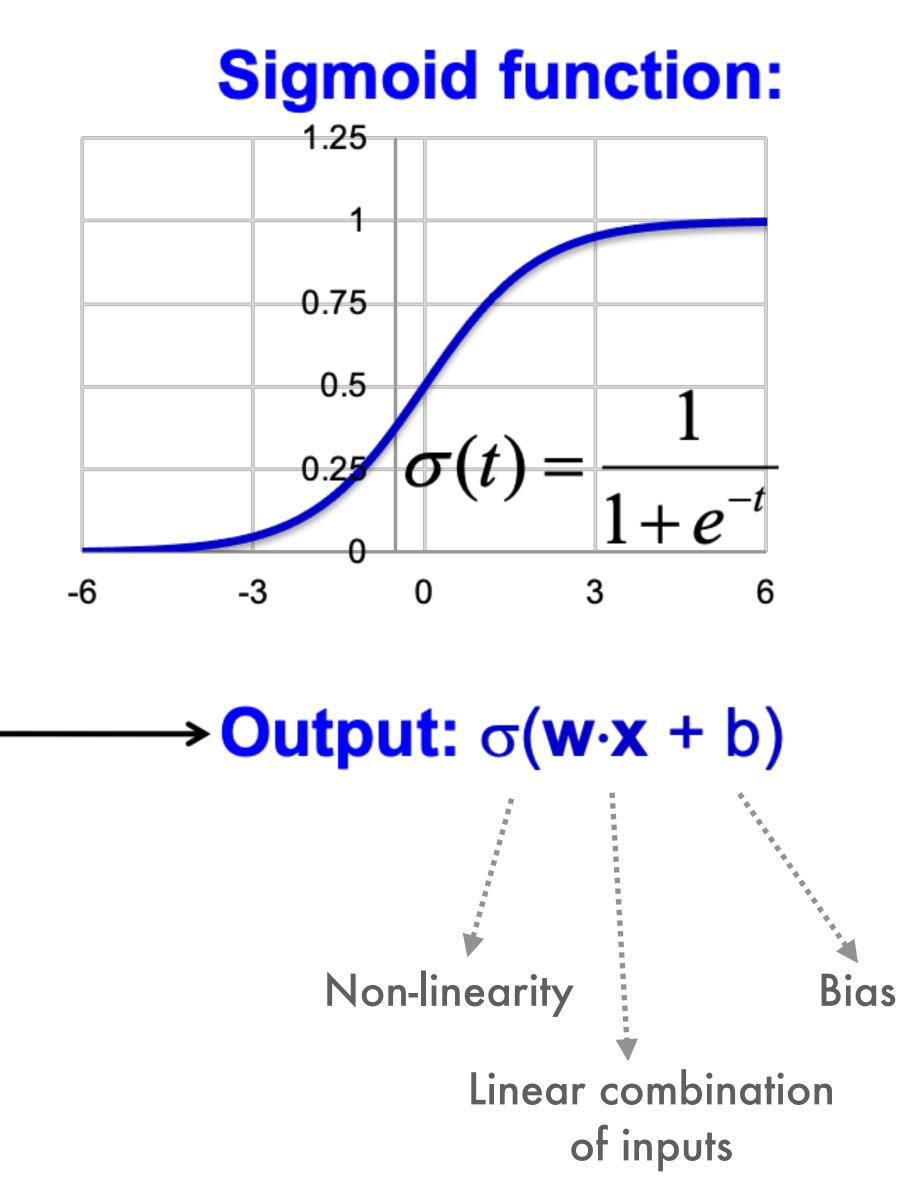
Recap: Perceptrons

Most basic form of a neural network

Input



[Rosenblatt, 1957]



NEW NAVY DEVICE LEARNS BY DOING

Psychologist Shows Embryo of Computer Designed to Read and Grow Wiser

WASHINGTON, July 7 (UPI) ---The Navy revealed the embryo of an electronic computer today that it expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence.

The embryo-the Weather Bureau's \$2,000,000 "704" computer-learned to differentiate between right and left after fifty attempts in the Navy's demonstration for newsmen.,

The service said it would use this principle to build the first of its Perceptron thinking machines that will be able to read and write, it is expected to be finished in about a year at a cost of \$100,000.

Dr. Frank Rosenblatt, designer of the Perceptron, conducted the demonstration. He said the machine would be the first device to think as the human brain. As do human beings, Perceptron will make mistakes at first, but will grow wiser as it gains experience, he said.

Dr. Rosenblatt, a research psychologist at the Cornell Aeronautical Laboratory, Buffalo, said Perceptrons might be fired to the planets as mechanical space explorers.

Without Human Controls

The Navy said the perceptron would be the first non-living mechanism "capable of receiving, recognizing and identifying its surroundings without any human training or control."

The "brain" is designed to remember images and information it has perceived itself. Ordinary computers remember only what is fed into them on punch cards or magnetic tape.

Later Perceptrons will be able to recognize people and call out their names and instantly translate speech in one language to speech or writing in another language, it was predicted.

Mr. Rosenblatt said in principle it would be possible to build brains that could reproduce themselves on an assembly line and which would be conscious of their existence.

1958 New York Times...

In today's demonstration, the "704" was fed two cards, one with squares marked on the left side and the other with squares on the right side.

Learns by Doing

In the first fifty trials, the machine made no distinction between them. It then started registering a "Q" for the left squares and "O" for the right squares.

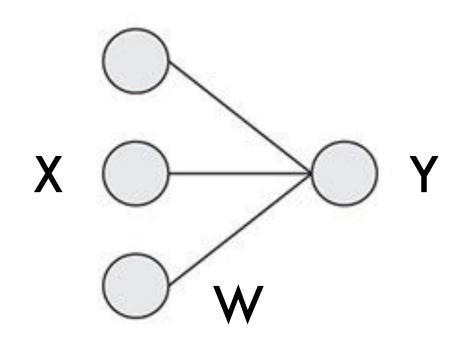
Dr. Rosenblatt said he could machine explain why the learned only in highly technical terms. But he said the computer had undergone a "self-induced change in the wiring diagram." The first Perceptron will have about 1,000 electronic cells" receiving "association electrical impulses from an eyelike scanning device with 400 photo-cells. The human brain has 10,000,000,000 responsive cells, including 100,000,000 connections with the eyes.

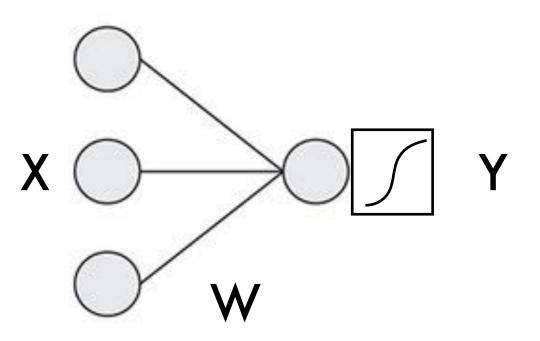
Slide credit: Lana Lazebáik

Recap: Multi-Layer Perceptron (MLP)

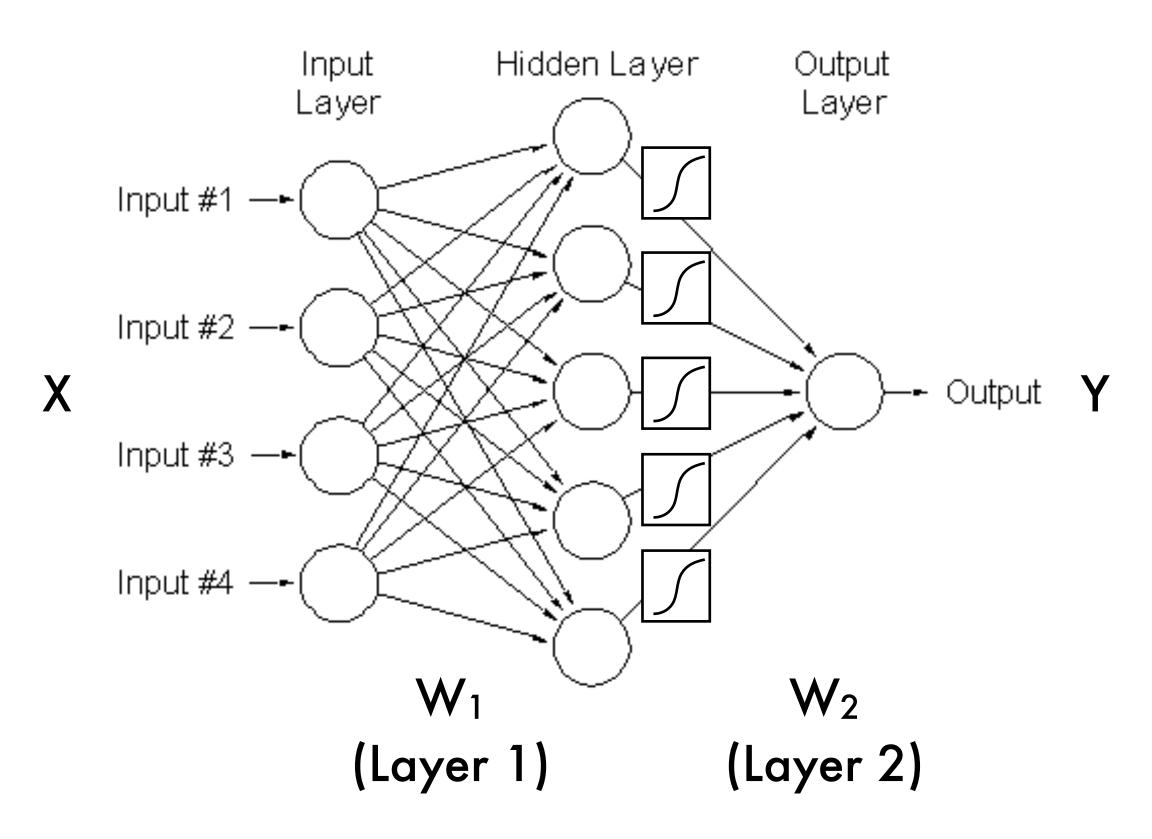
Linear regression:

Perceptron:



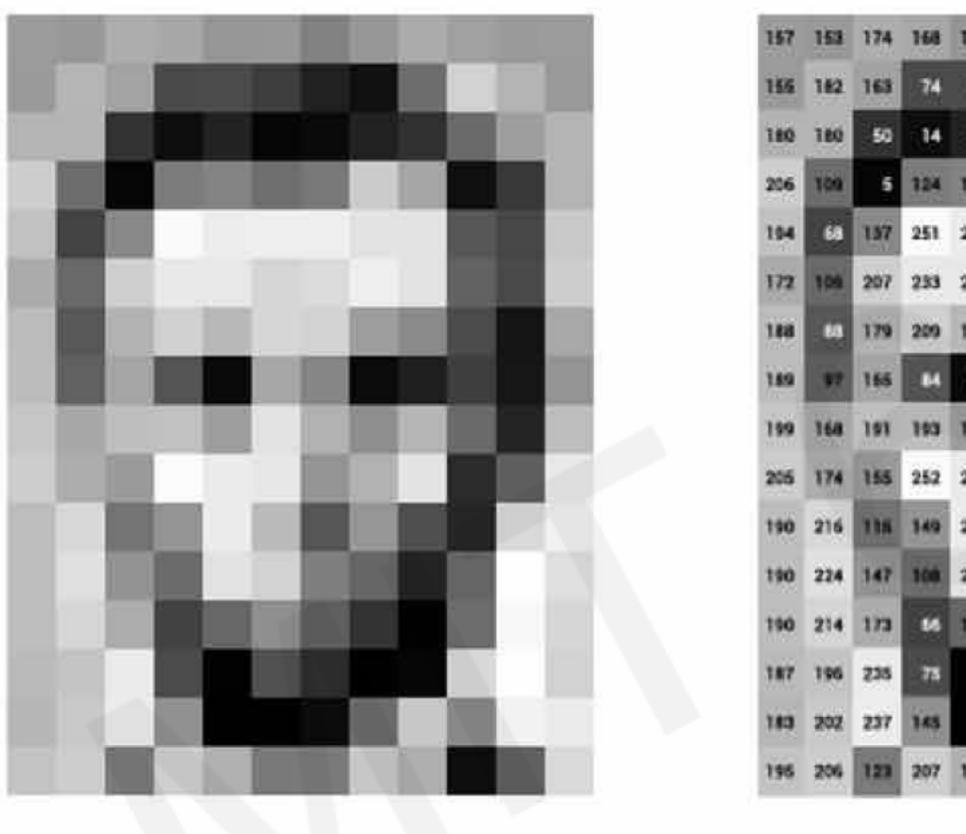


MLP:



Slide: R. Fergus / S. Lazebnik

Images are numbers



An image is just a matrix of numbers [0,255]! i.e., 1080x1080x3 for an RGB image

Slide credit: Alexander Amini

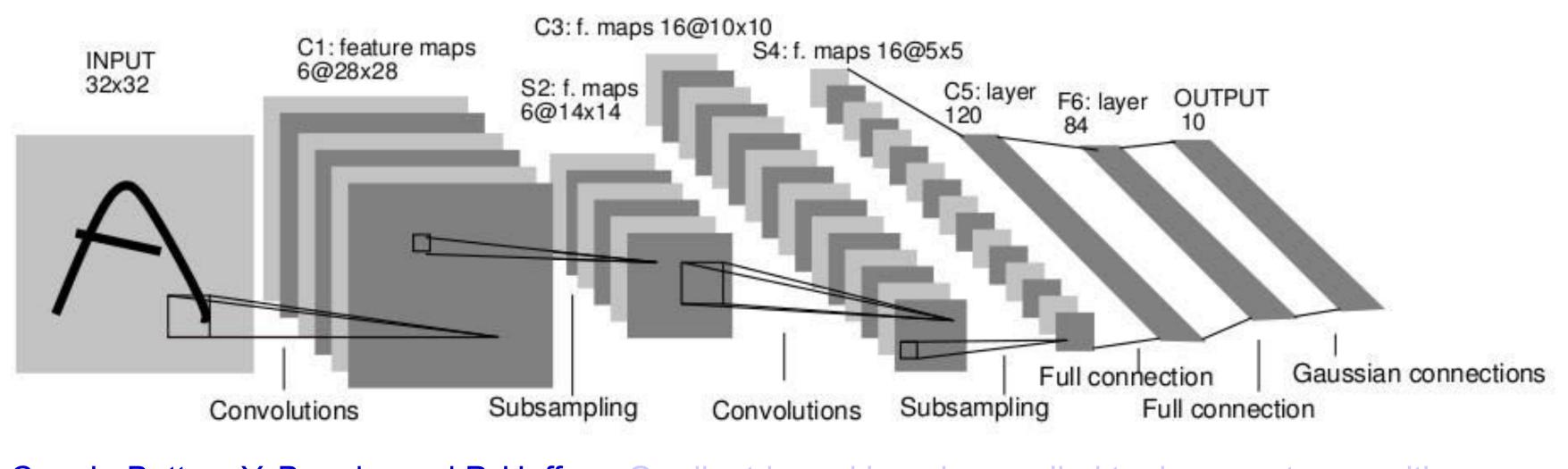
150	162	129	151	172	761	155	156	
75	62	-33	17	110	210	180	154	
34	6	10	33	48	106	159	787	
121	811	120	204	166	15	56	180	
237	239	239	228	227	. 17	71	201	
233	214	220	239	228	98	74	206	
185	215	211	158	1.99	75	20	169	
10	168	134	-11	31	62	22	148	
158	227	178	143	182	104	36	190	
236	231	149	178	228	43	95	234	
236	187		150	10	38	218	241	
227	210	127	102	36	101	255	224	
103	143	-	50	2	109	249	215	
1		47	0	6	217	255	211	
0	ø	12	108	209	138	243	235	
177	123	122	200	175	13	-	218	
	Section of the local division of the local d	-		1000				

What the computer sees

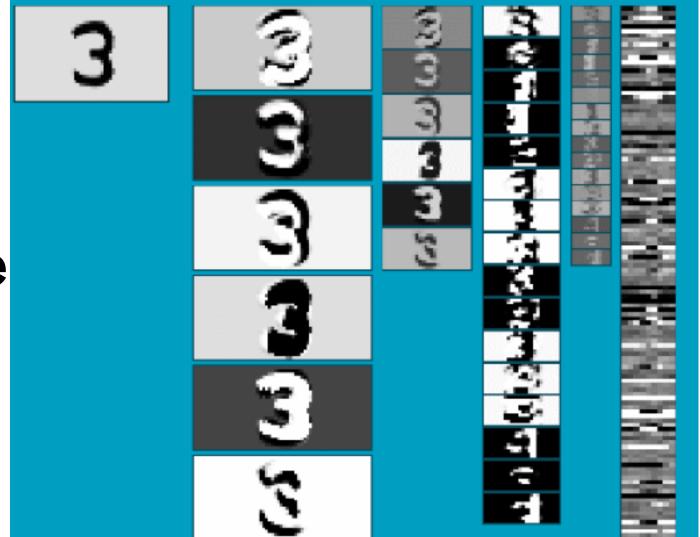
107	100	1.74	1100	1100	100	1100	1.0	1.00	1.0	100	1.00
191	193	1/14	100	130	194	129	191	112	101	130	134
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	105	207	233	233	214	220	239	228	58	74	206
188	88	179	209	185	215	211	158	139	75	20	165
189	97	166	84	10	168	134	11	31	62	22	14
199	168	191	193	158	227	178	143	182	106	36	150
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	256	224
190	214	173	66	103	143	96	50	2	109	249	216
187	196	236	75	1	81	47	0	6	217	256	211
183	202	237	145	0	0	12	108	210	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

Review: Convolutional Neural Networks (CNN)

- Neural network with specialized connectivity structure
- Stack multiple stages of feature extractors
- Higher stages compute more global, more invariant feature
- Classification layer at the end

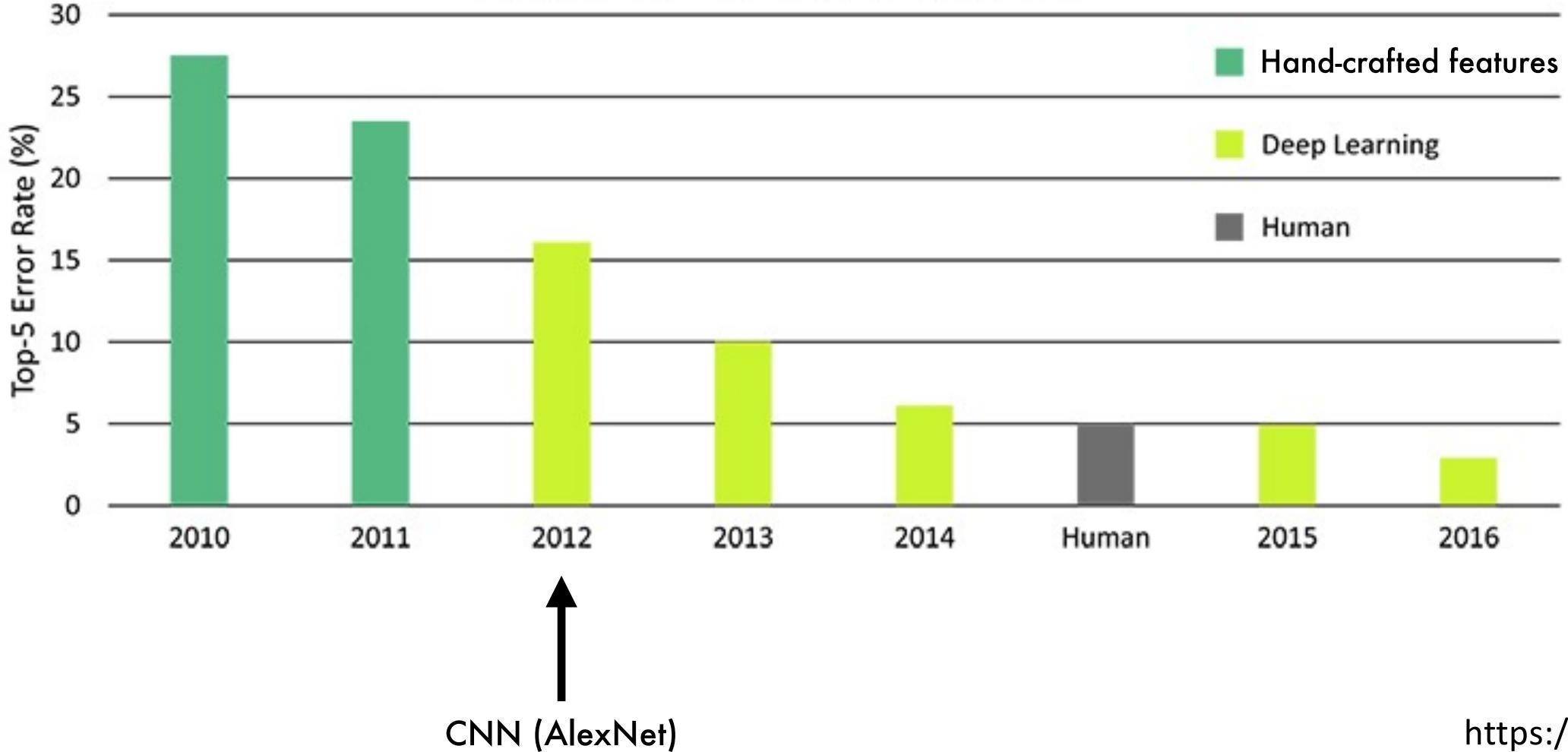


Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to document recognition</u>, Proceedings of the IEEE 86(11): 2278–2324, 1998.



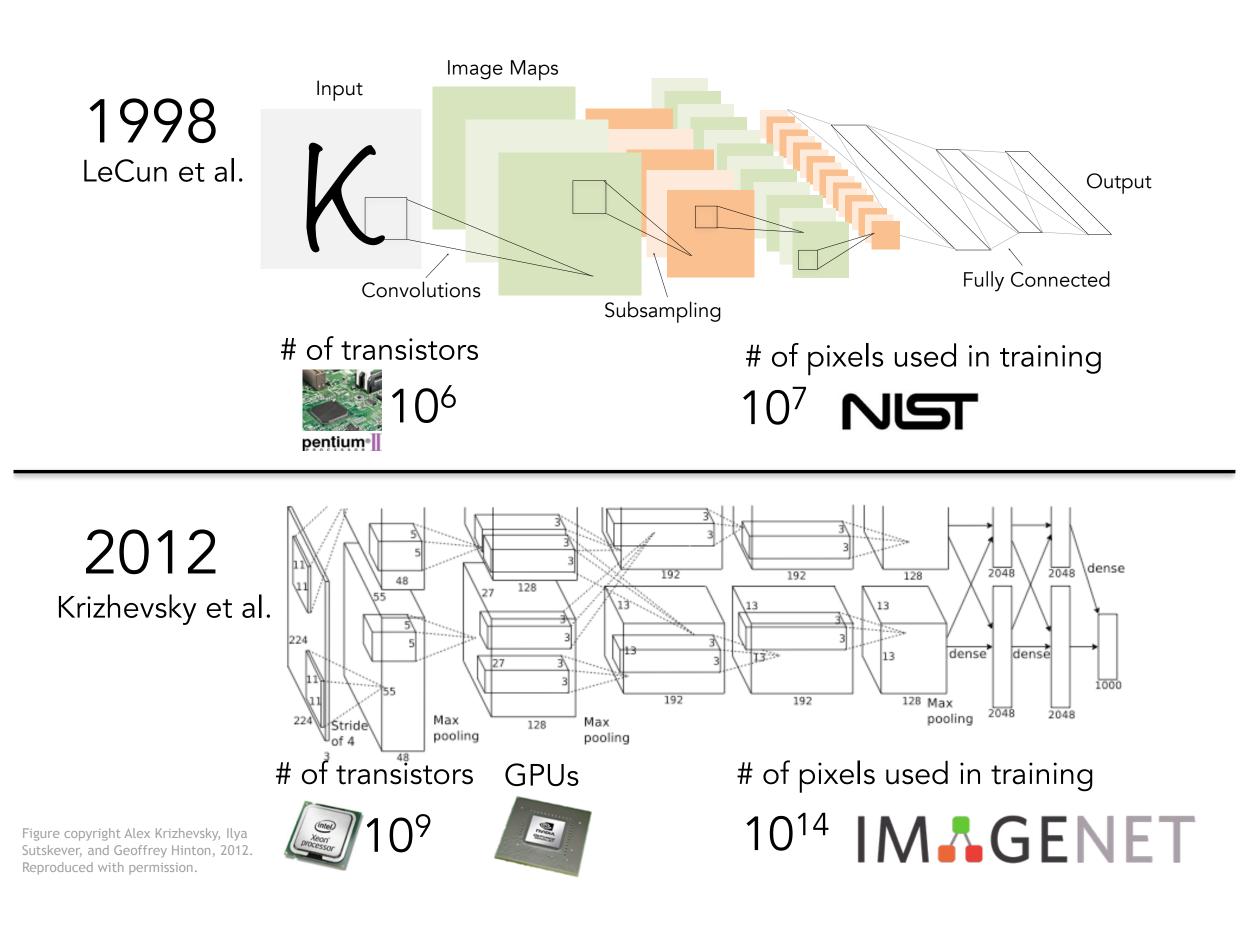
Progress on ImageNet

ILSVRC Top 5 Error on ImageNet



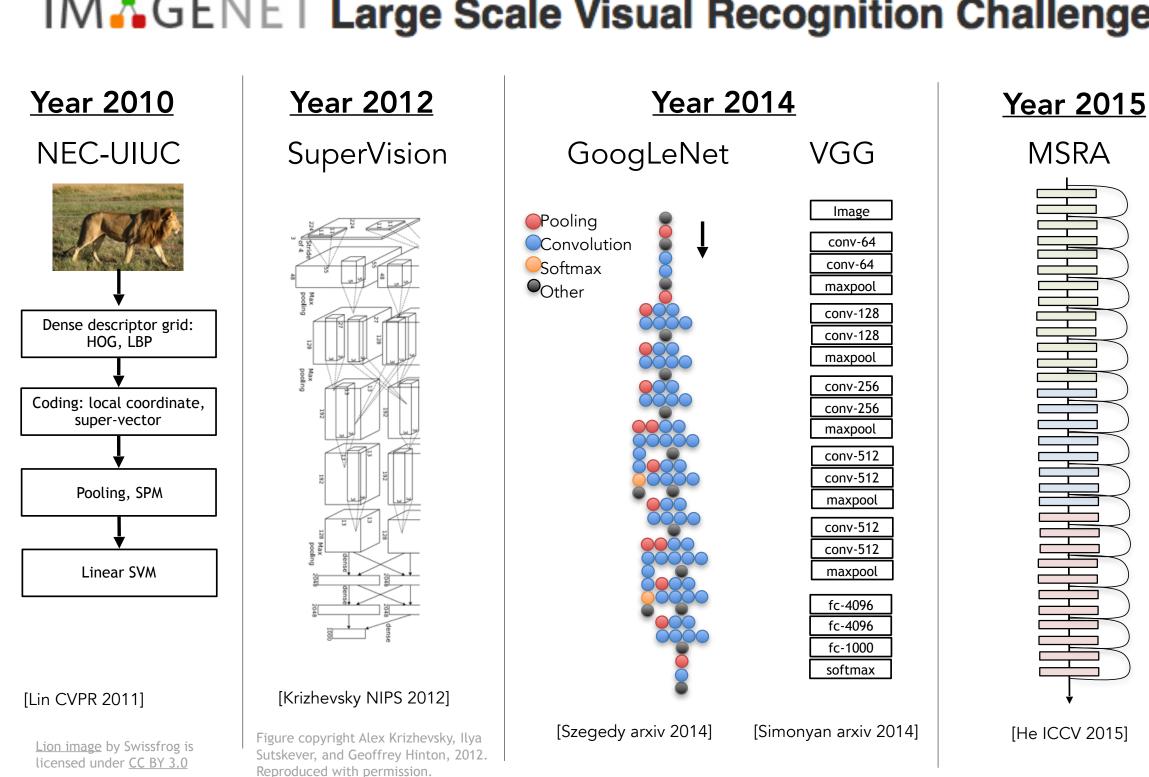
https://www.dsiac.org

CNNs were not invented overnight



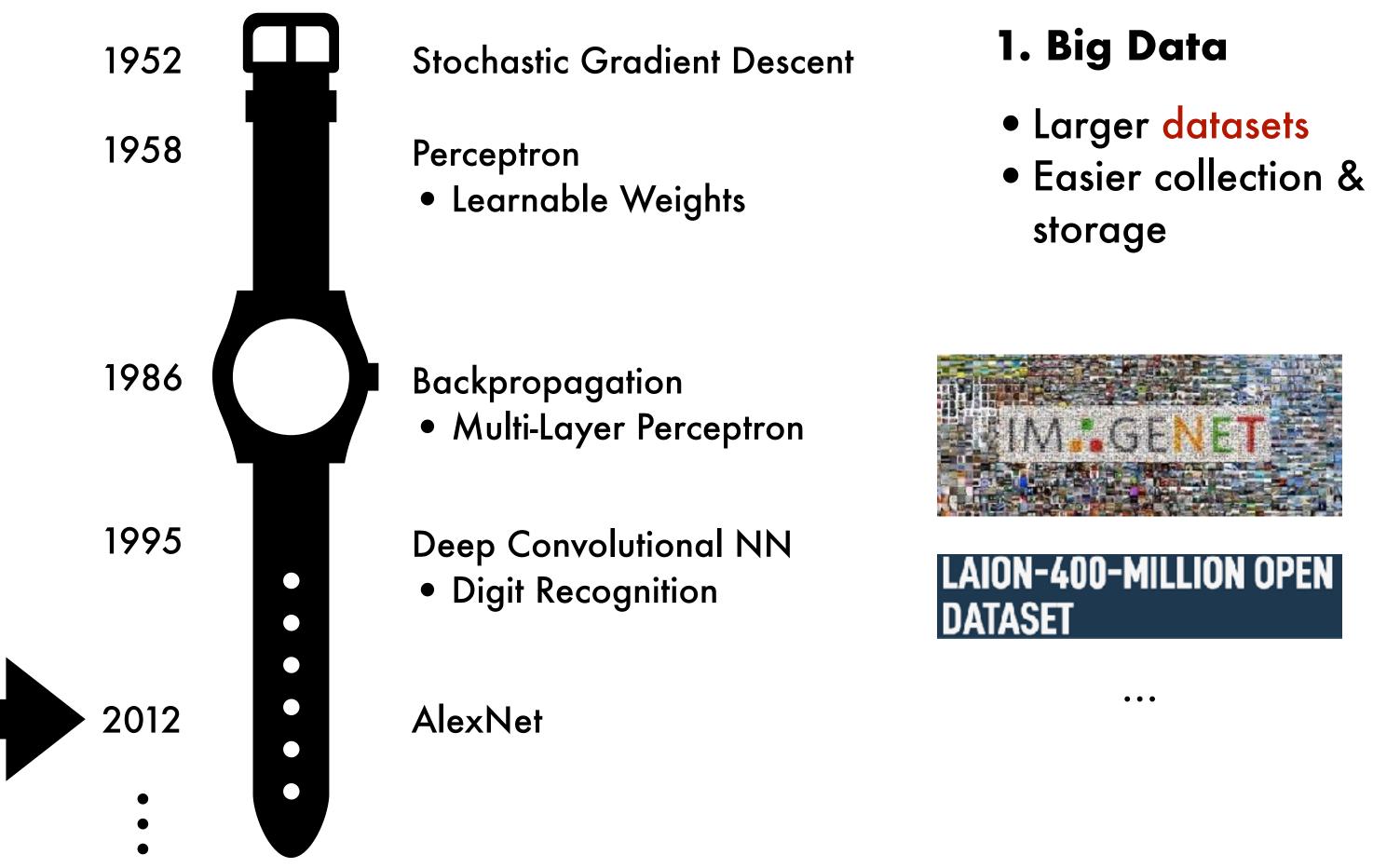
Slide credit: Fei-Fei Li & Justin Johnson & Serena Yeung

IM GENET Large Scale Visual Recognition Challenge



Why now?

Neural Networks date back decades.



Slide credit: Alexander Amini

2. Hardware

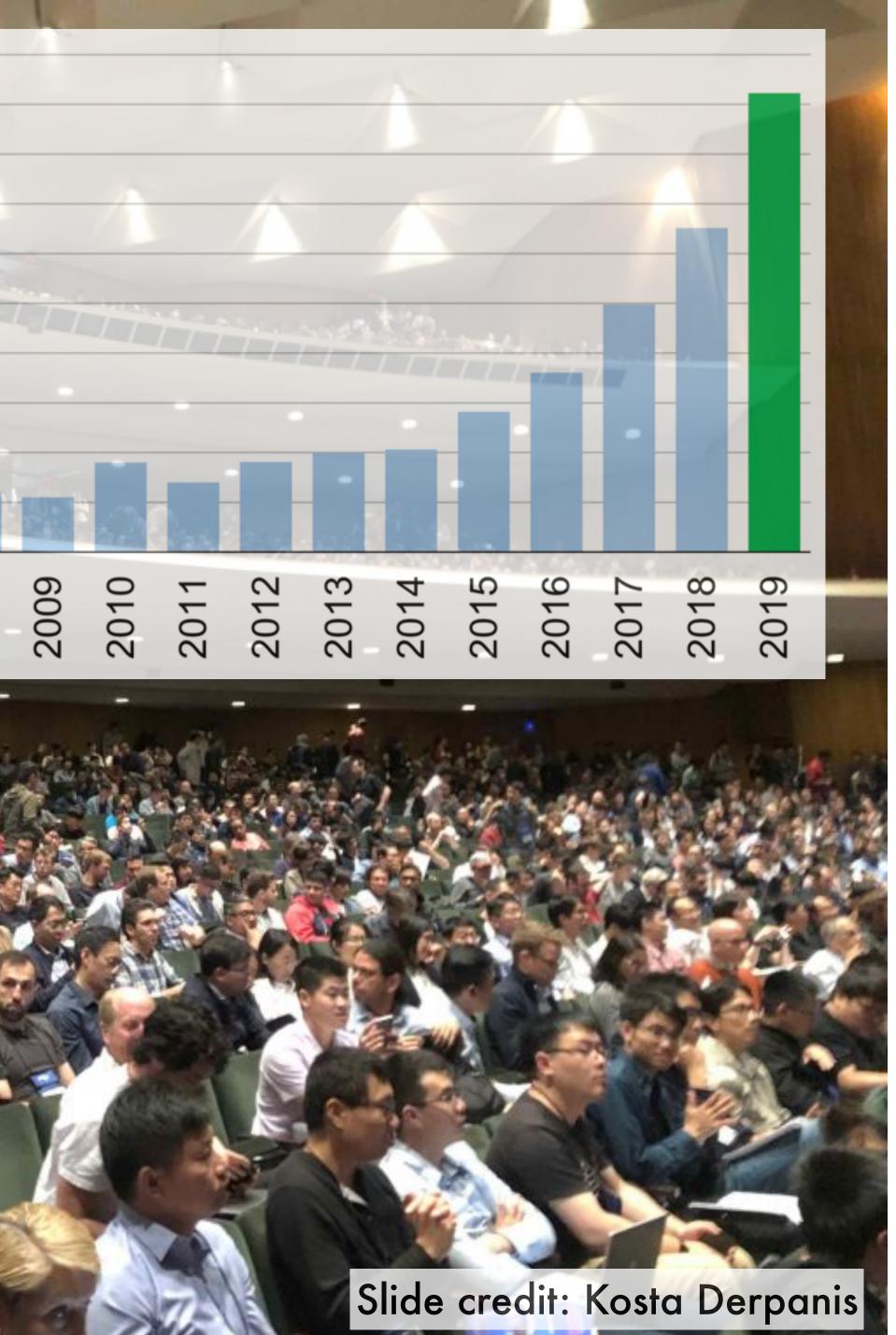
- Graphics Processing Units (GPUs)
- Massively Parallelizable

3. Software

- Improved Techniques
- New Models
- Toolboxes

' PyTorch **TensorFlow**

. . .



CVPR: (Computer Vision Pattern Recognition Conference)

Agenda

- 1. Recap: Bag of Visual Words, Analogy with NNs
- 2. Neural networks (NNs) for computer vision:
 - Applications
 - A brief history: from perceptron to MLPs to CNNs

• 3. Convolutional neural networks (CNNs)

- Standard layers
- Recap: Training NNs
- Visualizing CNNs
- Pretraining & finetuning NNs
- Typical CNN architectures

• 4. Beyond CNNs

- Attention & Transformer
- Vision Transformers

5. Beyond classification

Agenda

- 1. Recap: Bag of Visual Words, Analogy with NNs
- 2. Neural networks (NNs) for computer vision:
 - Applications
 - A brief history: from perceptron to MLPs to CNNs

• <u>3. Convolutional neural networks</u> (CNNs)

- Standard layers
- Recap: Training NNs
- Visualizing CNNs
- Pretraining & finetuning NNs
- Typical CNN architectures

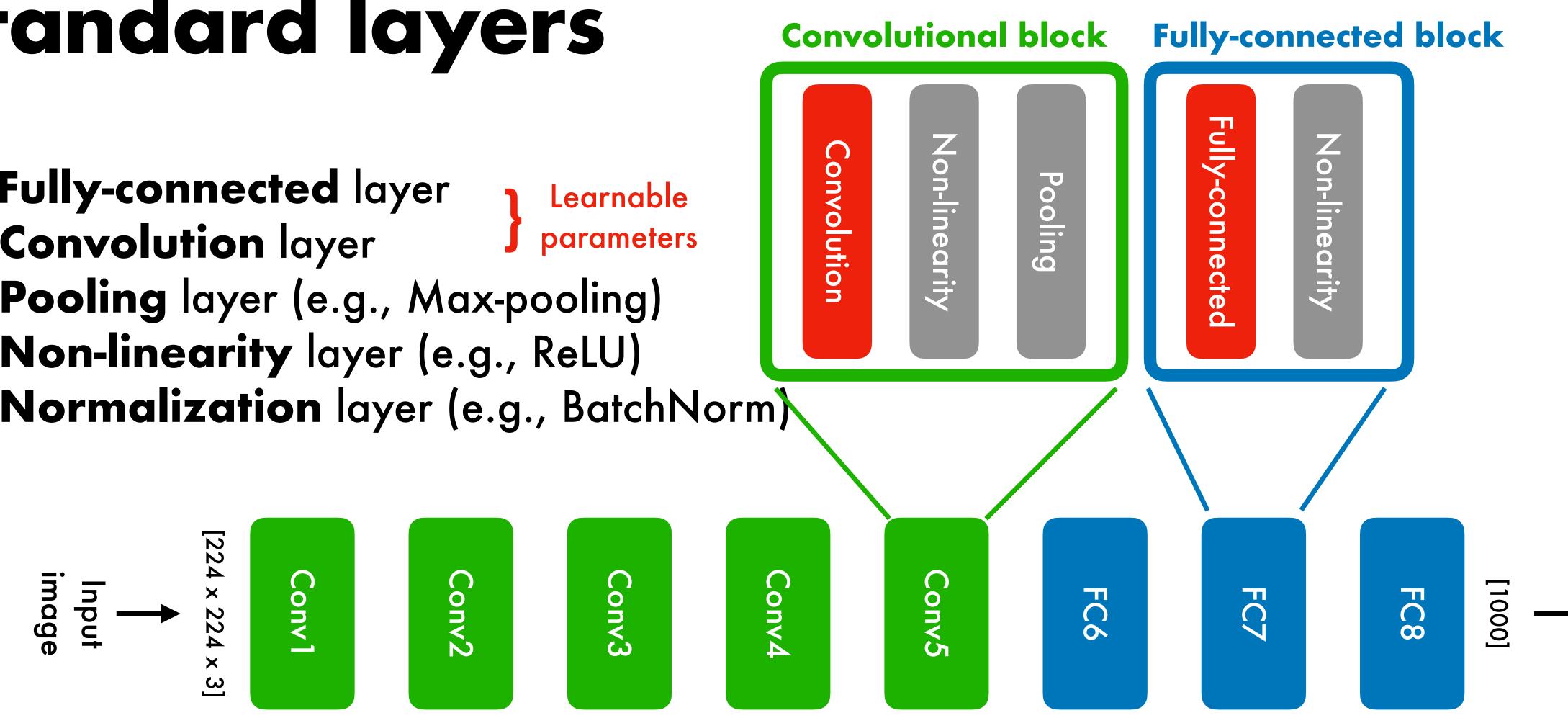
• 4. Beyond CNNs

- Attention & Transformer
- Vision Transformers

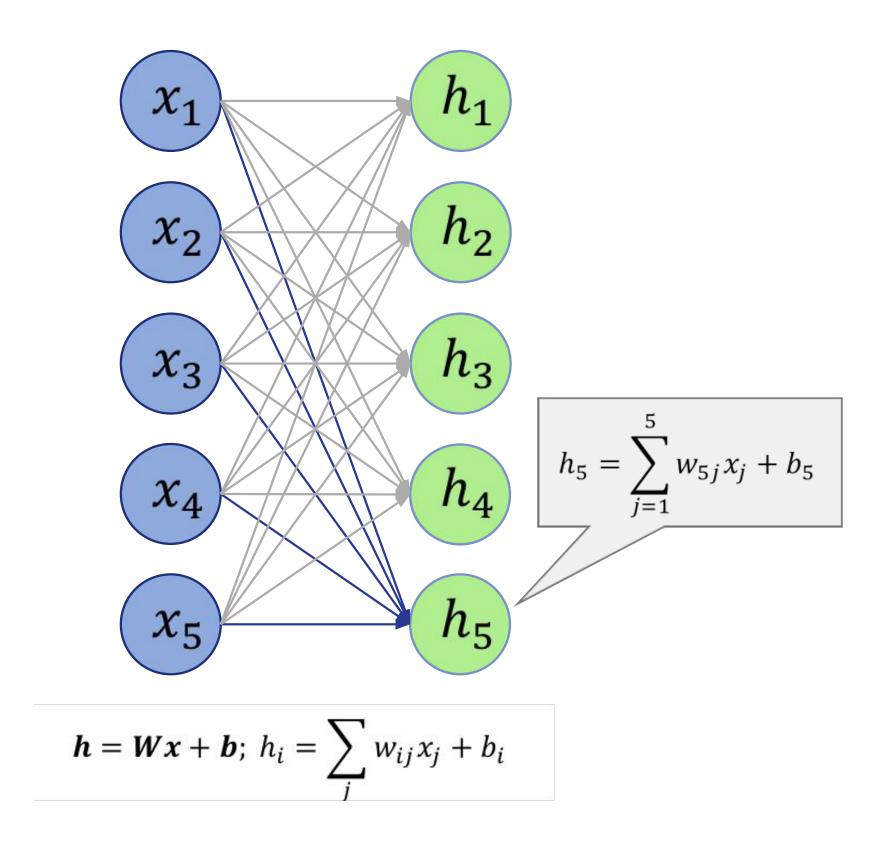
• 5. Beyond classification

Standard layers

- 1. Fully-connected layer
- 2. Convolution layer
- 3. **Pooling** layer (e.g., Max-pooling)
- 4. Non-linearity layer (e.g., ReLU)
- 5. Normalization layer (e.g., BatchNorm)

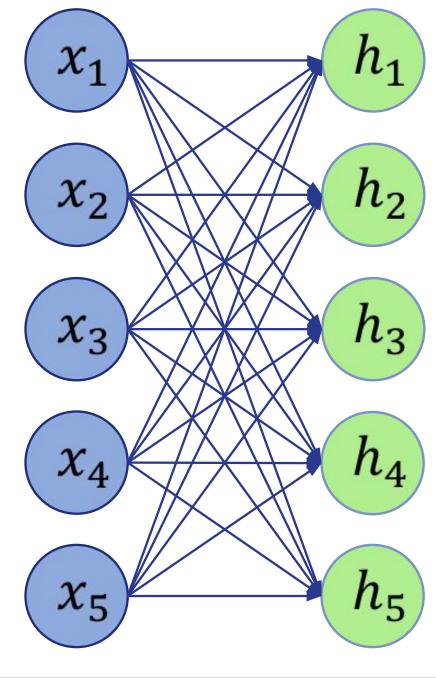


1. Fully-connected layer



Slide credit: Naila Murra#5

2. Convolution layer **Fully-connected** 1D Convolutional $h_1 = \sum_{j=0}^{2} w_j x_{j+1} + b$ h_1 x_1 x_1 h_1 h_2 x_2 x_2 h_3 x_3 x_3 h_4 x_4 x_4 h_5 x_5 x_5



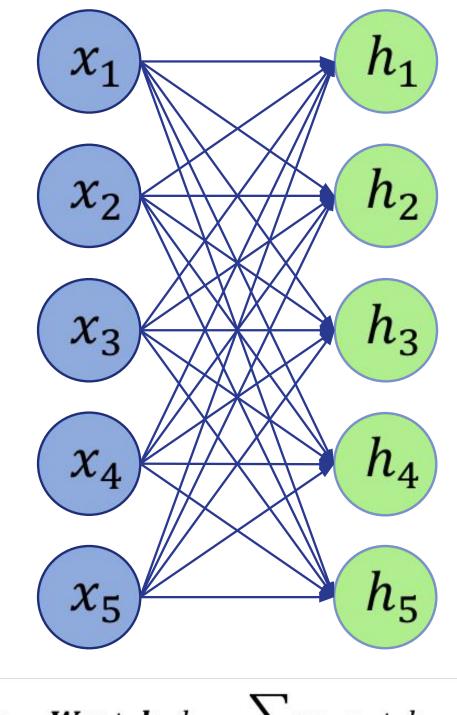
$$\boldsymbol{h} = \boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}; \ h_i = \sum_j w_{ij} x_j + b_i$$

$$h_i = \sum_j w_j x_{j+i} + b$$

- Layer with a special connectivity structure
- Dependencies are local
- Translation invariance

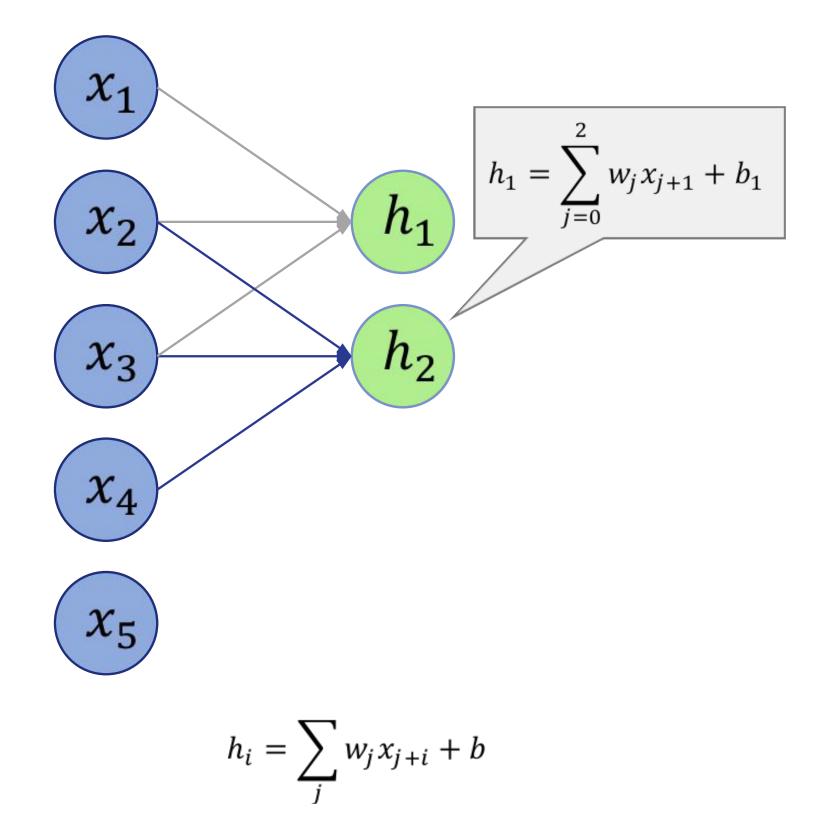
Slide credit: Naila Murraø

Fully-connected



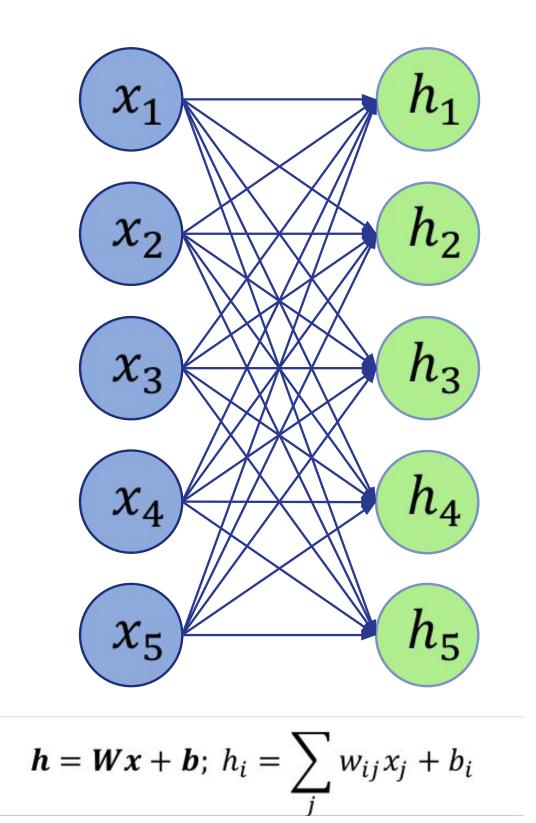
$$\boldsymbol{h} = \boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}; \ h_i = \sum_j w_{ij} x_j + b_i$$

1D Convolutional

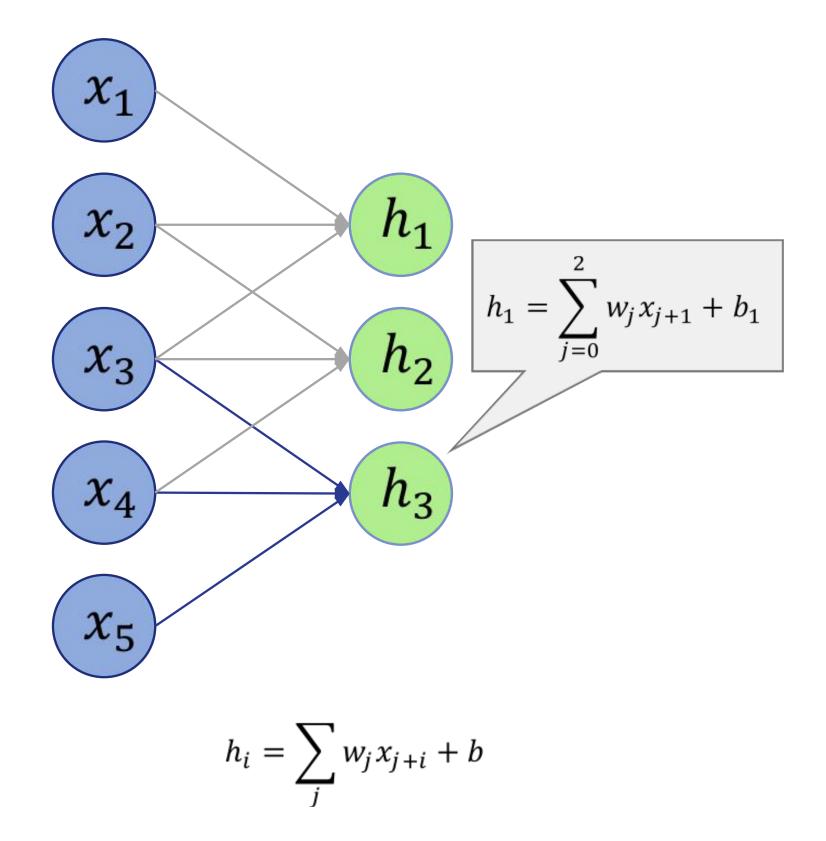


Slide credit: Naila Murra¢7

Fully-connected



1D Convolutional



Slide credit: Naila Murray⁸

2D Convolutions I

		-1			
1	0	0	1	2	
0	0	0	3	0	
0	1	2	1	1	**
1	1	3	0	0	
3	0	0	0	1	

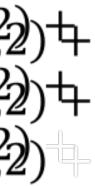


$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

 $= 1_1 \cdot .0_{+} \cdot .0_{+} \cdot .0_{+} \cdot .1_{1} + .0_{+} \cdot .0$ 0.0+0.22+0.0+1 $0.1_1 + 1_1.1_1 + 2_2.0_1$

$(K \times D(A \otimes B) = 1$

Slide credit: Naila Murray?



2D Convolutions

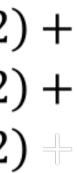
 \overline{K}

1^{*K*} 0 1 0 0 2 0

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$
 Slide credit: Naila M

$$(1 \times 0) + (0 \times 0) + (0 \times 1) + (I(0, 0) \times 2) + I(0, 0) \times 2) + I(0, 0) \times 1 + I(0, 0) \times$$



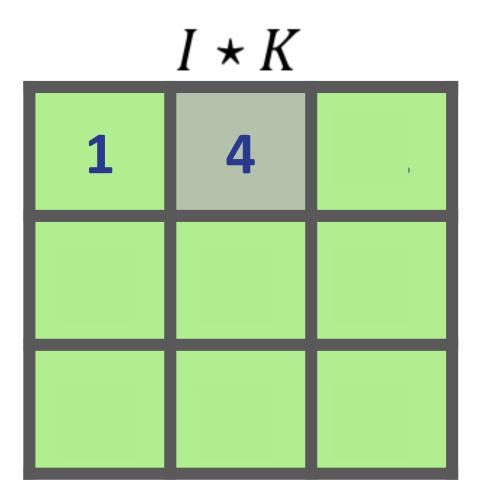
2D Convolutions

	1	0 0	0 0	1 1	2
K	0	0 0	0 2	3 ₀	0
	0	1 1	2 1	1 ₀	1
	1	1	3	0	0
	3	0	0	0	1

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

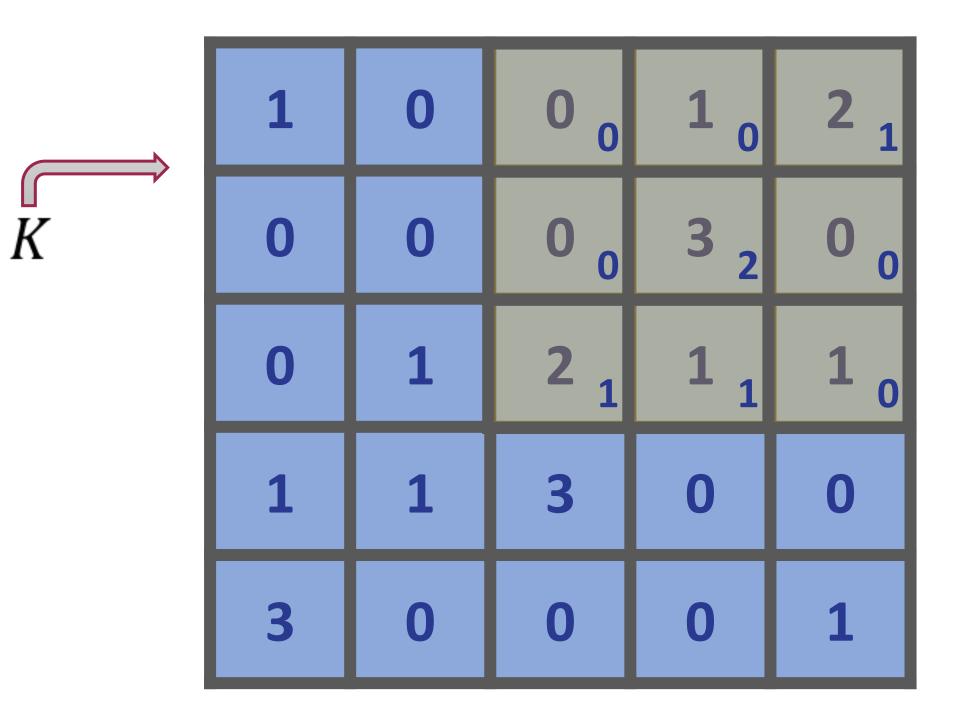
$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n) \qquad \text{Slide credit: Naila N}$$

$(I \star K)(0,0) = I(0,0)K(0,0) + I(0,1)K(0,1) + I(0,2)K(0,2) +$



Aurray1

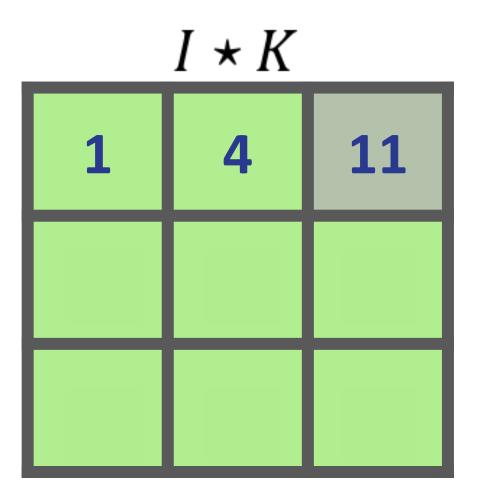
2D Convolutions



$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$
 Slide credit: Naila M

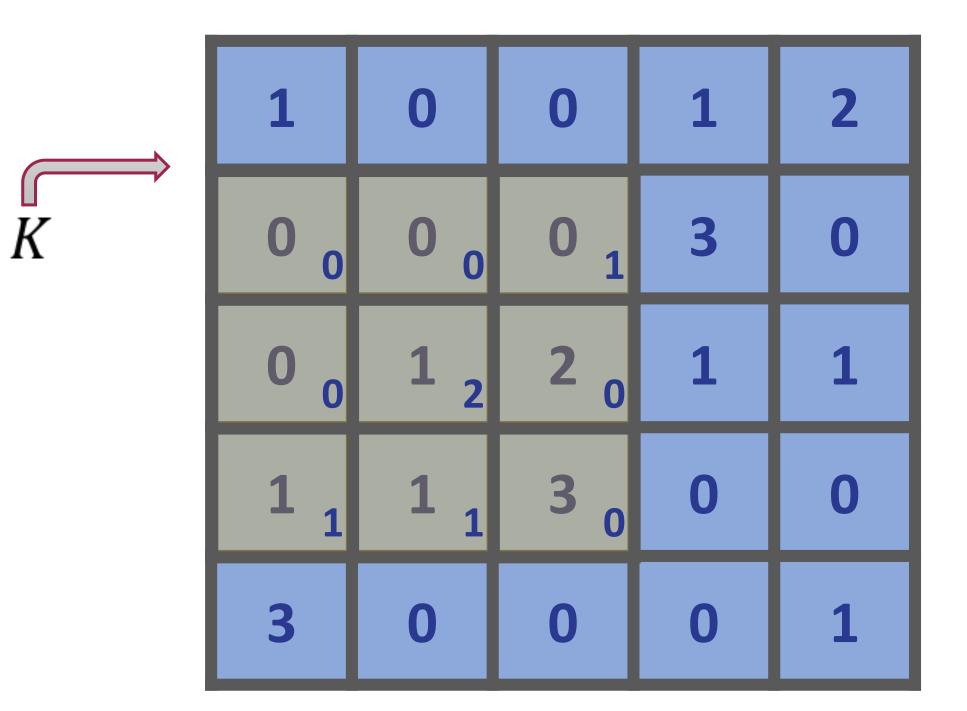
$(I \star K)(0,0) = I(0,0)K(0,0) + I(0,1)K(0,1) + I(0,2)K(0,2) +$



Murra**y**2

2. Convolution layer

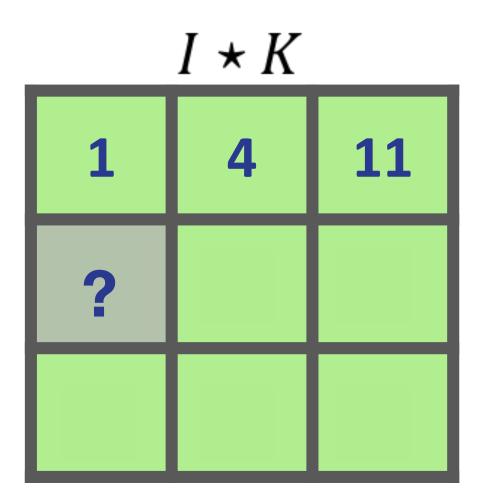
2D Convolutions



$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

$$(I \star K)(i,j) == \sum_{m} \sum_{n} I(m,n)K(i+m,j+n) \qquad \text{Slide credit: Naila } N$$

$(I \star K)(0,0) = I(0,0)K(0,0) + I(0,1)K(0,1) + I(0,2)K(0,2) +$

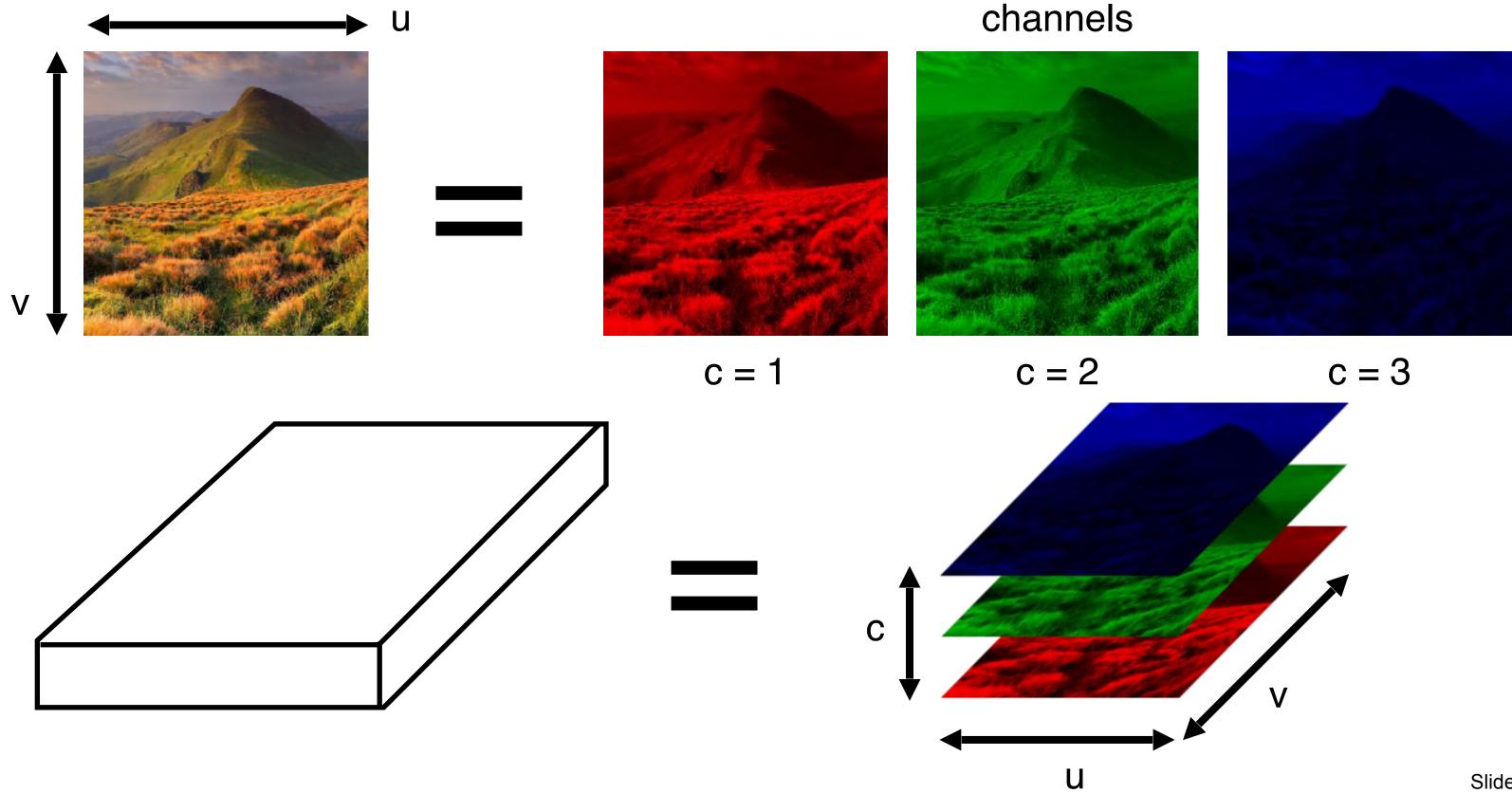


Aurra**7**3

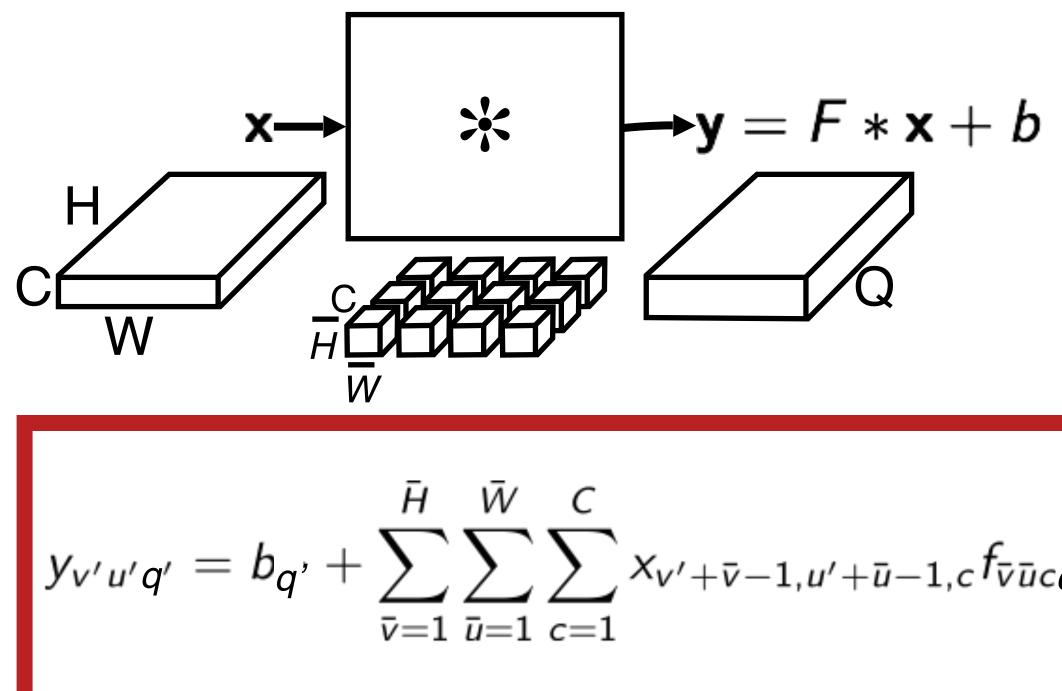
2. Convolution layer

The data manipulated by a CNN has the form of 3D tensors. These are interpreted as discrete vector fields x, assigning a feature vector (x_{uv1} , ..., x_{uvC}) at each spatial location (v,u).

A colour image is a simple example of a vector field with 3D features (RGB):



2. Convolution layer With a bank of 3D filters

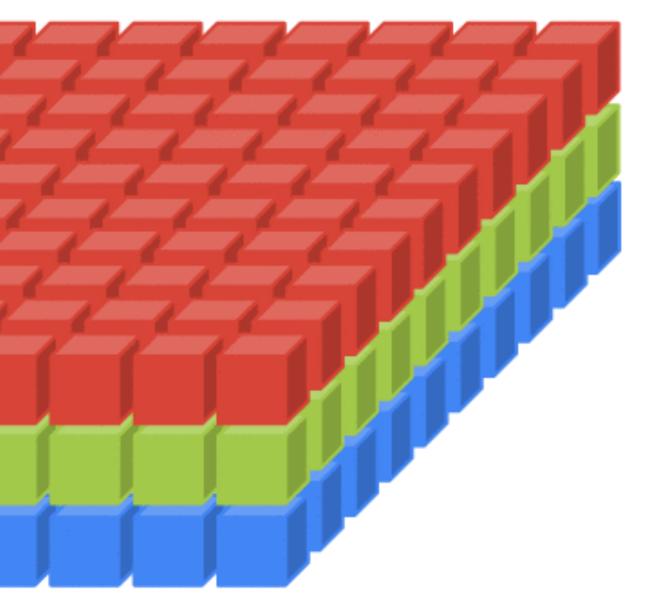


Linear convolution applies a bank of linear filters F to the input tensor x. Input tensor $\mathbf{x} = \mathbf{H} \times \mathbf{W} \times \mathbf{C}$ array Filter bank $F = \overline{H} \times \overline{W} \times C \times Q$ arra • Output tensor $\mathbf{y} = (H - \overline{H} + 1) \times (W$

$$\sum_{v=1}^{W} \sum_{c=1}^{C} x_{v'+\bar{v}-1,u'+\bar{u}-1,c} f_{\bar{v}\bar{u}cq'}$$

$$-\overline{W} + 1) \times Q$$
 array

2. Convolution layer

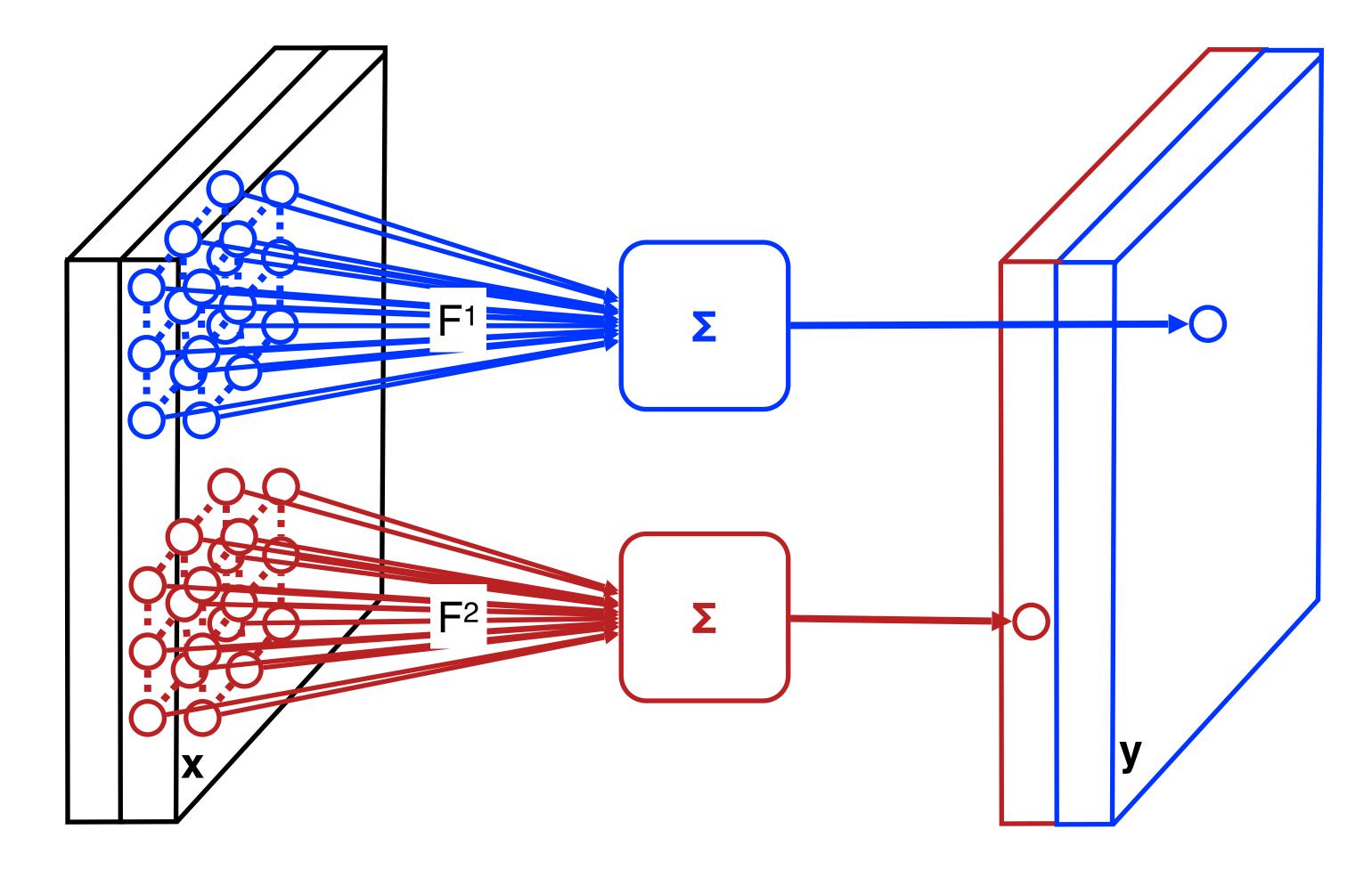


W[4, 4, 3]

2. Convolution layer As a neural network

input features

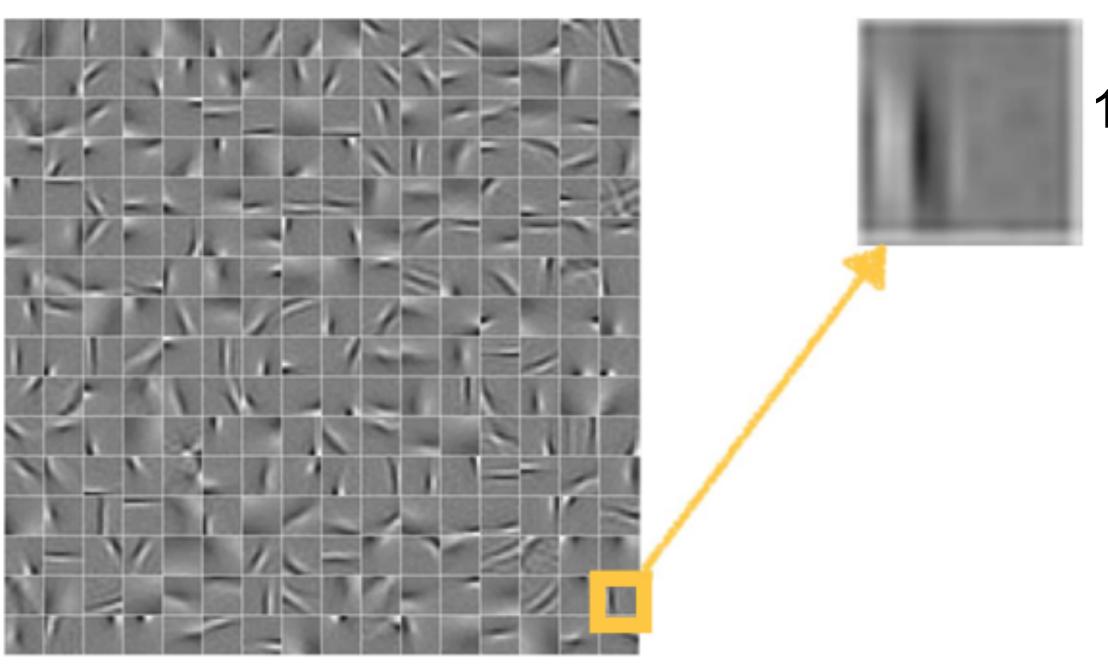
a bank of 2 filters



2-dimensional output features

Filter bank example

- A bank of 256 filters (learned from data)
- Each filter has 1 channel (it applies to a grayscale image) •
- Each filter is 16x16 pixels



16 pixels

16 pixels

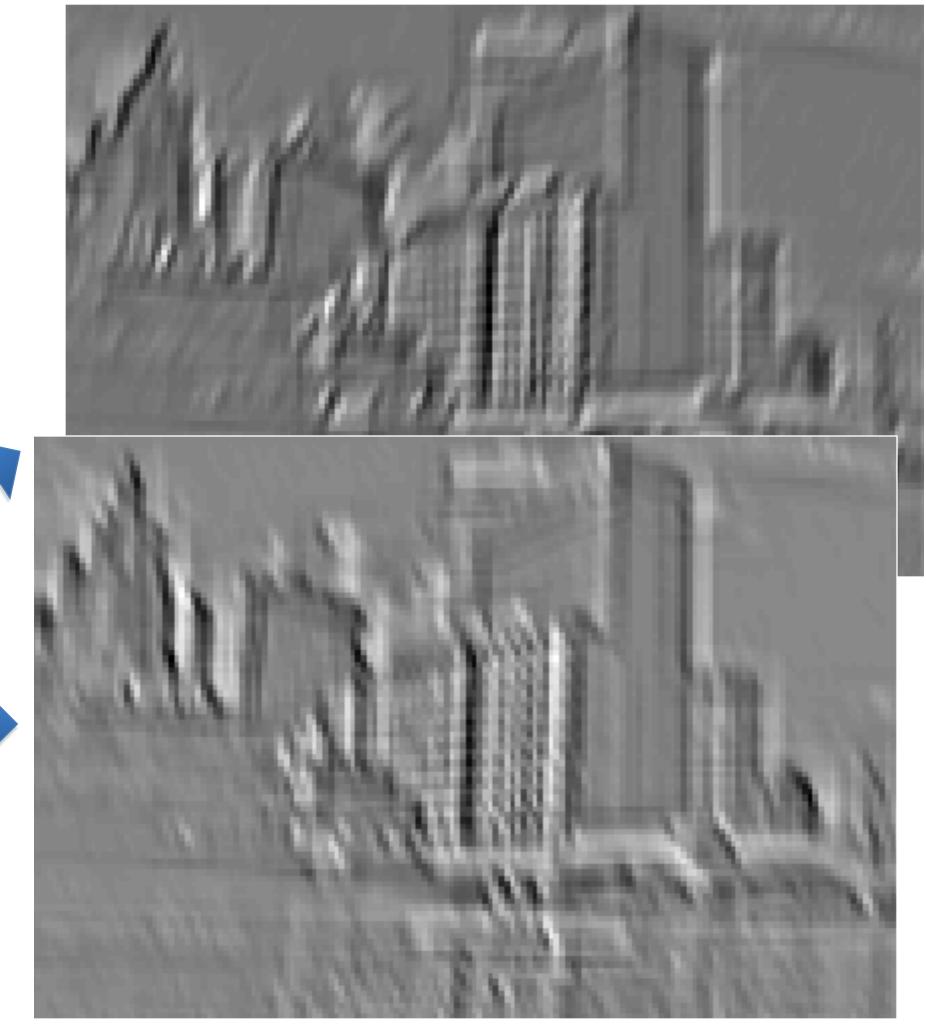
Slide: A. Zisserman

Filtering

Each filter generates a "feature map"

Maximum response when filter matches signal

Input



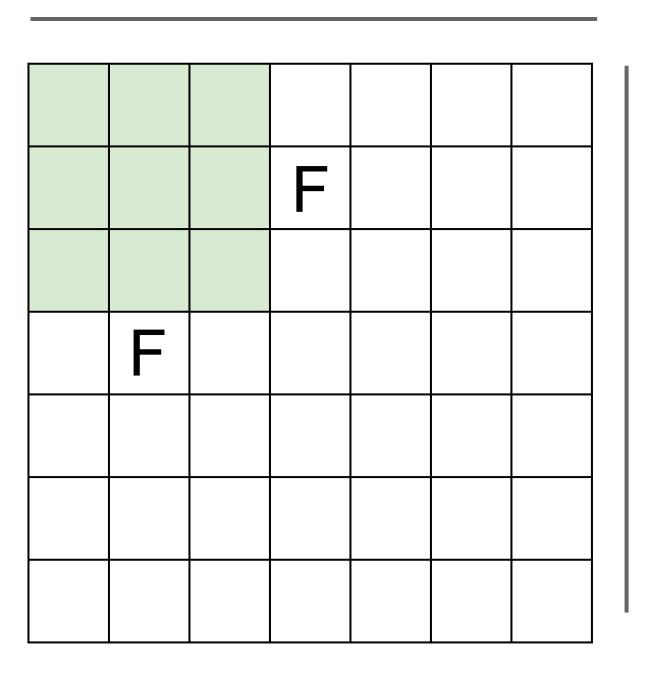
Feature Map

Slide: R. Fergus / S. Lazebnik

Convolution details

Ν

What is the output size?



Ν

Output size: (N - F) / stride + 1

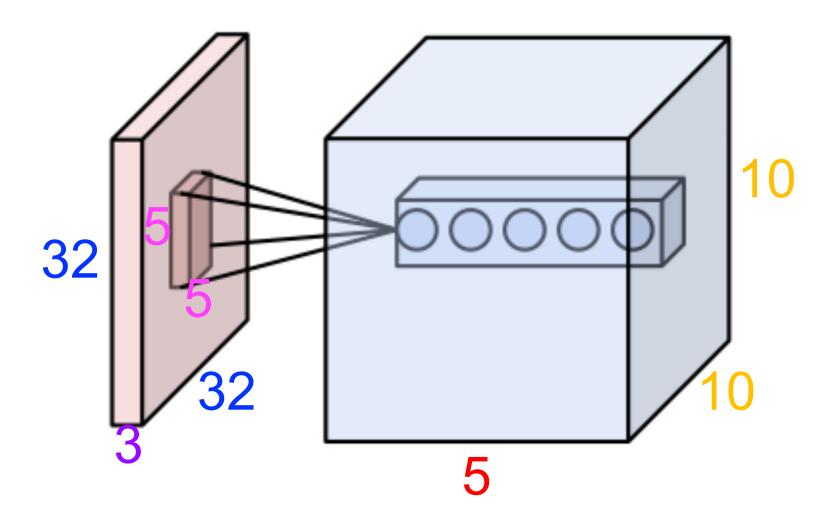
e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = ... :$

Slide: A. Karpathy / L. Fei Fei

Example: What is the output volume?

Input volume: 32x32x3 Receptive fields: 5x5, stride 3 Number of neurons: 5



Output volume: (32 - 5) / 3 + 1 = 10, so: 10x10x5

Slide: A. Karpathy / L. Fei Fei

Zero padding (in each channel)

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7 neuron with receptive field 3x3, stride 1 pad with 1 pixel border => what is the output?

7x7 => preserved size!

in general, common to see stride 1, size F, and zero-padding with (F-1)/2. (Will preserve input size spatially)

What is the number of parameters?

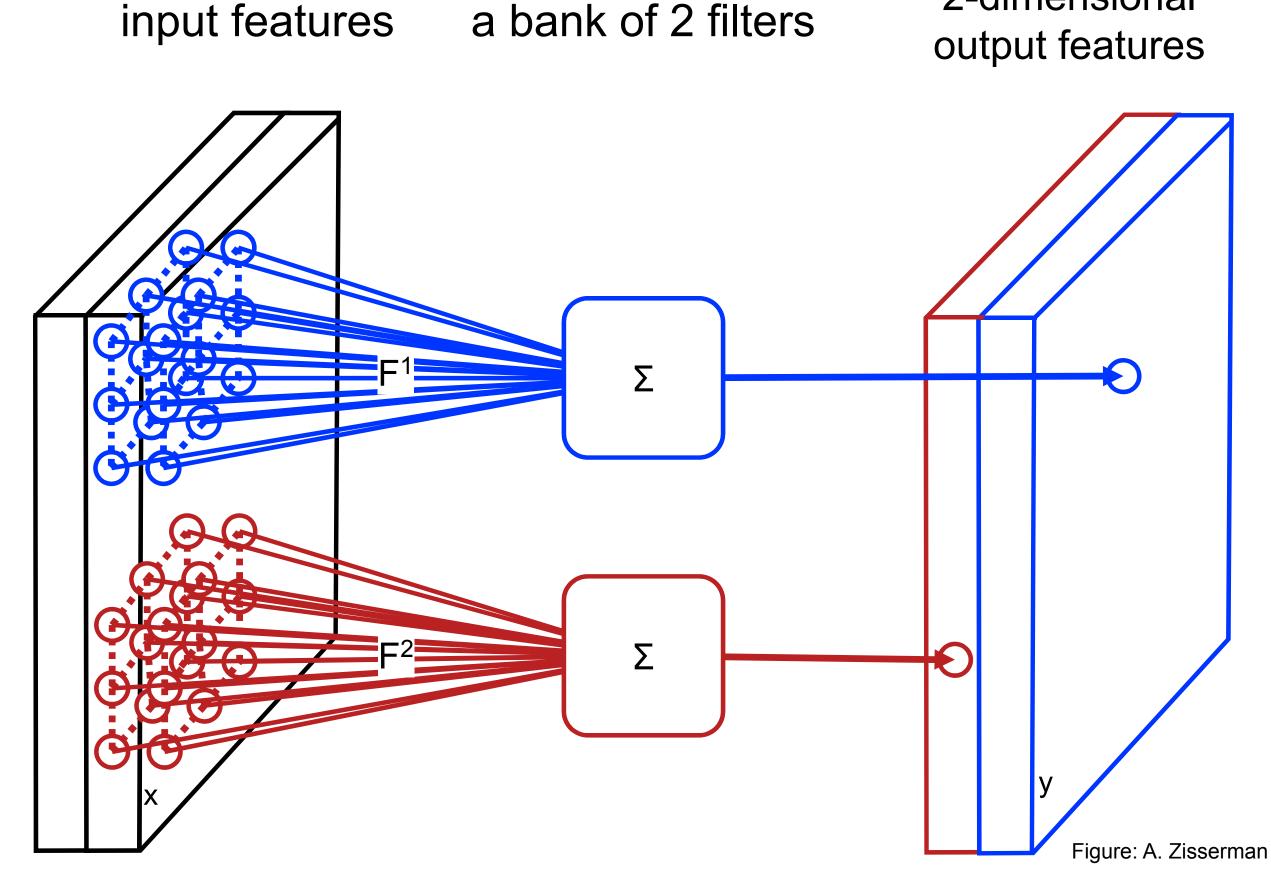
- Consider an input gray-scale image of 1000x1000 pixels.
- What is the number of parameters of a filter bank of 100 7x7 filters?
- How does it compare to a fully connected layer that considers the entire input image? ullet

input features

Convolution: 100x 7x7 = 4900 parameters

VS.

Fully connected layer: 1000x1000 X 1000x1000 = 1B parameters.



2-dimensional

3. Spatial Max Pooling

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

Χ

max pool with 2x2 filters and stride 2

6	8
3	4

Slide credit: Andrej Karpathy & Fei-Fei &

3. Spatial Max Pooling

Dimensions of pooling outputs

Input volume of size [W1 x H1 x D1] Pooling unit receptive fields F x F and applying them at strides of S gives

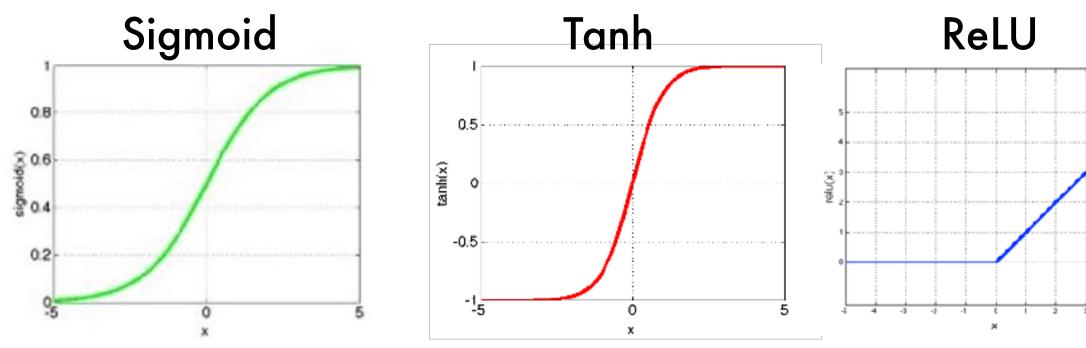
Output volume: [W2, H2, D1] W2 = (W1-F)/S+1, H2 = (H1-F)/S+1

Note: pooling happens independently in each channel/slice

Slide: A. Karpathy / L. Fei Fei

4. Non-linearity

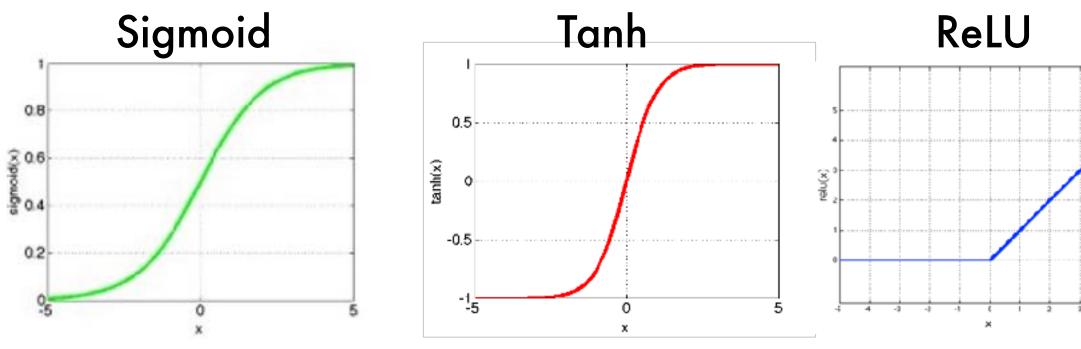
• The non-linear activation functions are essential. Why?



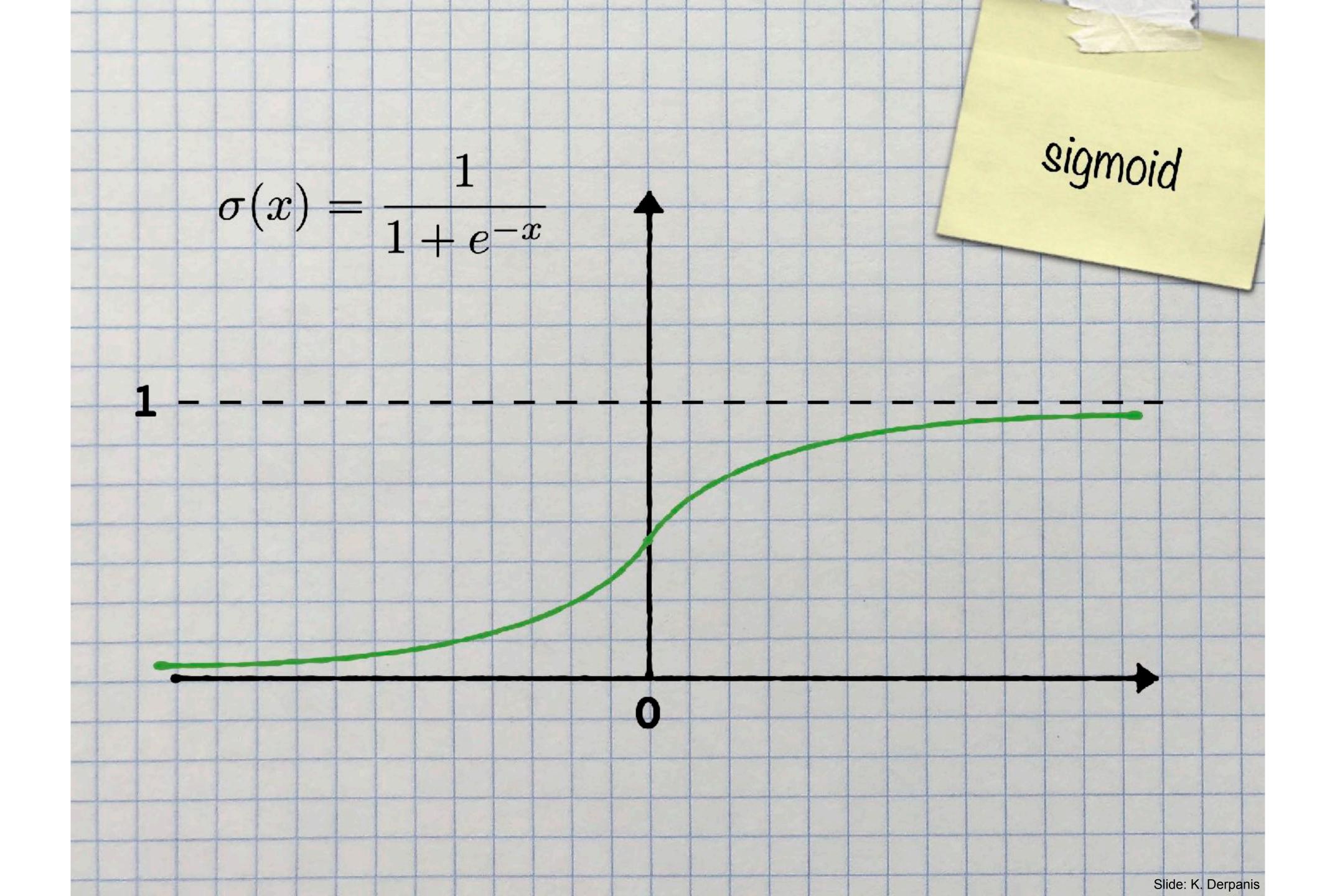
			- 1
			4
		-	1
		_	
	-		_
	<u> </u>		1
			- 1
			- 1
-			
F			_
			п
			4
			1
-			
			4
			1
			- 1
	- -		-1
			- 1
			- 1
1			- 1
			- 1
			- 1
	-		_

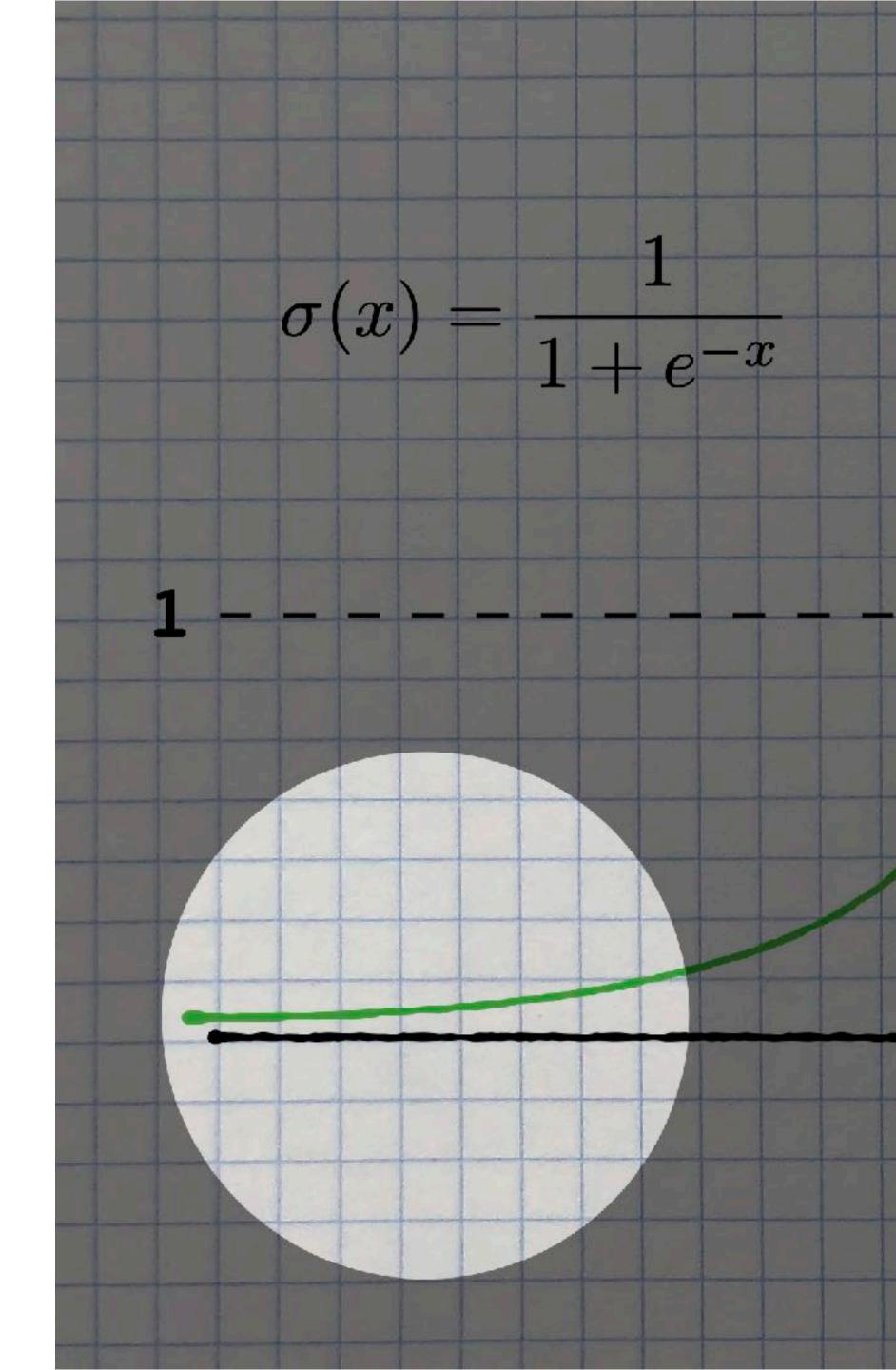
4. Non-linearity Why?

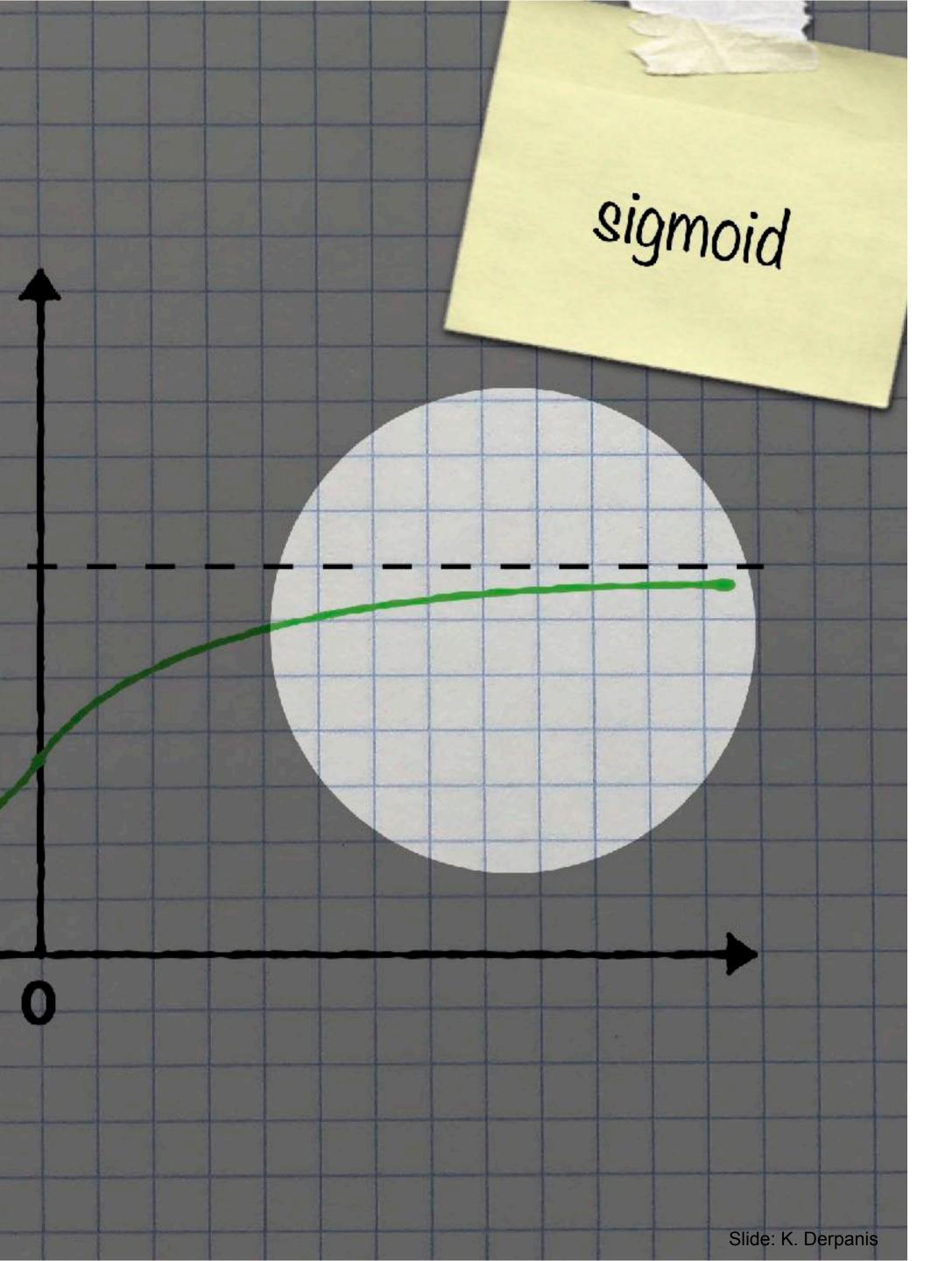
- Non-linearities allow us to approximate arbitrarily complex functions.
- Universal approximation theorem: A two-layer multilayer perceptron (MLP) with increasing continuous and bounded non-linearity can approximate any continuous function on a compact given enough hidden neurons. [Cybenko 1989]
- Linear activation functions produce linear decisions no matter what the model size, i.e., stacking multiple linear functions can be expressed with a single linear function.

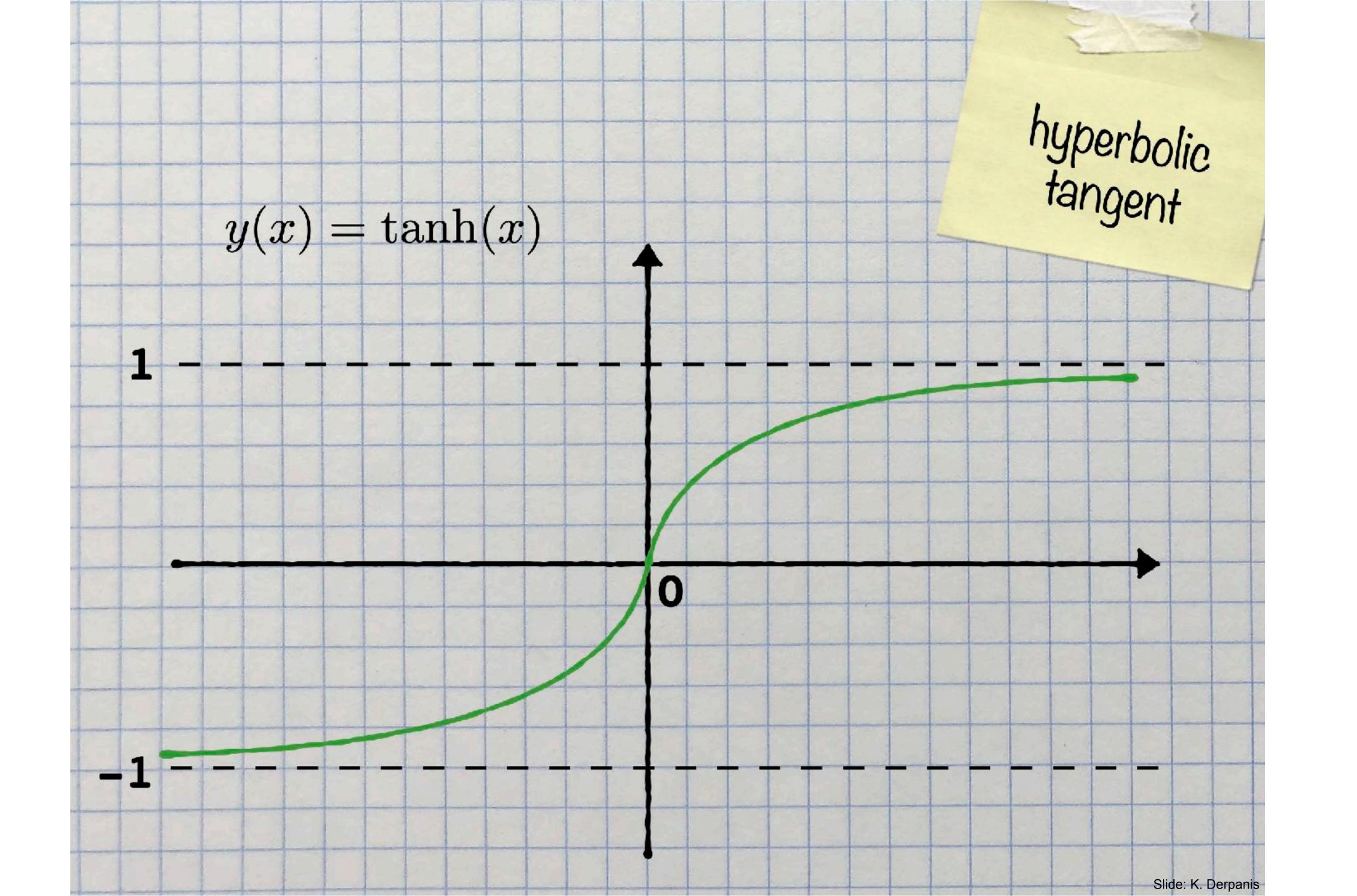


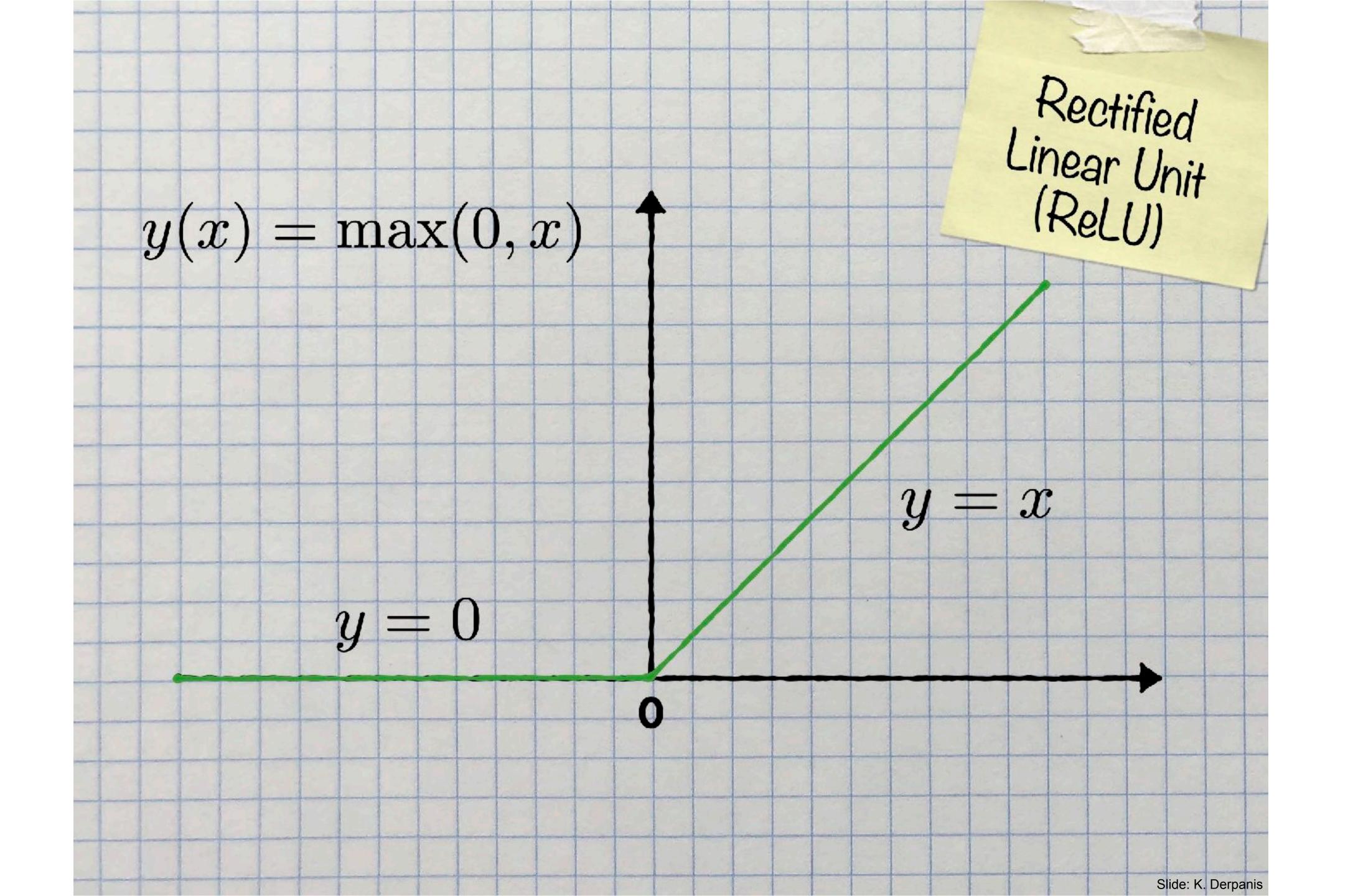
1	
1	
	<i>_</i>
	· · · · · · ·
-	
/	
1	
1	4 5







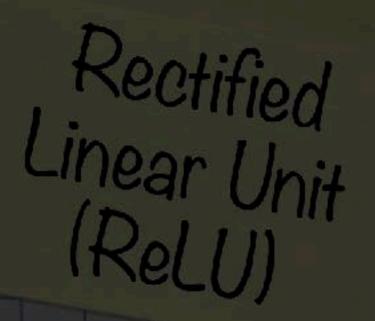




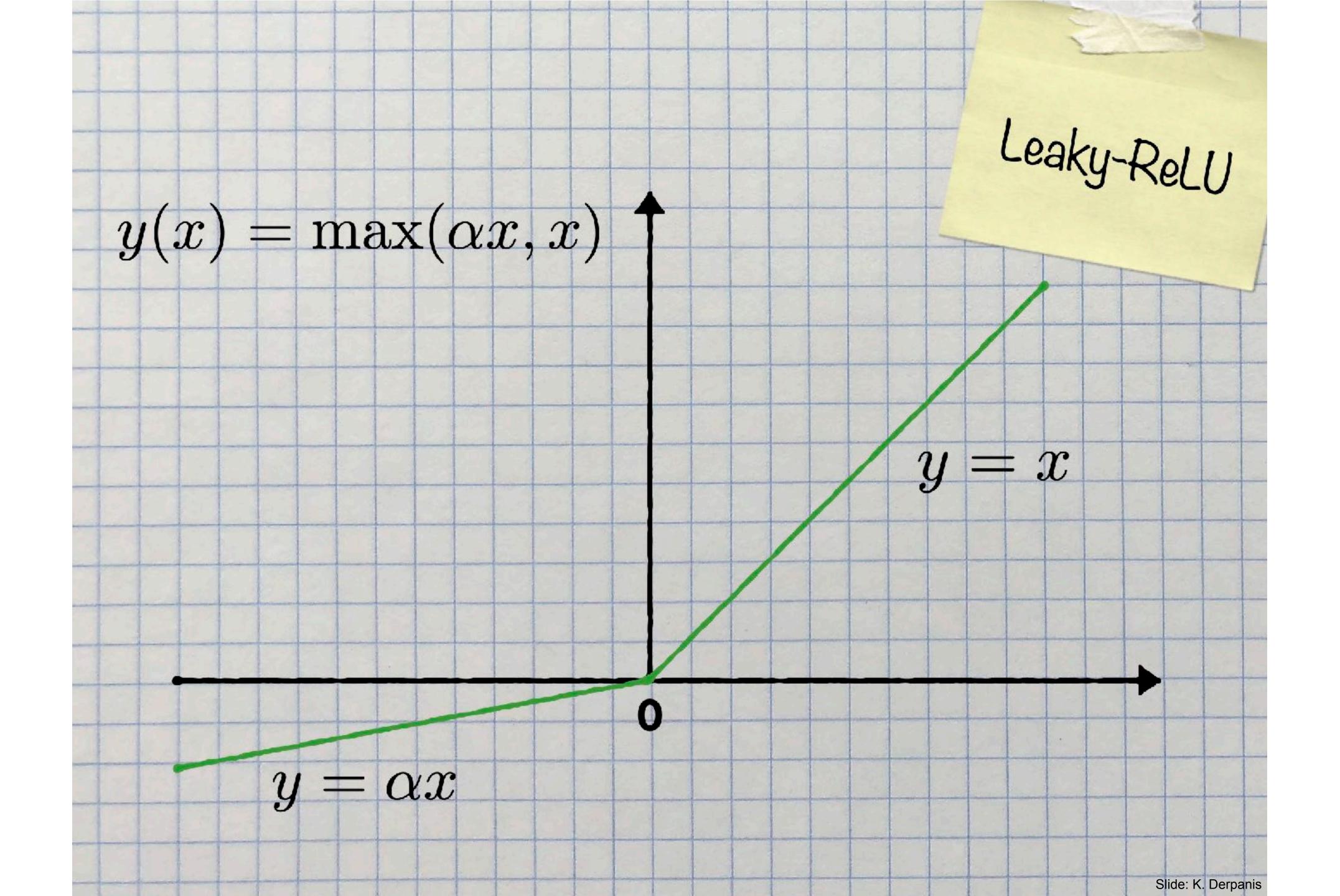
$y(x) = \max(0, x)$

U = 0

What is the derivative of the ReLU? y = x

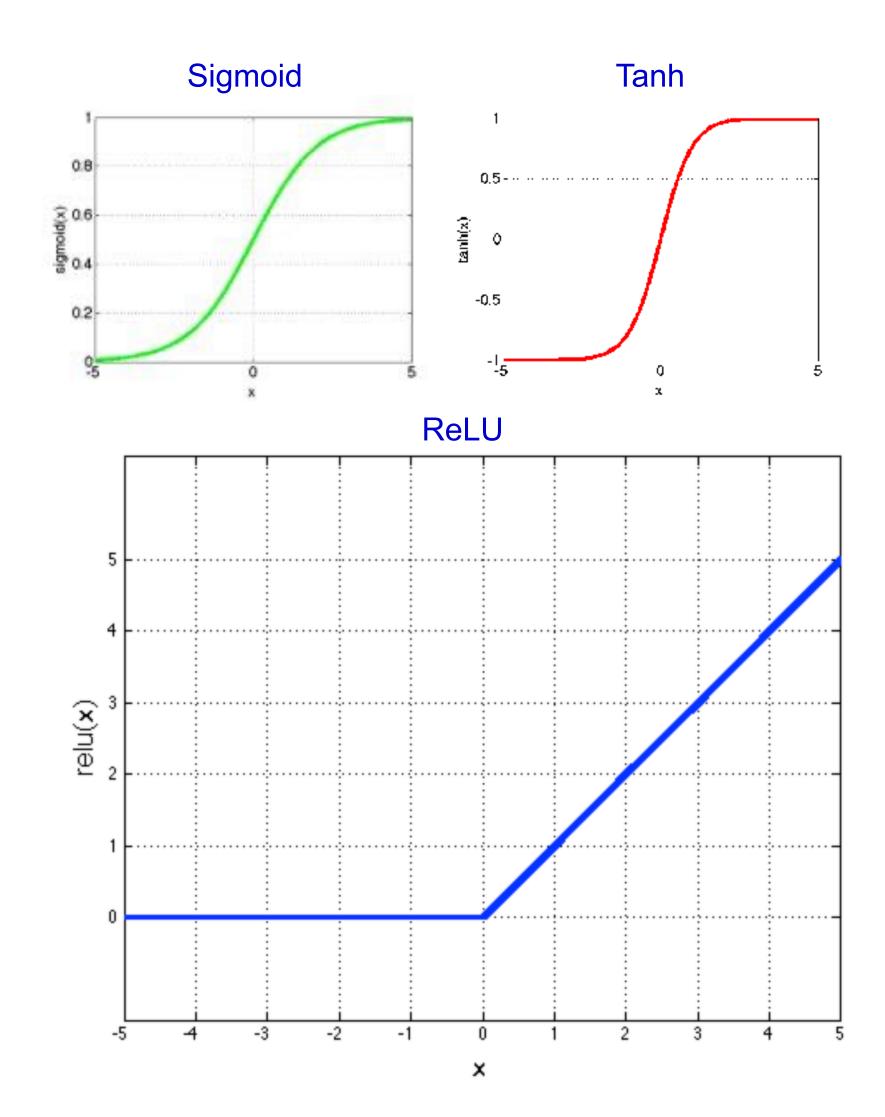


Slide: K. Derpanis



4. Non-Linearity

- Per-element (independent)
- Options:
 - Sigmoid: 1/(1+exp(-x))
 - Tanh
 - Rectified linear unit (ReLU)
 - Simplifies backpropagation
 - Makes learning faster
 - Avoids saturation issues
 - Variants of ReLU, e.g. Leaky ReLU



Slide: R. Fergus / S. Lazebnik

5. Normalization

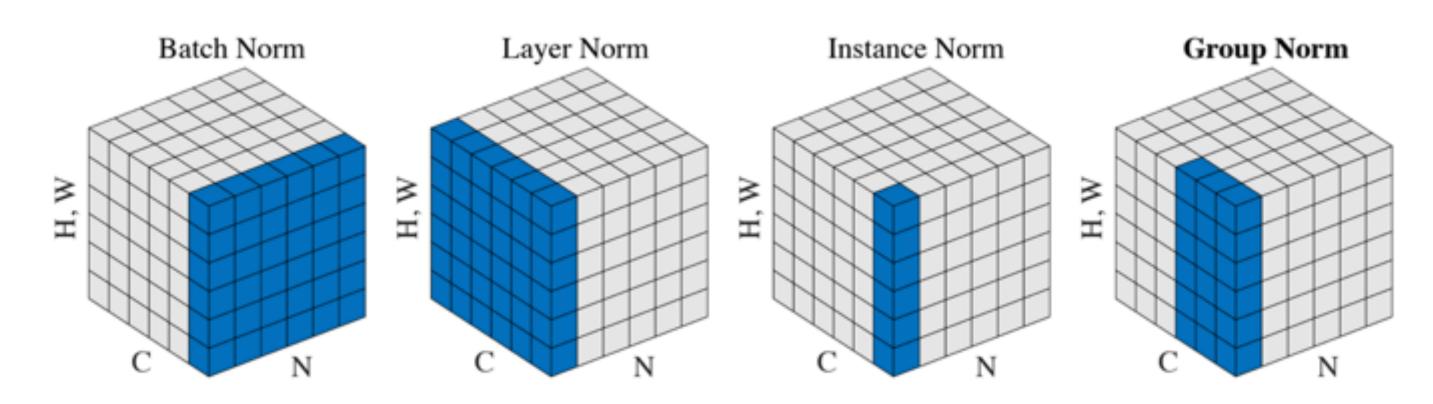


Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C as the channel axis, and (H, W)as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

[Wu & He, "Group normalization", ECCV 2018]

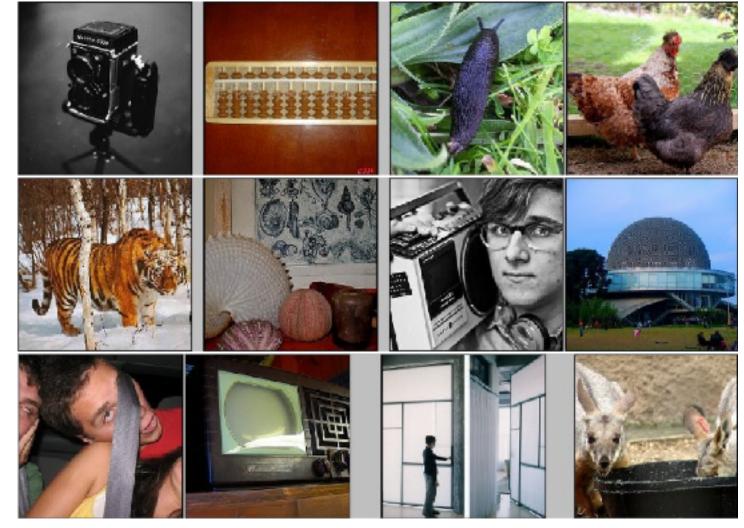
CNN Successes

- Handwritten text/digits
 - MNIST (0.17% error [Ciresan et al. 2011])
 - Arabic & Chinese [Ciresan et al. 2012]
- Simpler recognition benchmarks •
 - CIFAR-10 (9.3% error [Wan et al. 2013])
 - Traffic sign recognition (0.56% error vs 1.16% for humans [Ciresan et al. 2011])
- But until recently, less good at more complex datasets •
 - Caltech-101/256 (few training examples)

Slide: R. Fergus / S. Lazebnik

ImageNet Dataset

IM A GENET



[Deng et al. CVPR 2009]

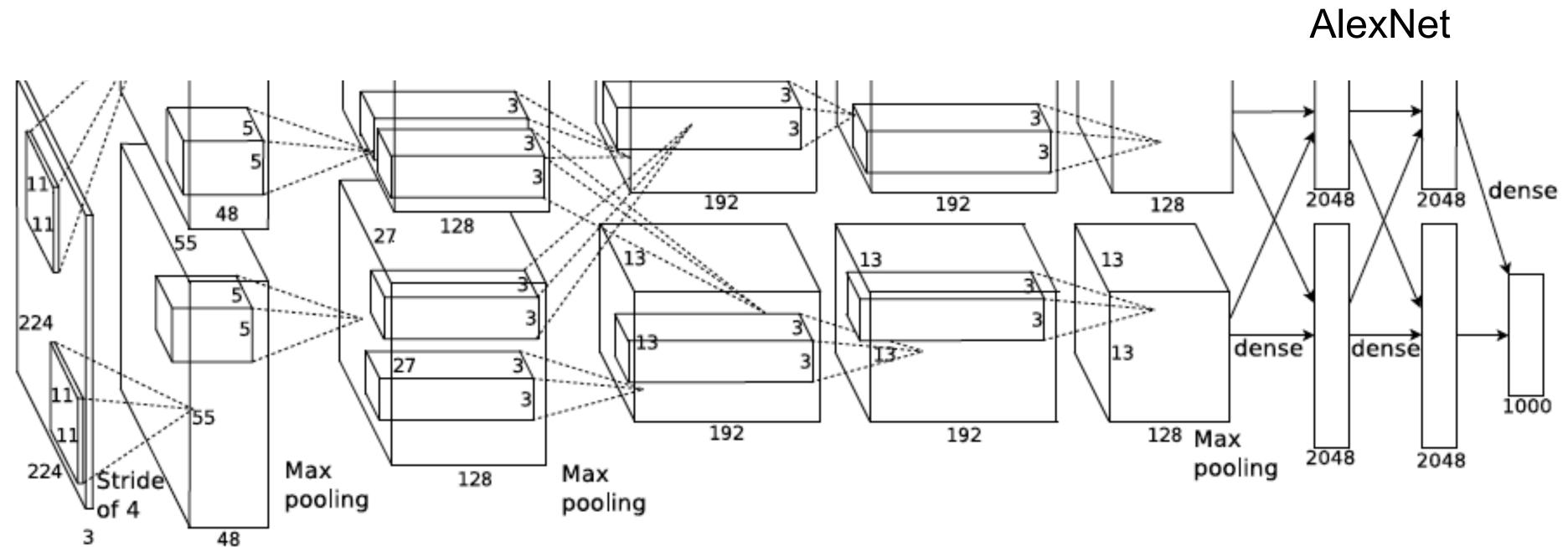
- ~14 million labeled images, 20k classes
 - Challenge: 1.2 million training images, 1000 classes
 - Images gathered from Internet

Human labels via Amazon Mechanical Turk

ImageNet Challenge 2012 (ILSVRC)

• Similar framework to LeCun'98 but:

- **Bigger model** (7 hidden layers, 60,000,000 params) •
- More data (10⁶ vs. 10³ images) •
- **GPU** implementation (50x speedup over CPU)
 - Trained on two GPUs for a week
- Better regularization for training (DropOut)

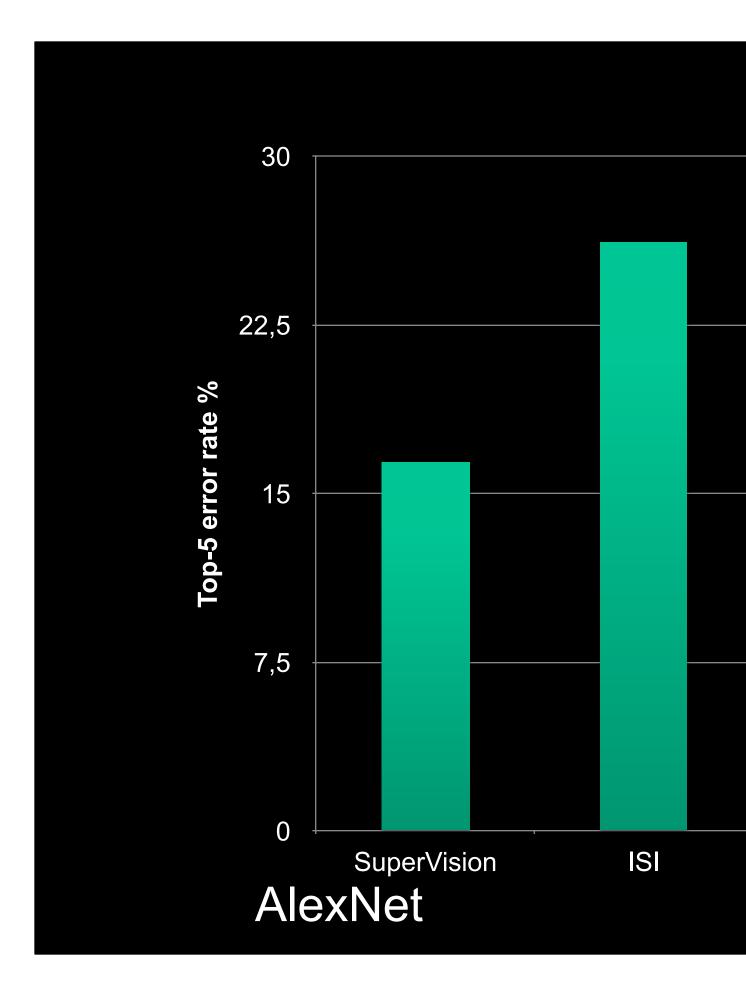


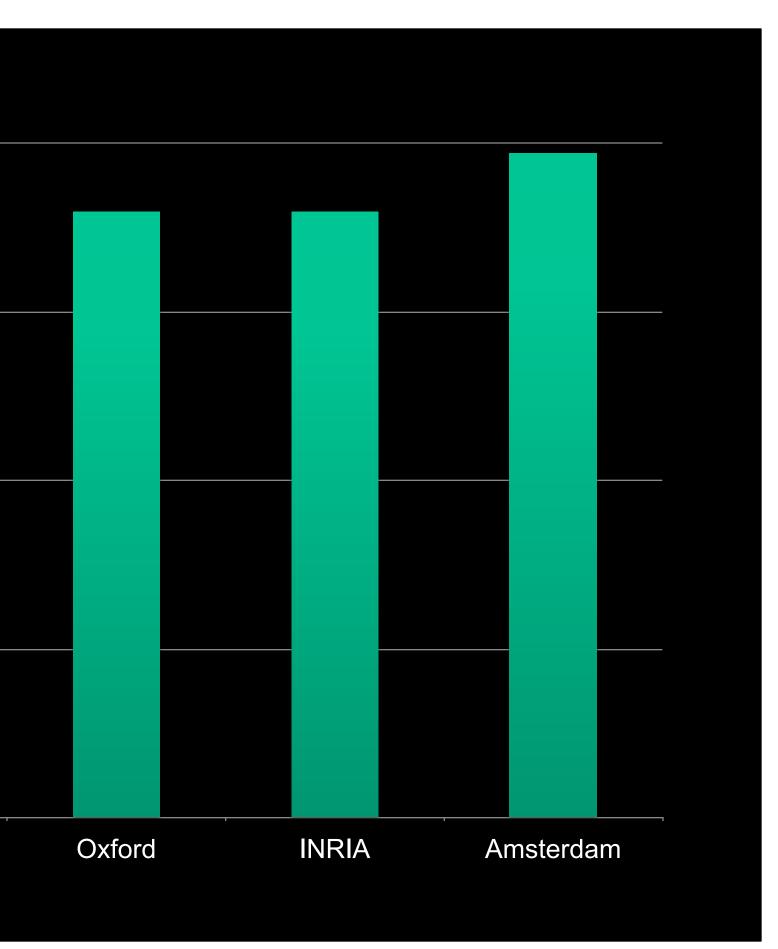
Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

Slide: R. Fergus / S. Lazebnik

ImageNet Challenge 2012 (ILSVRC)

AlexNet – 16.4% error (top-5) Next best (non-convnet) – 26.2% error





Slide: R. Fergus / S. Lazebnik

Agenda

- 1. Recap: Bag of Visual Words, Analogy with NNs
- 2. Neural networks (NNs) for computer vision:
 - Applications
 - A brief history: from perceptron to MLPs to CNNs

• 3. Convolutional neural networks (CNNs)

- Standard layers
- Recap: Training NNs
- Visualizing CNNs
- Pretraining & finetuning NNs
- Typical CNN architectures

4. Beyond CNNs

- Attention & Transformer
- Vision Transformers

• 5. Beyond classification

Gradient descent

The objective function is an average over all N training data points:

$$L(\theta) = \frac{1}{N} \sum_{i} l(\theta, I)$$

Performing a gradient descent is iterating. ullet

$$\theta_{t+1} \to \theta_t - \frac{\alpha_t}{N} \sum_i \frac{\partial \ell(q_i)}{\partial q_i}$$

- Need to choose the learning rate policy α_t •
- If the function is not convex, get stuck in a local minimum •
- Each step can be expensive to compute if the dataset is large \bullet

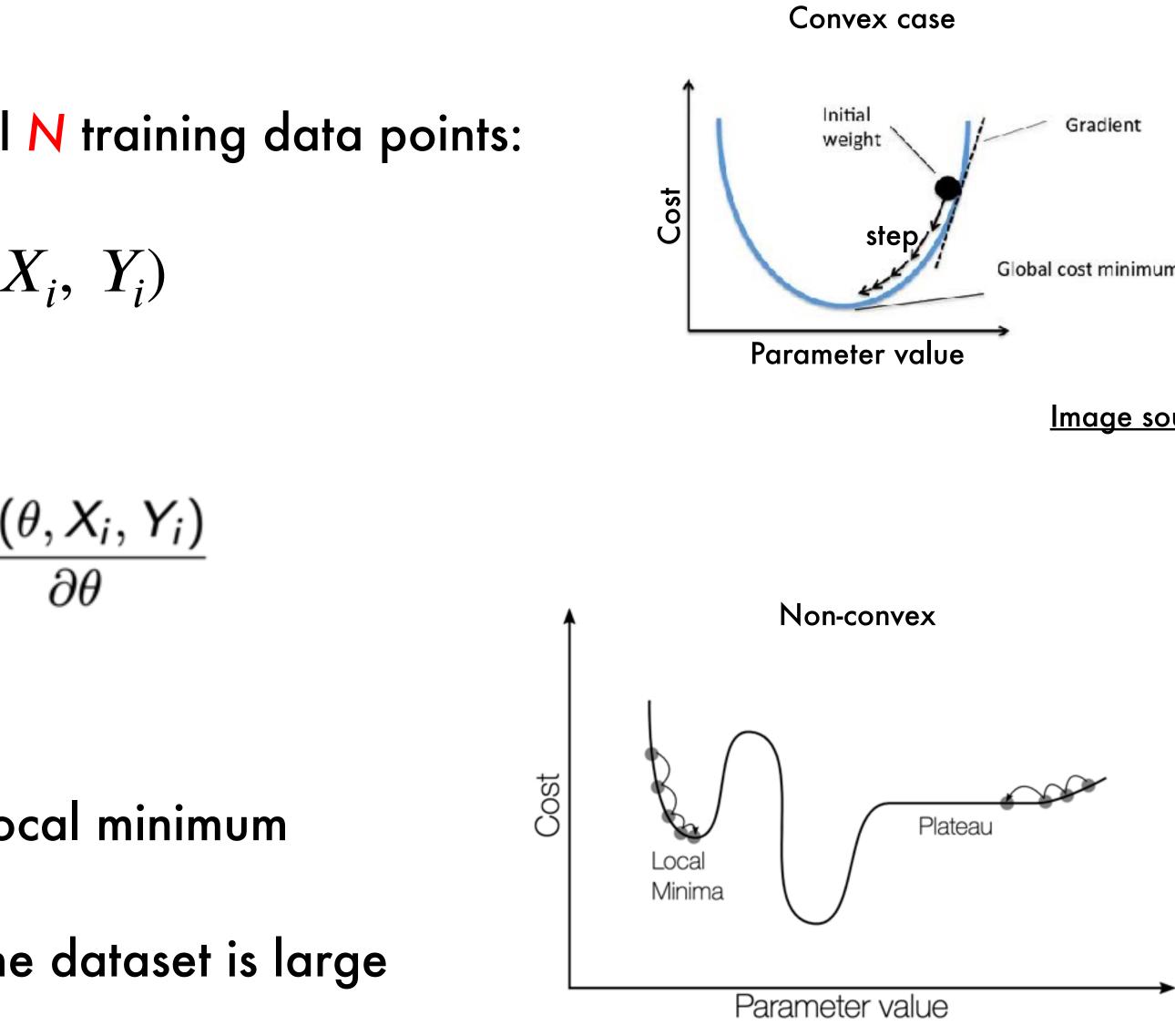


Image source

Image source

Stochastic gradient descent

Instead of computing the gradient, compute an approximation:

- Can take advantage of large datasets, in particular infinite* datasets! •

Introduce stochasticity, which might be good to get out of local minima in the non-convex case

Stochastic gradient descent with minibatch

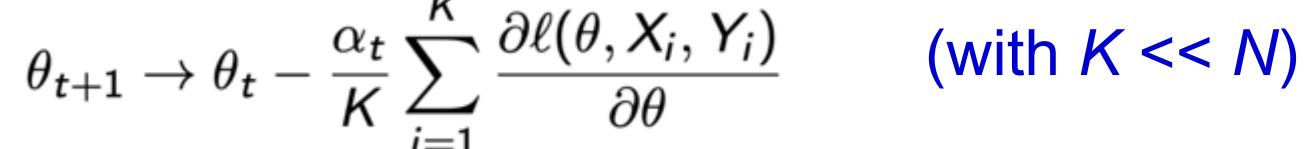
Some variance is good, too much can be bad

$$\theta_{t+1} \to \theta_t - \frac{\alpha_t}{N} \sum_i \frac{\partial \ell(\theta, \theta_i)}{\int_{t}} \frac{\partial \ell(\theta, \theta_i)}{\partial t}$$

$$\theta_{t+1} \to \theta_t - \frac{\alpha_t}{N} \sum_i \frac{\partial \ell(\theta, \theta_i)}{\partial t}$$

between 1 and 256, depending on the task and network)

 $\frac{\theta, X_i, Y_i}{\partial \theta}$



In practice, using batches as large as possible so that the network fits in the GPU memory (e.g.,

103

Summary: Stochastic Gradient Descent (SGD)

The objective function is an average over all N training data points:

$$\theta_{t+1} \to \theta_t - \frac{\alpha_t}{N} \sum_i \frac{\partial \ell(\theta_i)}{\partial t}$$

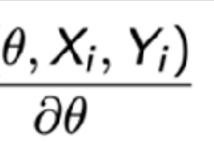
Key idea: approximate the gradient with 1 random datapoint:

$$\theta_{t+1} \to \theta_t - \alpha_t \frac{\partial \ell(\theta, X^{(i_t)})}{\partial \theta_t}$$

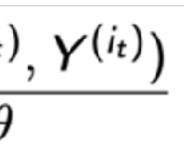
Pick K random points instead of picking 1 (with $K \ll N$):

$$\theta_{t+1} \to \theta_t - \frac{\alpha_t}{\kappa} \sum_{i=1}^{\kappa} \frac{\partial \ell(\theta_i)}{\partial \ell(\theta_i)}$$

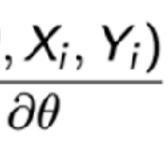
Slide credit: Andrea Vedaldi



(gradient descent)



(stochastic gradient descent)



(stochastic gradient descent with mini-batches) => commonly used

104

Quiz: 5 minutes

Let's consider a training dataset of N samples. How many iterations (i.e., parameter updates) are there in one training epoch?

- a. Gradient descent: _____
- b. Stochastic gradient descent: ____
- c. Stochastic gradient descent with minibatch of size K: _____

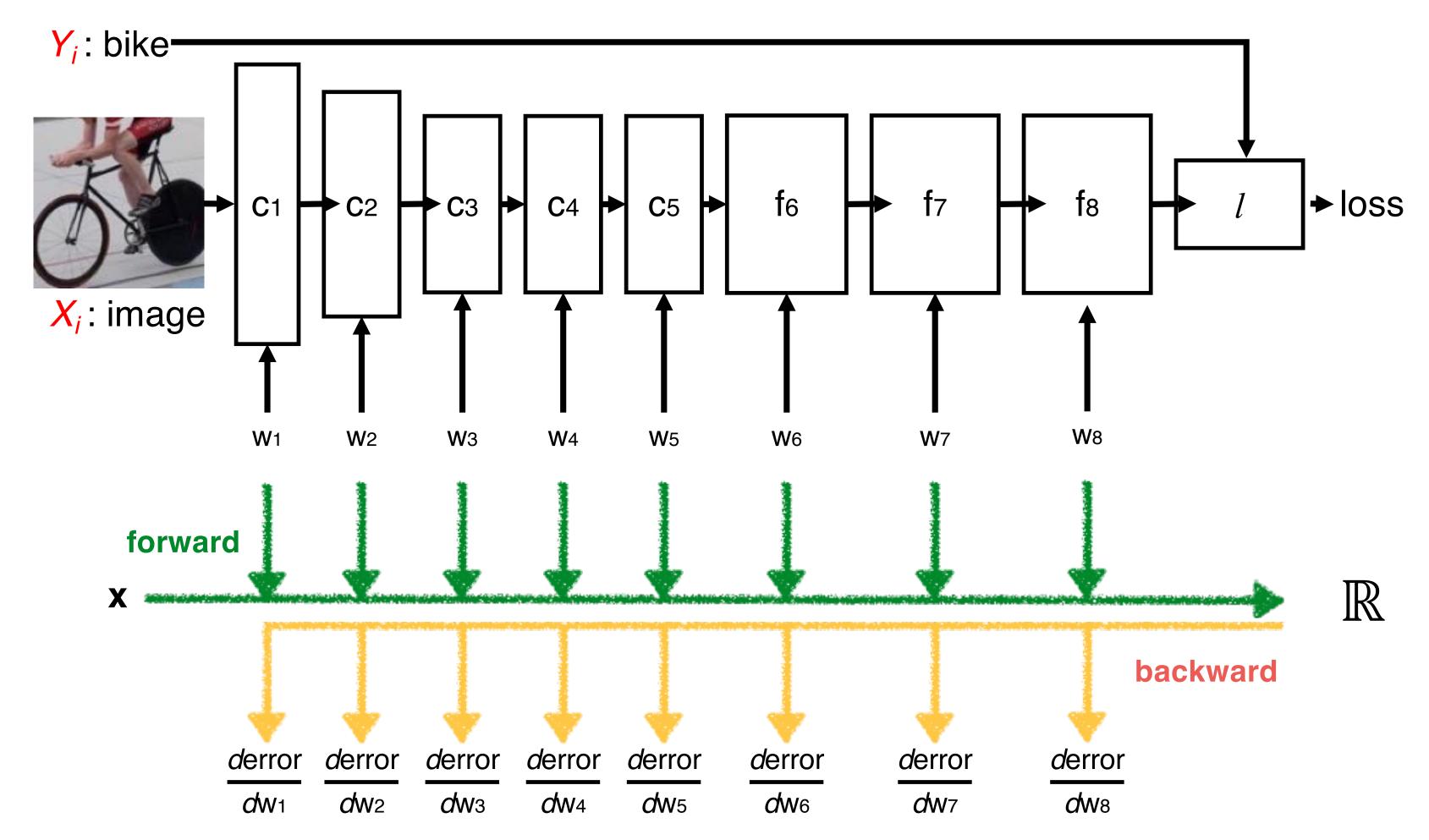
b LEJZ.₽₩.₽.₽₩``` slido.com

#2871 233

#2549 484

Backpropagation

Computing the gradients: While in theory, we just have the gradients of composite functions and for that apply chain rule, there is an efficient way to do it, called backpropagation.



[Derivatives, Backpropagation, and Vectorization] <u>http://cs231n.stanford.edu/handouts/derivatives.pdf</u> 106 Slide credit: Andrea Vedaldi

Training a neural network

Given a (X, Y) pair:

- **Evaluation**: Compute loss function, i.e., $\ell(\hat{Y}, Y)$
- Forward pass: apply network to X to produce an output \hat{Y}
- Backward pass: compute the gradient with backprogation
- **Update:** Take a step in the direction of the gradient

Loss Function

- Regression:
 - L1 (absolute error) / L2 (squared error)
- Classification:
 - Cross-entropy loss

Loss Function: Regression

Estimating a continuous value

- L1 (absolute error) $L = \left| f(X_i, \theta) - Y_i \right|$
- L2 (squared error)

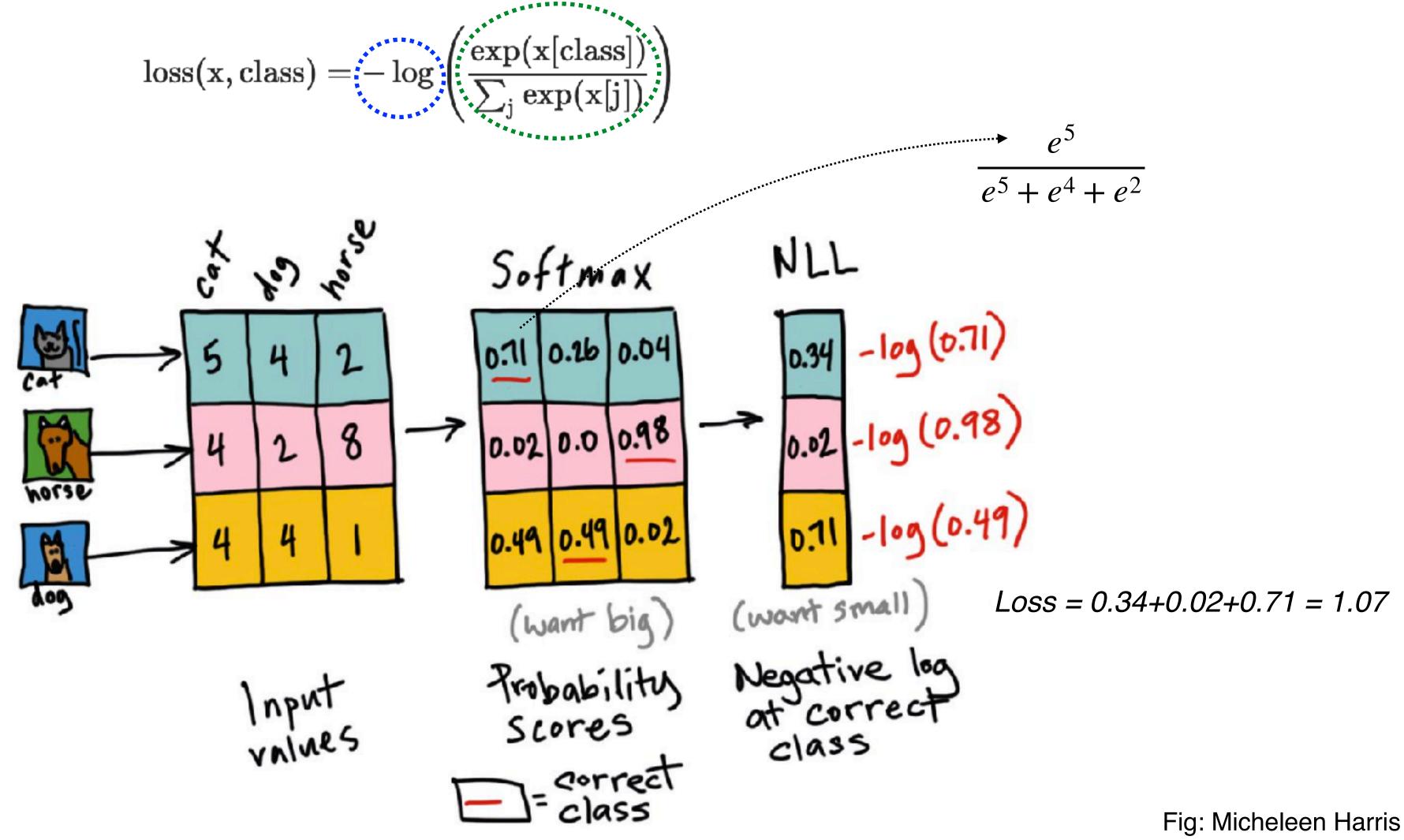
$$L = \left(f(X_i, \theta) - Y_i \right)^2$$

Prediction: output of the network f with parameters hetagiven input X_i

Ground truth: (label, annotation)

Loss Function: Classification

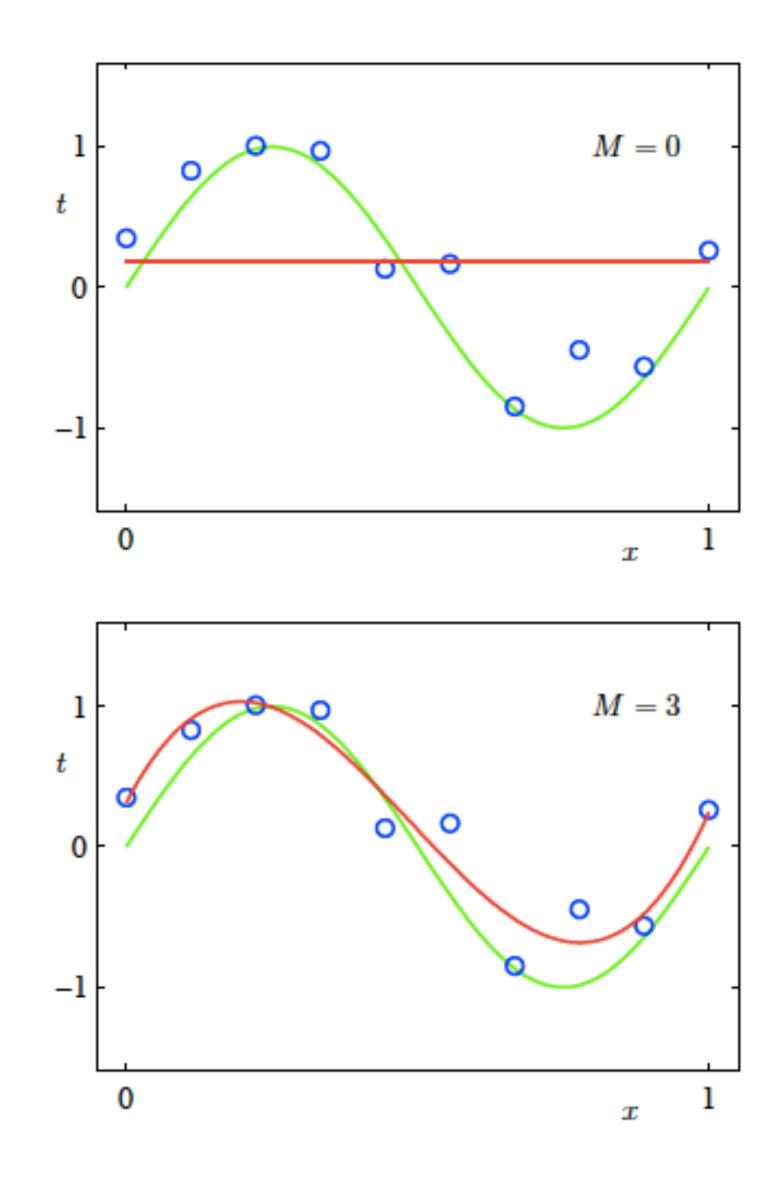
Cross-entropy loss = softmax + negative log-likelihood

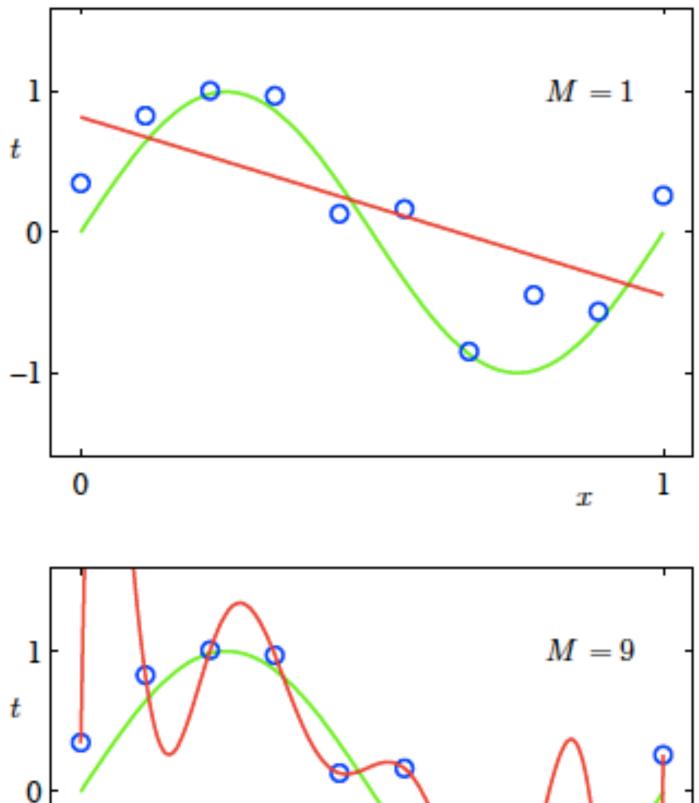


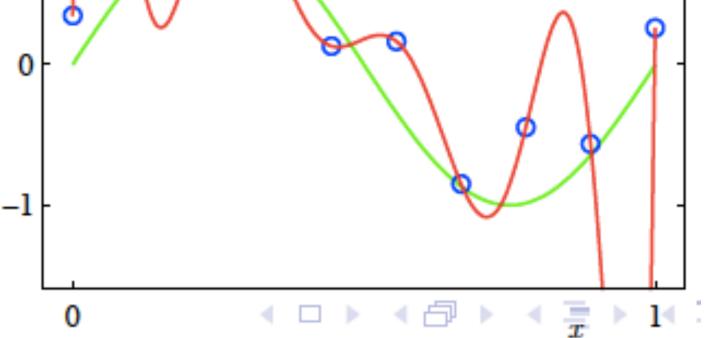
"Problems" with training

- Making poor predictions on the training data (underfitting)
- Not generalizing to unseen data (overfitting)

Example: polynomial regression of degree M

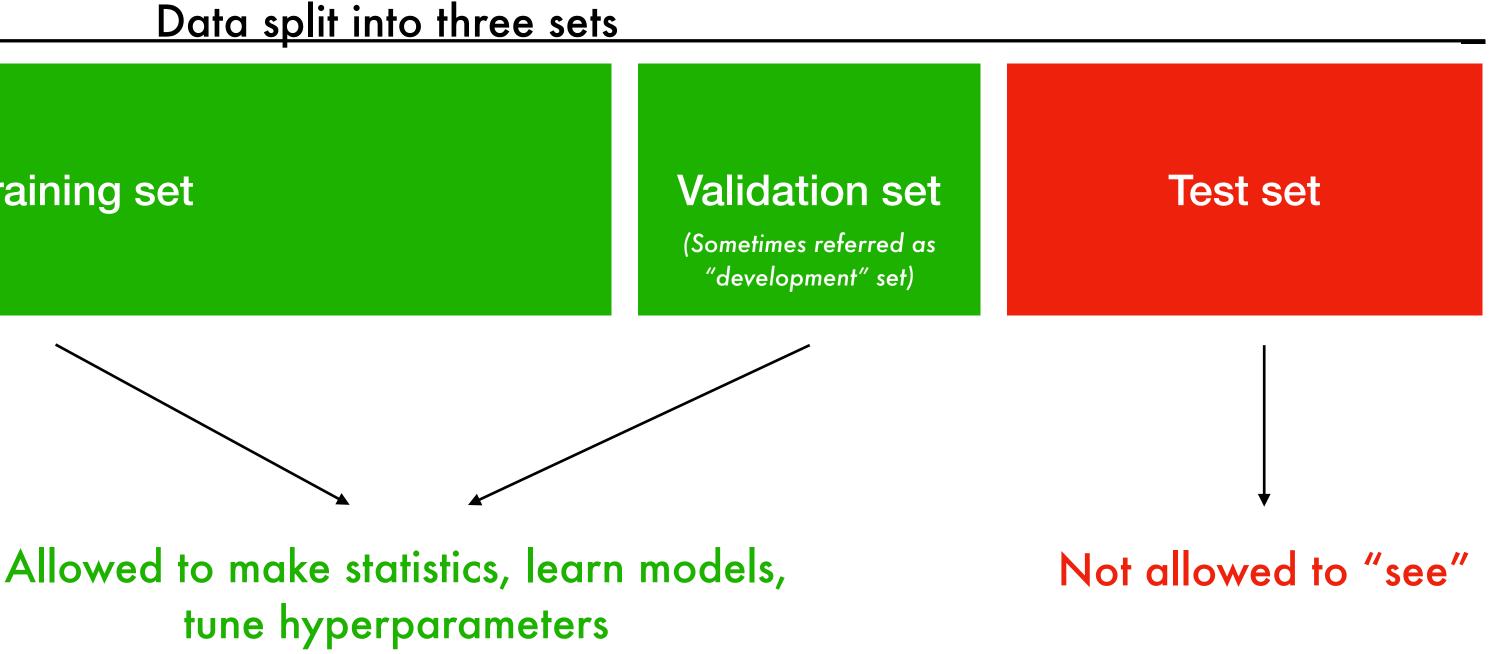






"Typical" machine learning setup

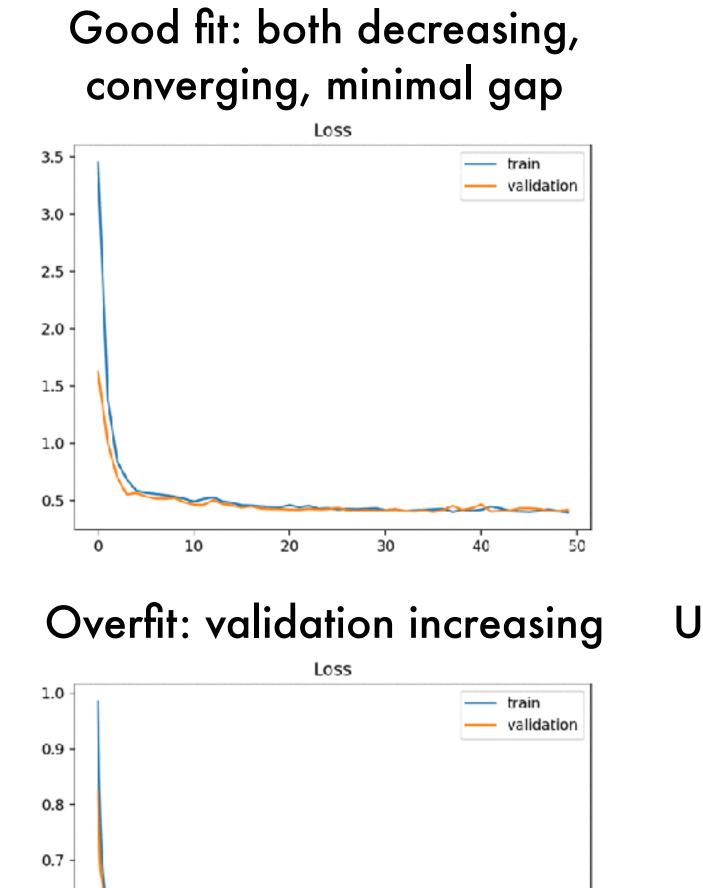
Training set

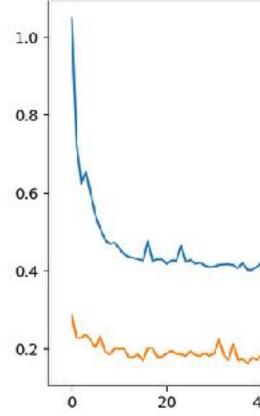


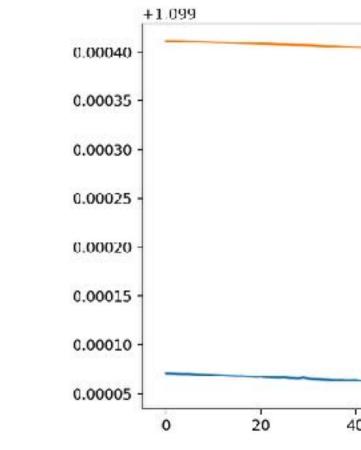
- Learn models on the **training** set
- e.g., number of epochs, learning rate, batch size...)
- (Optional: Learn the final model on the combination of training and validation sets)
- Evaluate on the **test** set "once"

• Evaluate on the validation set many times (run experiments to find good hyperparameters,

A few possible scenarios for learning curves







number of iterations/epochs

200

500

100

0.6

0.5

0.4

0

:....

Unrepresentative validation set: Unrepresentative validation set: too few examples easier than training set Loss Loss 1.1 train — train validation validation 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 100 100 20 80 60 80 0 60 40 Underfit: training halted prematurely Underfit: training loss not decreasing Loss Loss 1.075 train validation 1.050 1.025 1.000 train 0.975 validation 0.950 0.925 0.900 0.875 10 40 80 100 20 30 Credit: Jason Brownlee Image sources

How to avoid overfitting?

Deep networks have many parameters. Some regularization techniques:

- Smaller network, i.e., less parameters
- Data augmentation
- Suboptimize, i.e., "early stopping"
- Force redundancy in hidden units, i.e., "dropout"
- Penalize parameter norms, i.e., "weight decay"

L2 penalty: encourages the norm of the parameters to be low

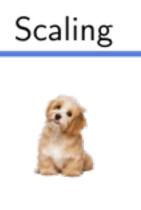
$$L(\theta) + \frac{\lambda}{2} \left\| \left\| \theta \right\|_{2}^{2} \right\|_{2}$$

Data augmentation

Flip

Original

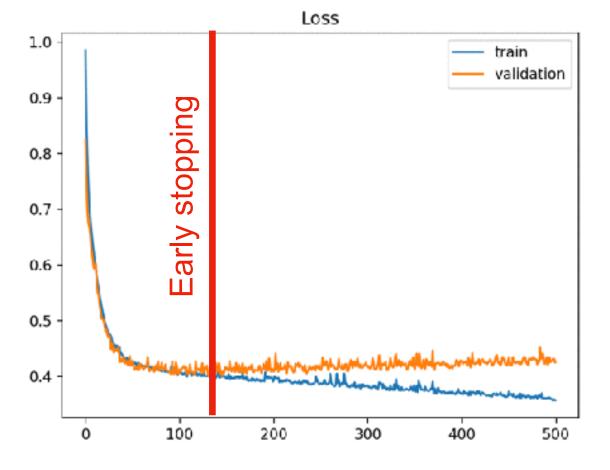
Rotation

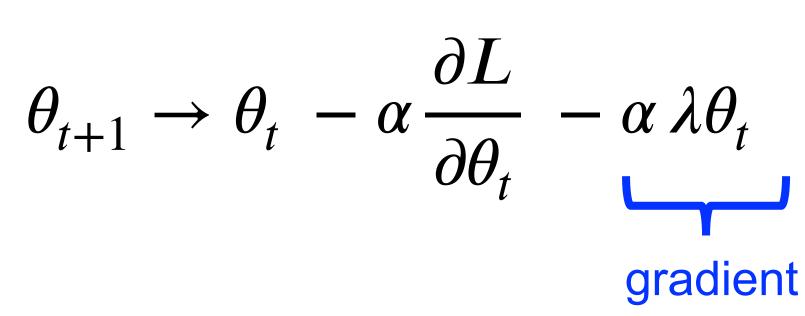


Brightness

Image source

, "dropout" ght decay"





Look at your results

- - Train/val/test sets are important
- Look at loss and performance on train/val sets during training
- Choose LR, compare networks, try different initialization (random seeds)

training and testing data.

• When you train a network, you should try to really understand what is happening:

Very important: Look at your data and results (e.g., visualize predictions) on

Practical problems

- Data loading:
 - Loading "on the fly": needed for big datasets, use efficient database structure, fast disk access, e.g., SSD
 - Loading to RAM: possible for smaller datasets, or pre-computed features
- Speed: use GPUs, parallel data loading
- Network size: get lots of memory on your GPU or/and use several GPUs

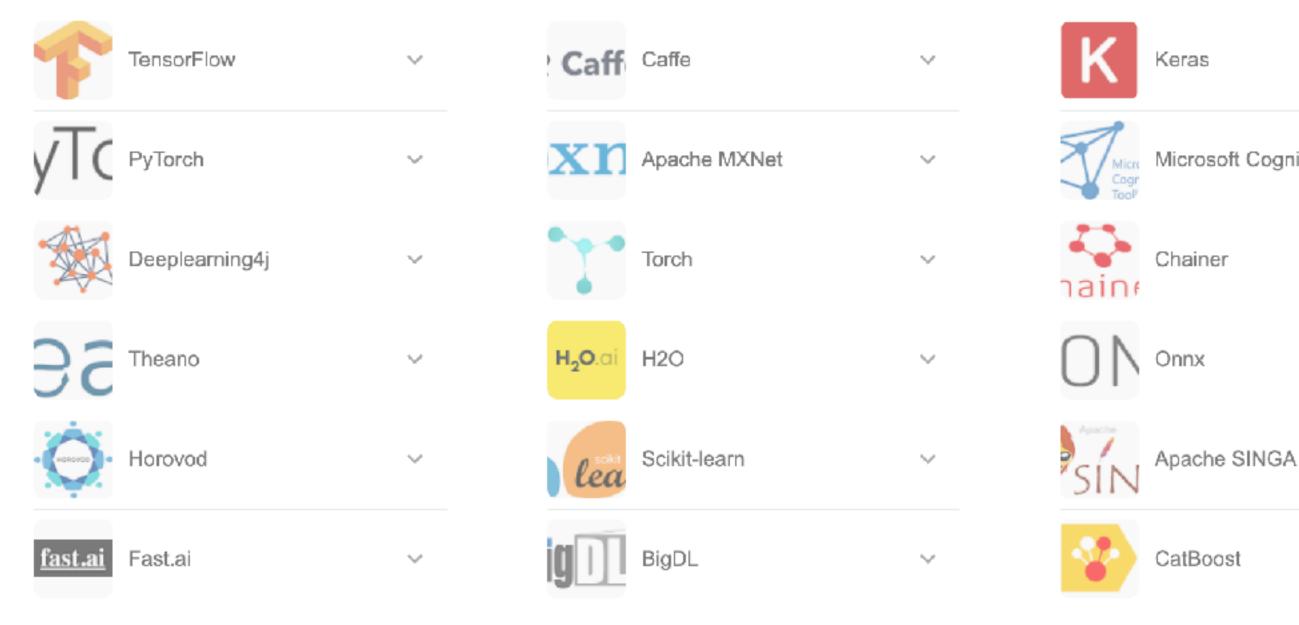
Good news: you don't have to do all of it! Many ready-to-use and efficient frameworks are available (e.g., Pytorch)

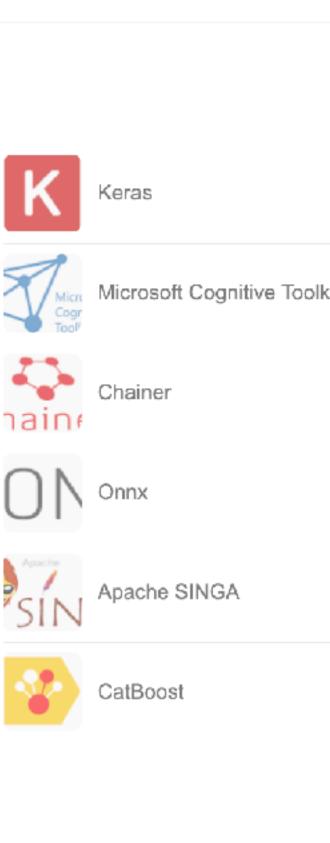
NN packages

- PyTorch (Python) ullet
 - http://pytorch.org/
- TensorFlow (Python) Google
 - https://www.tensorflow.org/
- Lua Torch
 - http://torch.ch/
- Caffe (C++, pycaffe, matcaffe)
 - http://caffe.berkeleyvision.org/
- MatConvNet (Matlab)
 - http://www.vlfeat.org/matconvnet/

deep le	earning frame	× 🛛 🌷	<u>و</u> م				
Q All	🖾 Images	▶ Videos	🗉 News	🖪 Books	: More		Tools
About 154,000,000 results (0.49 seconds)							

From sources across the web





Let's look at some code

(more in Assignment 2)

- The key objects are
 - model,
 - optimizer,
 - dataloader,
 - loss.

def __init__(self): def forward(self, x): x = x.view(-1, 320)x = self.fc2(x)return F.log_softmax(x, dim=1)

model = Net() if args.cuda: model.cuda() def train(epoch): model.train() if args.cuda: optimizer.zero_grad() output = model(data) loss.backward() optimizer.step()

train(epoch)

```
class Net(nn.Module):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
       x = F.relu(F.max_pool2d(self.conv1(x), 2))
       x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
       x = F.relu(self.fc1(x))
       x = F.dropout(x, training=self.training)
```

Key part of pytorch code for CNN learning

```
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
```

```
for batch_idx, (data, target) in enumerate(train_loader):
           data, target = data.cuda(), target.cuda()
       loss = F.nll_loss(output, target)
for epoch in range(1, args.epochs + 1):
```


Agenda

- 1. Recap: Bag of Visual Words, Analogy with NNs
- 2. Neural networks (NNs) for computer vision:
 - Applications
 - A brief history: from perceptron to MLPs to CNNs

• 3. Convolutional neural networks (CNNs)

- Standard layers
- Recap: Training NNs
- Visualizing CNNs
- Pretraining & finetuning NNs
- Typical CNN architectures

• 4. Beyond CNNs

- Attention & Transformer
- Vision Transformers

5. Beyond classification

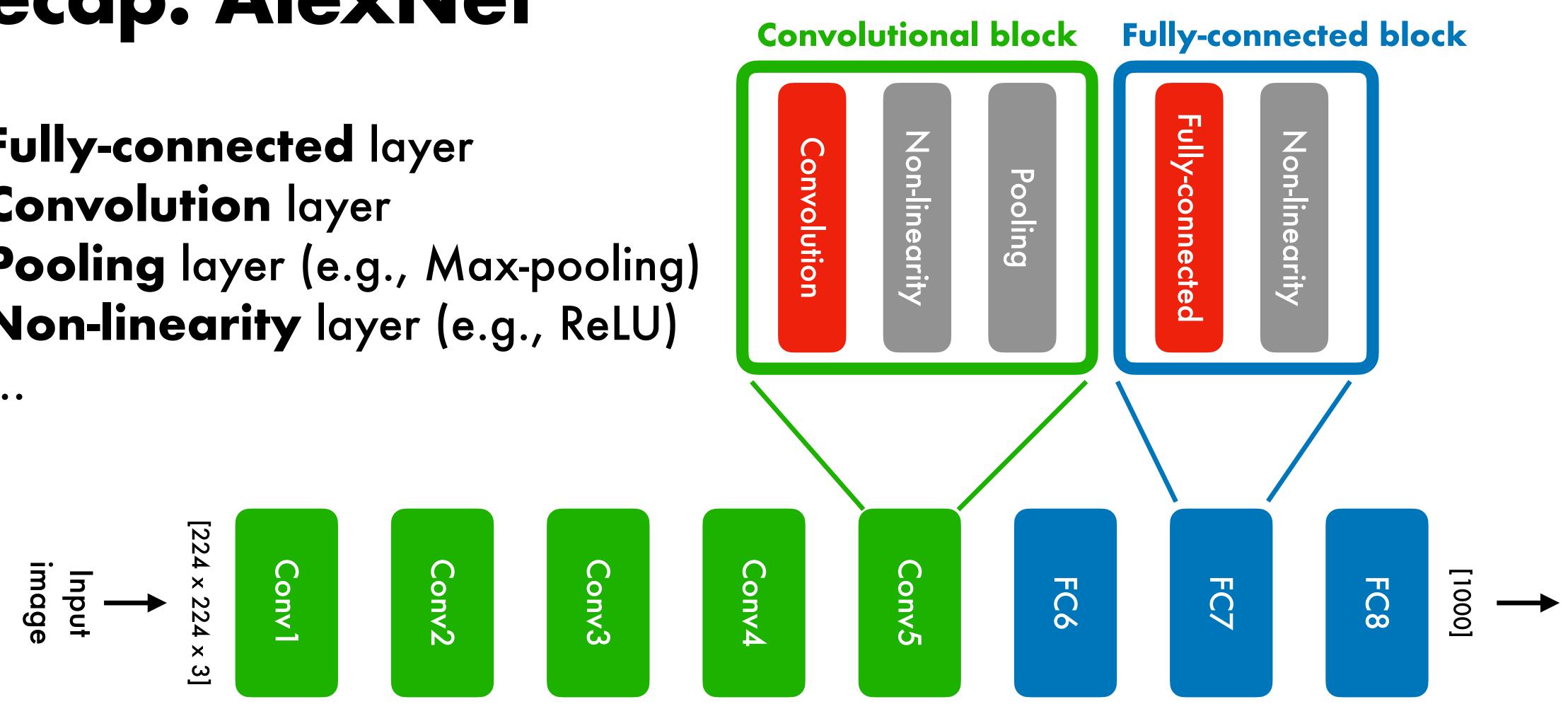
Visualizing CNNs What does CNN learn once it is trained?

Recap: AlexNet

- Fully-connected layer
- Convolution layer

 \bullet

- Pooling layer (e.g., Max-pooling)
- Non-linearity layer (e.g., ReLU)



AlexNet: [Krizhevsky 2012]

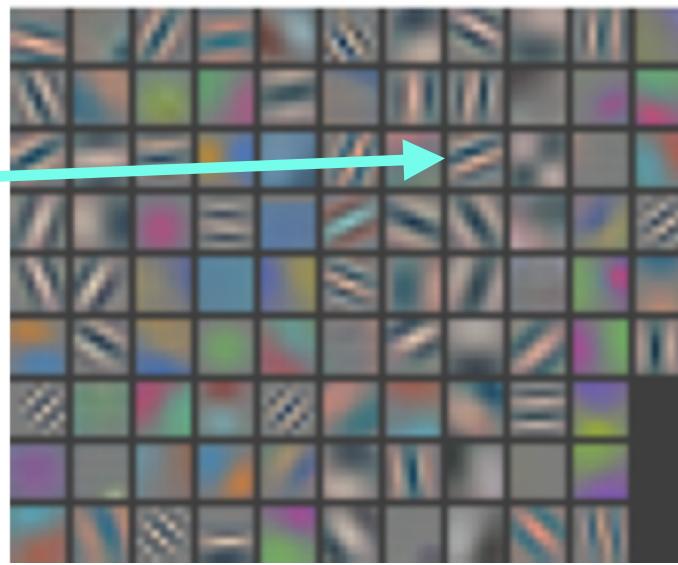
Layer 1: Top-9 patches

Patches from validation images that give maximal activation of a given feature map

(1)	127					
						1
		1				
				4	-	
10 10						
					2.	



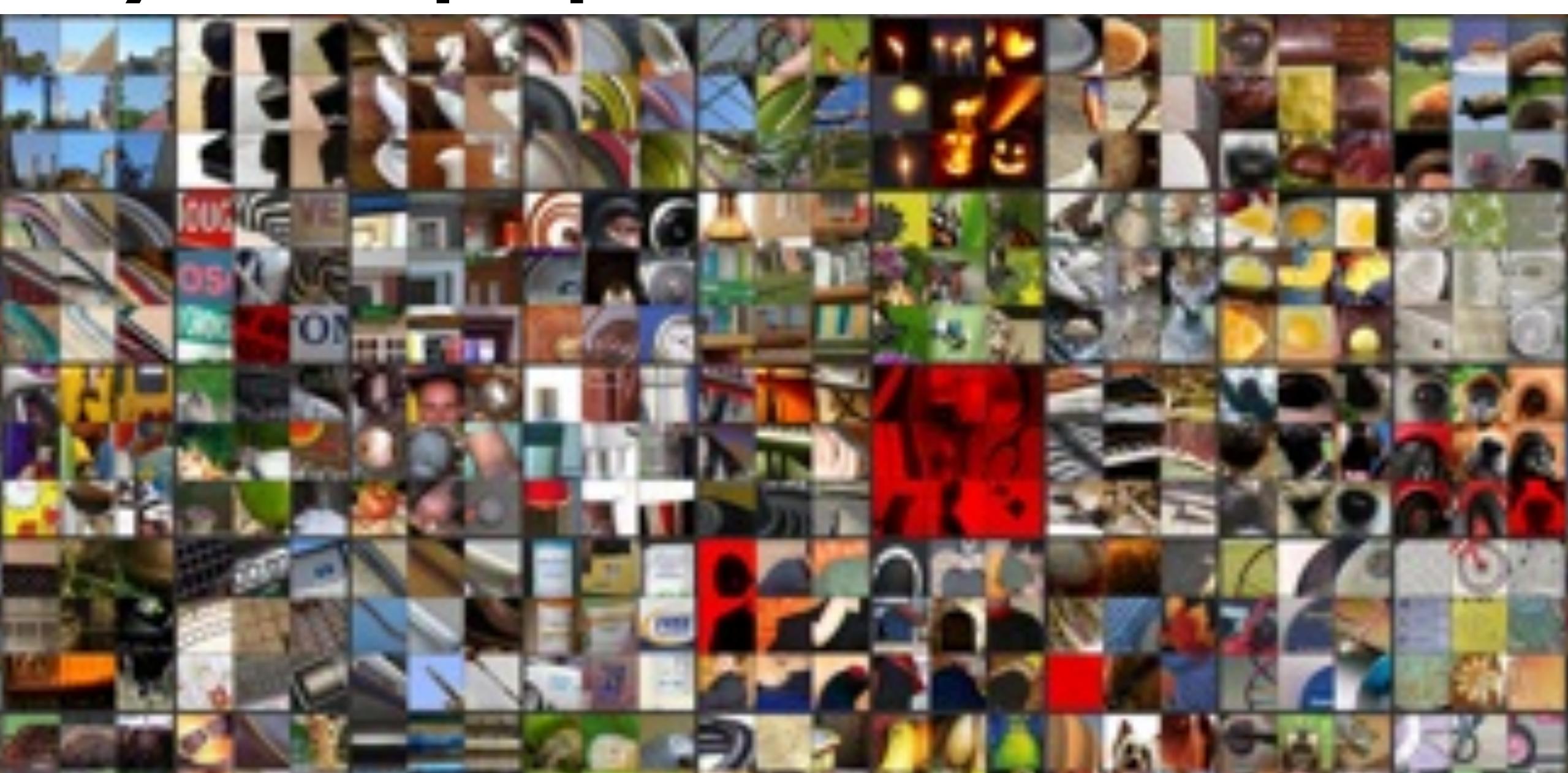
Learned filters



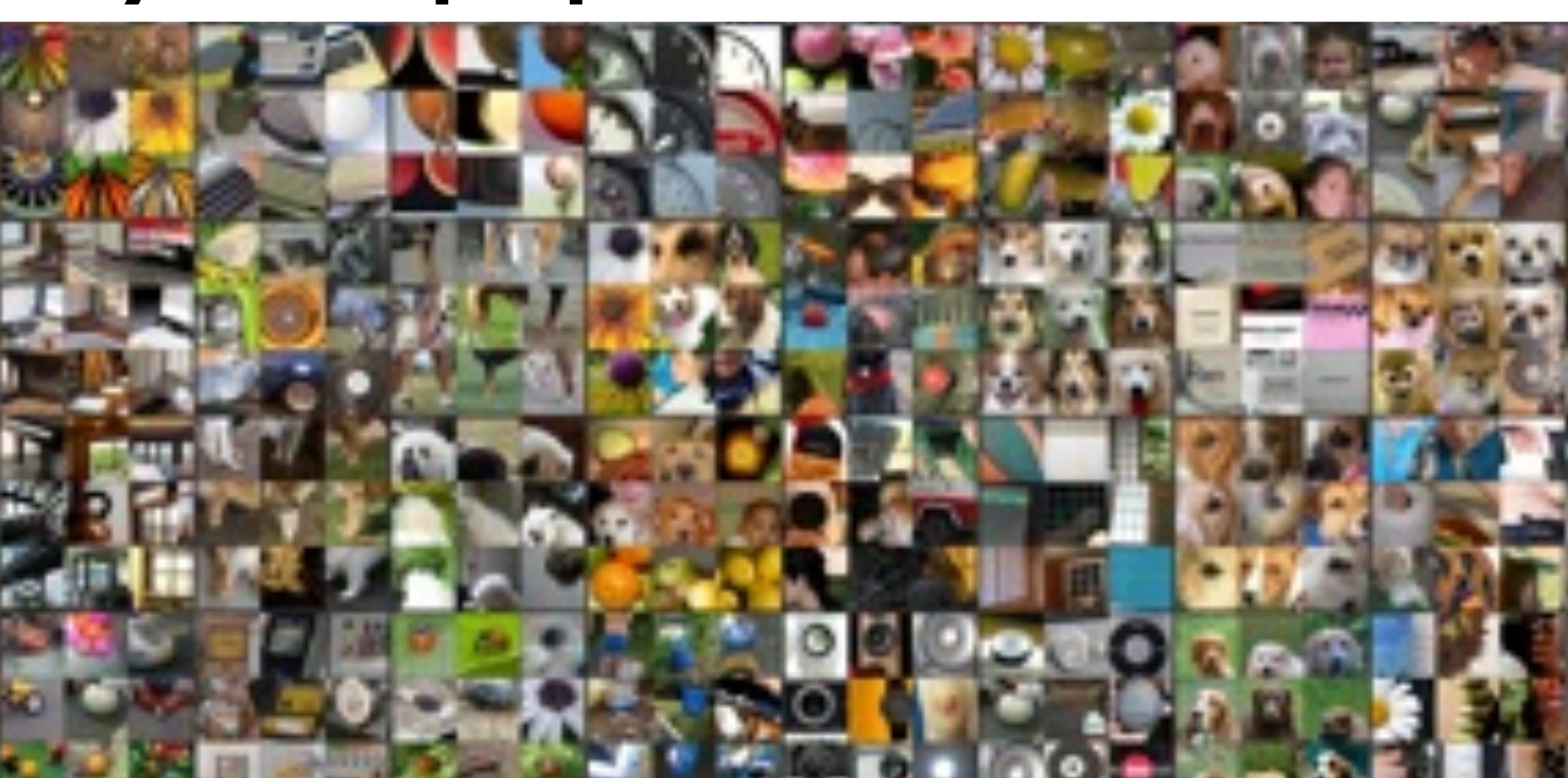
[Zeiler and Fergus, Visualizing and Understanding Convolutional Networks, ECCV 2014]

Layer 2: Top-9 patches

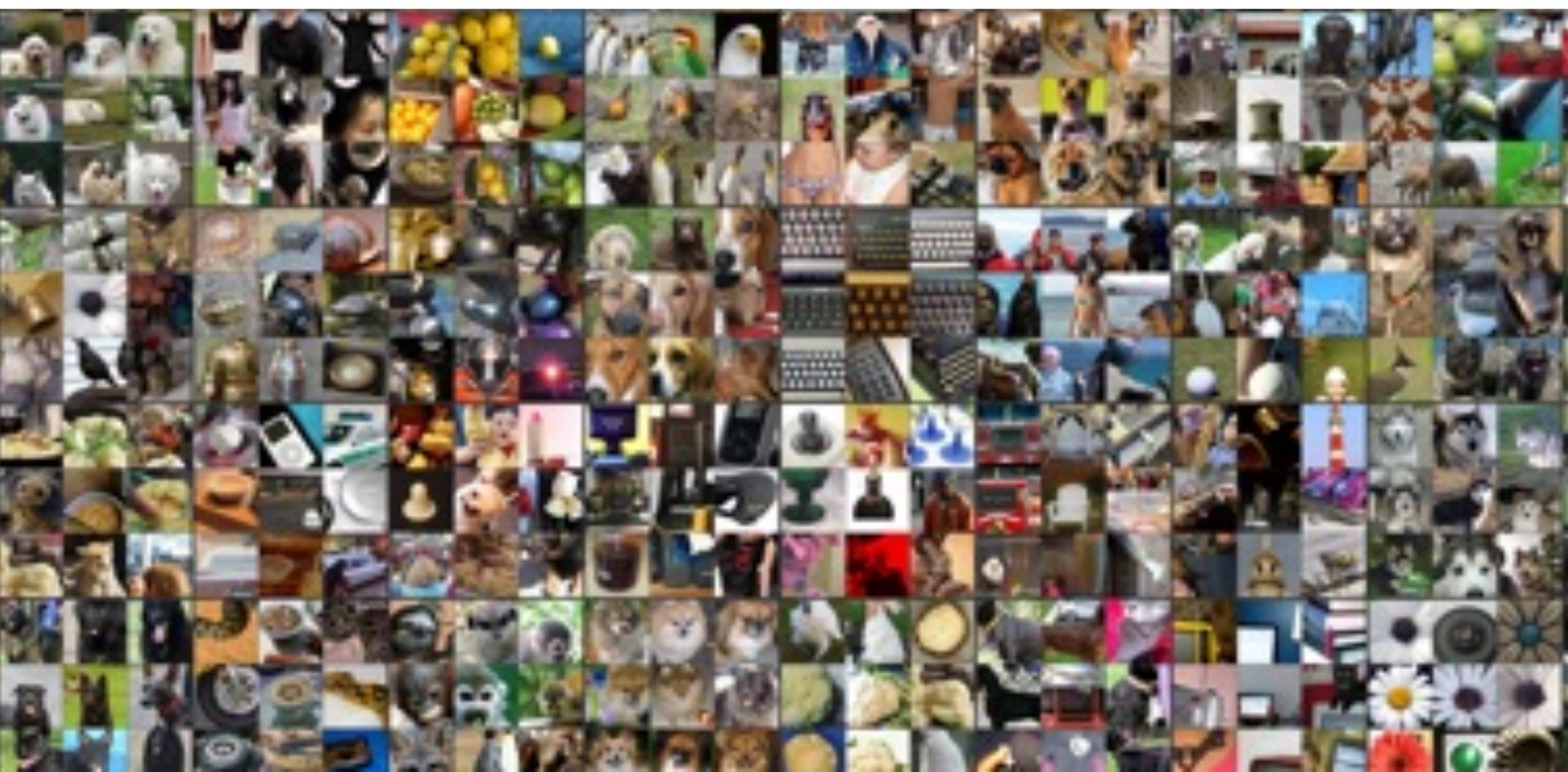
Layer 3: Top-9 patches



Layer 4: Top-9 patches



Layer 5: Top-9 patches



References: Visualizing and understanding NNs

Analysis tools

Visualizing higher-layer features of a deep network Ethan et al. 2009 [intermediate features]

Deep inside convolutional networks Simonyan et al. 2014 [deepest features, aka "deep dreams"]

DeConvNets Zeiler et al. In ECCV, 2014 [intermediate features]

Understanding neural networks through deep visualisation Yosinksi et al. 2015

[intermediate features]

Artistic tools

Google's "inceptionism" Mordvintsev et al. 2015

Style synthesis and transfer

Gatys et al. 2015

Slide: A. Vedaldi

Agenda

- 1. Recap: Bag of Visual Words, Analogy with NNs
- 2. Neural networks (NNs) for computer vision:
 - Applications
 - A brief history: from perceptron to MLPs to CNNs

• 3. Convolutional neural networks (CNNs)

- Standard layers
- Recap: Training NNs
- Visualizing CNNs
- Pretraining & finetuning NNs
- Typical CNN architectures

• 4. Beyond CNNs

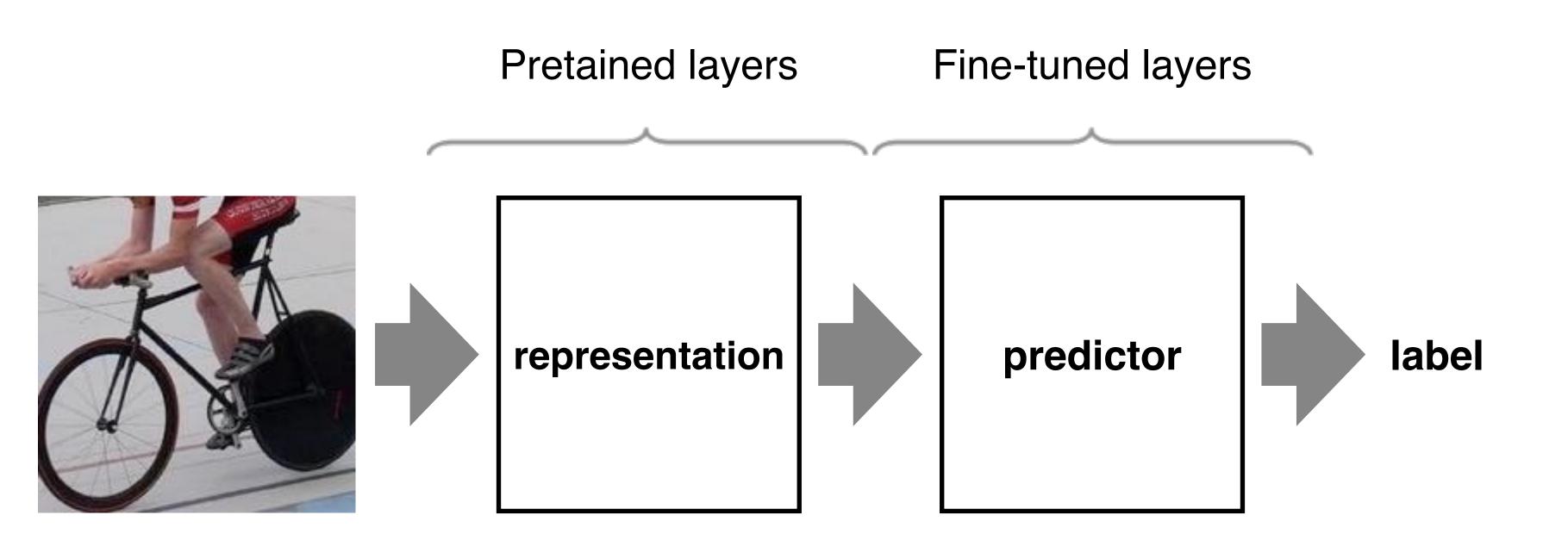
- Attention & Transformer
- Vision Transformers

5. Beyond classification

"pretraining"

Transferring learnt representations

"Pre-training" and transfer learning



CNN as universal representations

- First several layers in most CNNs are generic
- They can be reused when training data is comparatively scarce

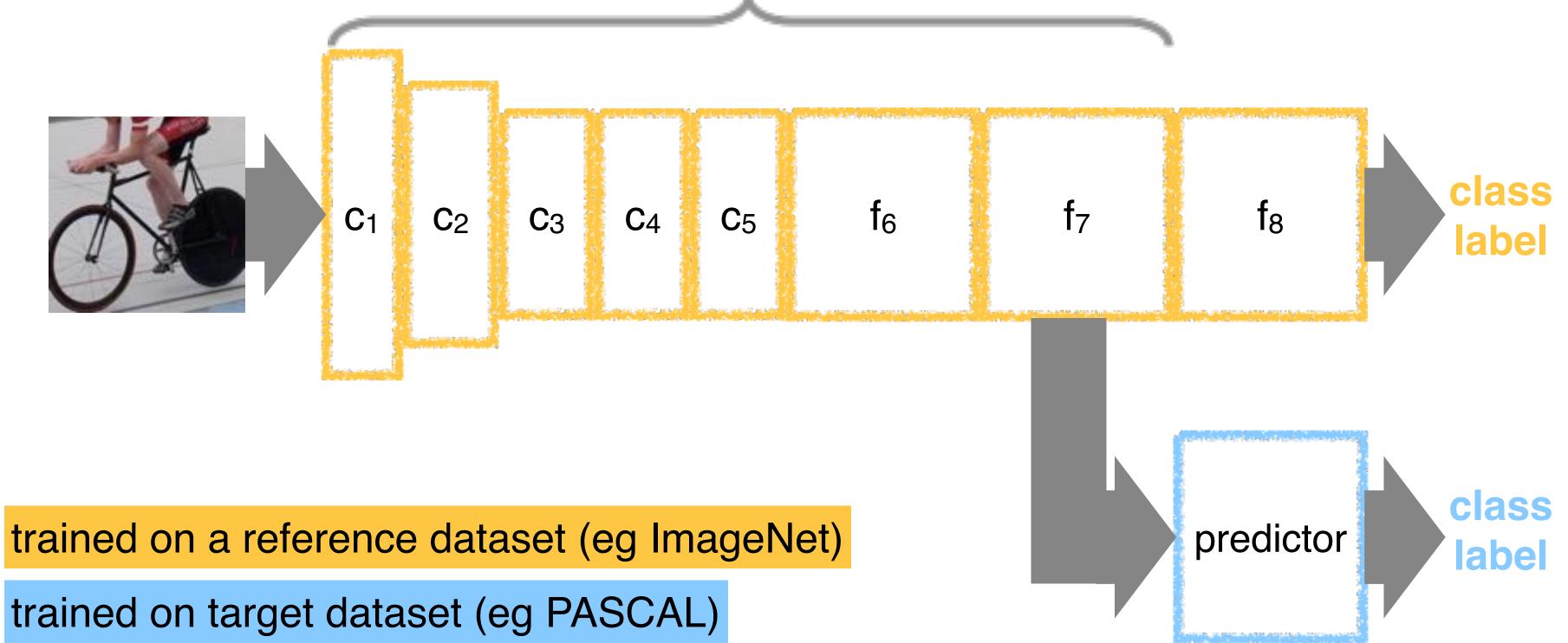
[Evaluations in A. S. Razavian, 2014, Chatfield et al., 2014]

Application

- Pre-train on ImageNet classification 1M images
- Cut at some deep conv or FC layer to get features

"Pre-training" and transfer learning

Deep representations are generic



trained on target dataset (eg PASCAL)

A general purpose deep encoder is obtained by chopping off the last layers of a CNN trained on a large dataset.

Example



Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks *M. Oquab, L. Bottou, I. Laptev, J. Sivic* In CVPR 2014

http://www.di.ens.fr/willow/research/cnn/

ImageNet classification challenge

ImageNet classification challenge

Object centric 1000 classes 1.2M images

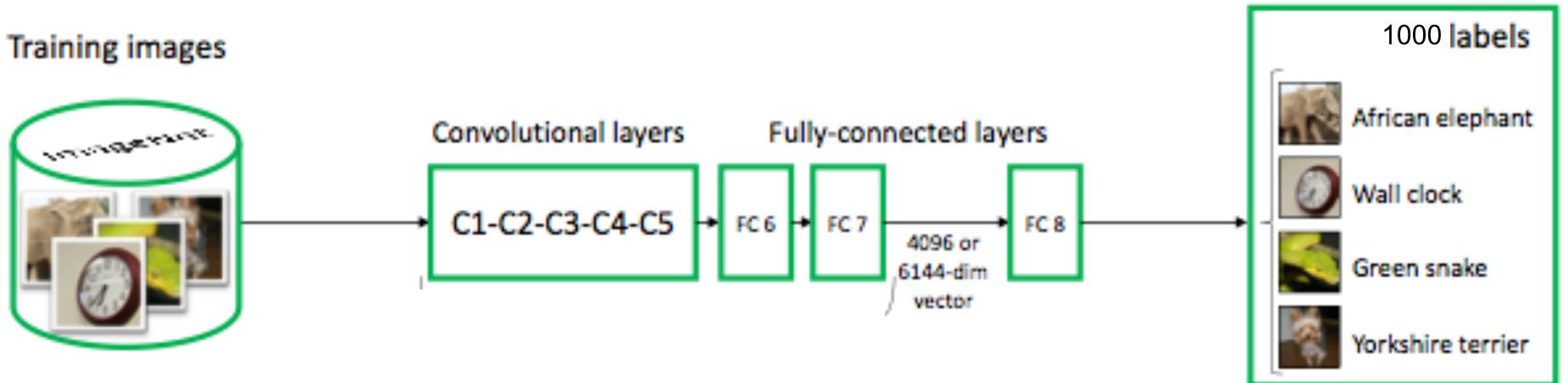
What about other recognition tasks and datasets?

ImageNet classification challenge

Object centric 1000 classes 1.2M images

Complex scenes 20 classes 10k images

Background – Convolutional neural network of [Krizhevsky et al. 2012]



Training time: ~1 week on one GPU cross-entropy error function.

training data?

- Input: ~1M labelled images (1000 images / 1000 classes)
- Number of parameters: ~60 million --- image representation
 - Learn parameters using stochastic gradient descent on
- Can we transfer learnt parameters to other tasks with limited

Challenge

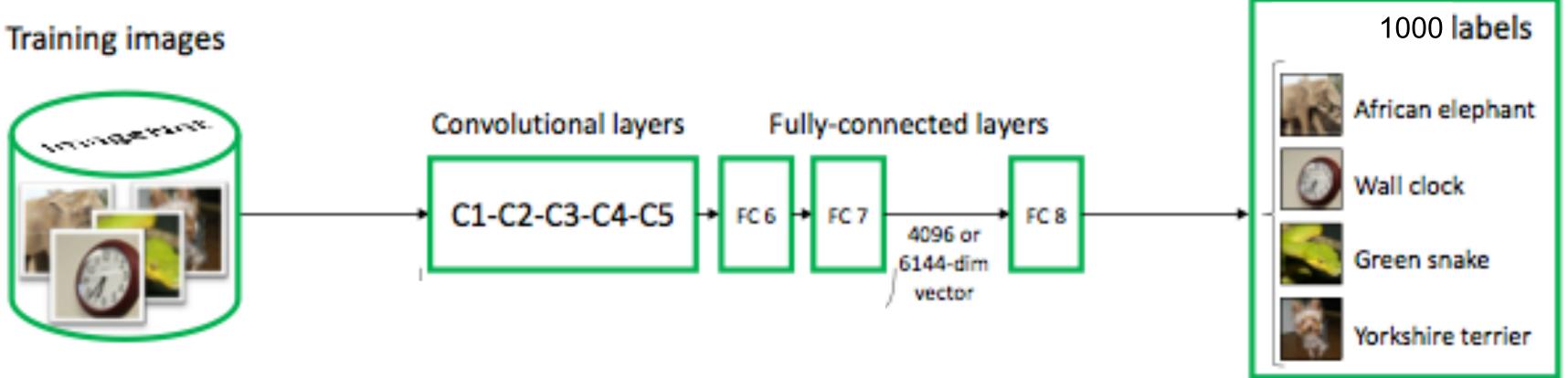
- Type of objects and labels
- Object size, object location, scene clutter
- Object viewpoints, imaging conditions

ImageNet

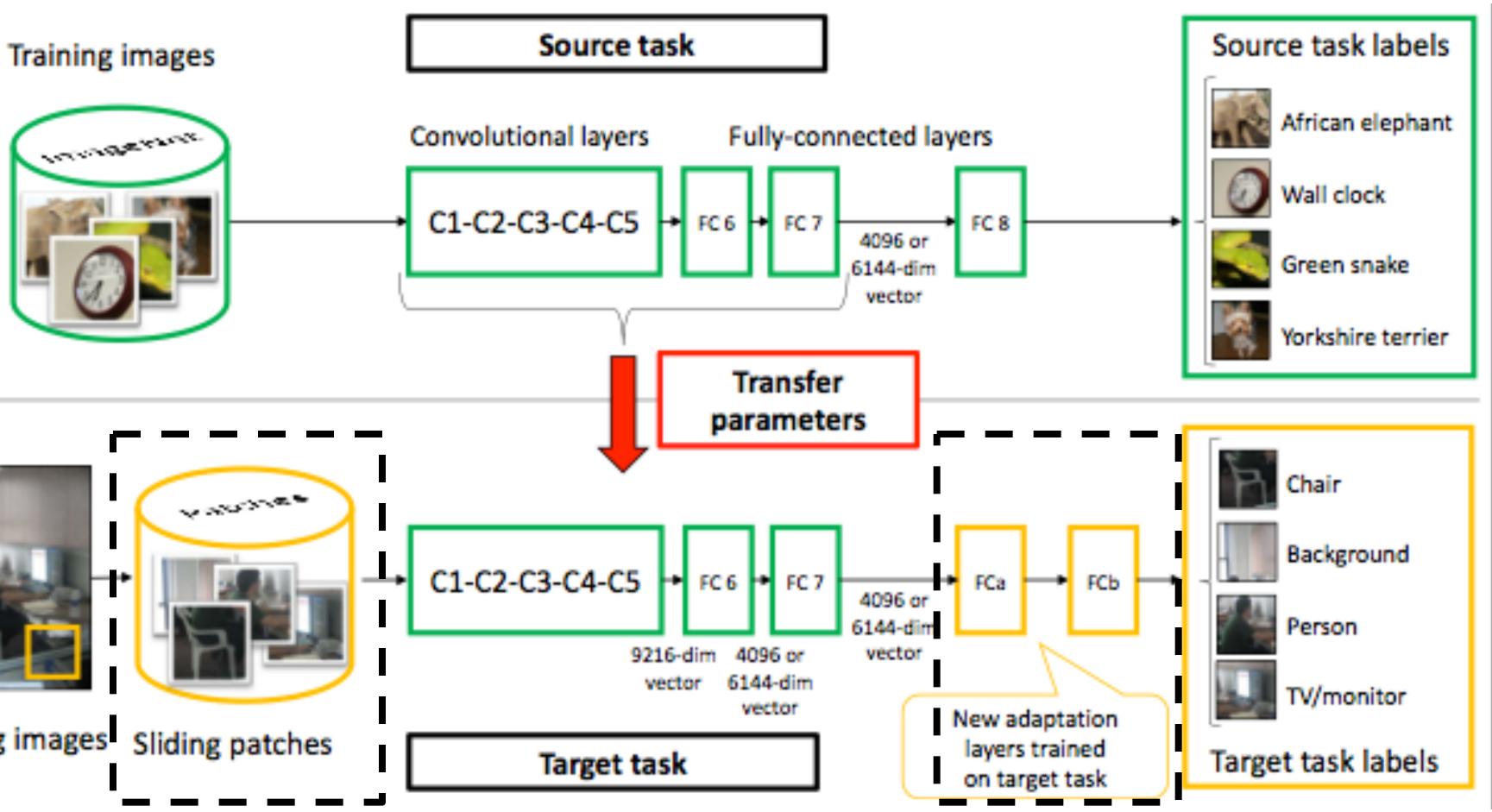
Maltese terrier

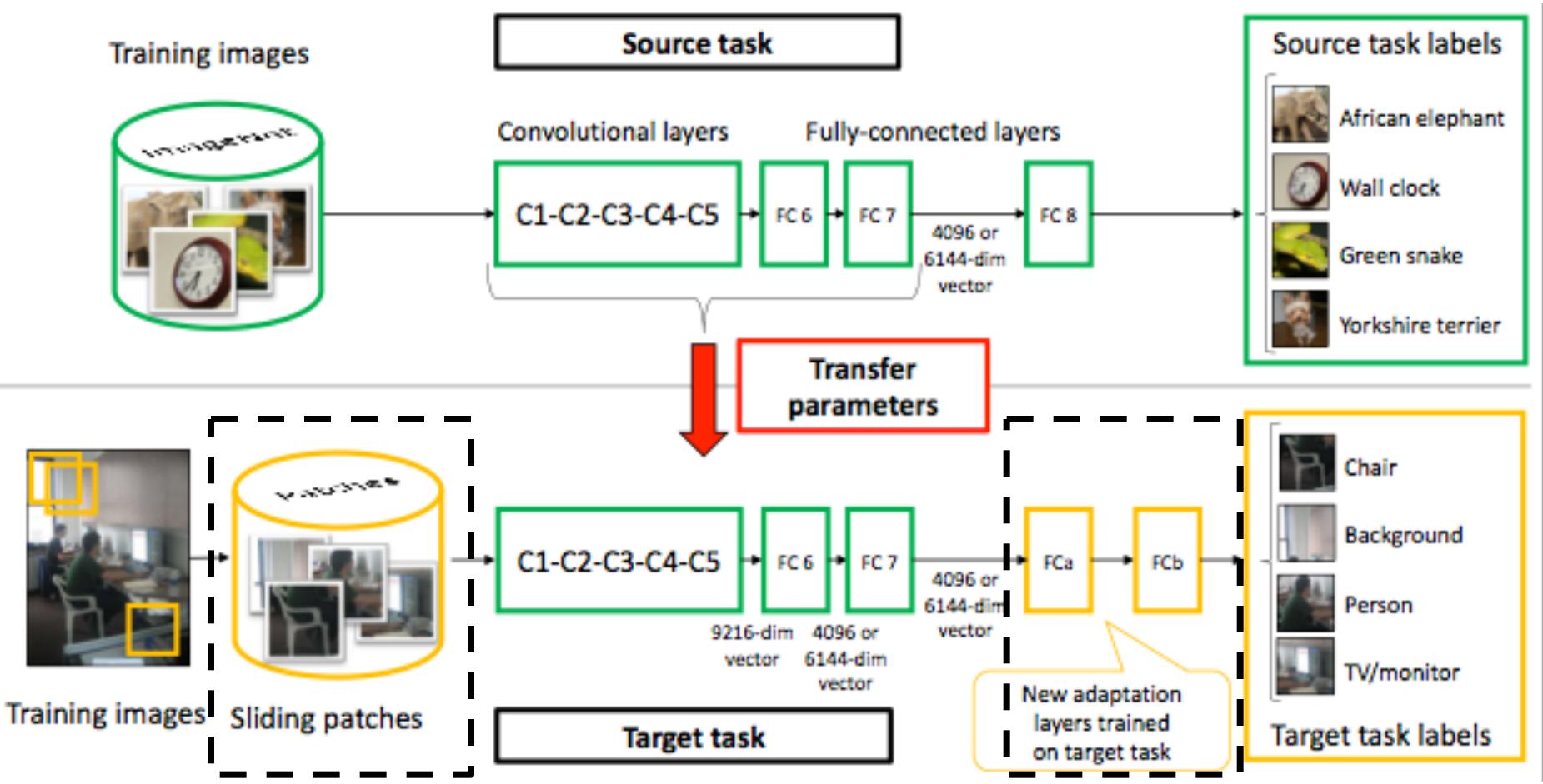
The dataset statistics between the source task (ImageNet) and the target task (Pascal VOC) can be very different.

Pascal VOC



Approach [Oquab, Bottou, Laptev, Sivic, CVPR'14]





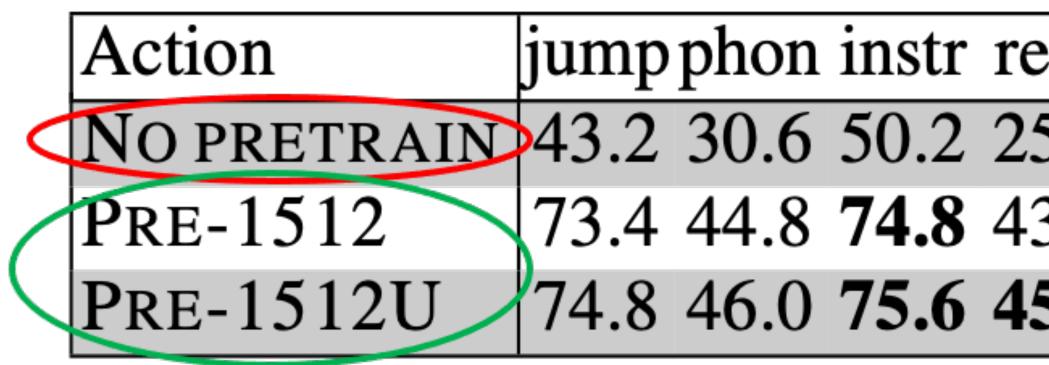
Design training/test procedure using sliding windows 2. Train adaptation layers to map labels

See also [Girshick et al.'13], [Donahue et al.'13], [Sermanet et al. '14], [Zeiler and Fergus '13] Transfer learning workshop at ICCV'13, ImageNet workshop at ICCV'13

Pre-training helps

																	sheep				
\$ NO PRETRAIN PRE-1000C	85.2	75.0	69.4	66.2	48.8	82.1	79.5	79.8	62.4	61.9	49.8	75.9	71.4	82.7	93.1	59.1	69.7	49.3	80.0	76.7	70.
Pre-1000C	93.5	78.4	87.7	80.9	57.3	85.0	81.6	89.4	66.9	73.8	62.0	89.5	83.2	87.6	95.8	61.4	79.0	54.3	88.0	78.3	78.
Pre-1000R	93.2	77.9	83.8	80.0	55.8	82.7	79.0	84.3	66.2	71.7	59.5	83.4	81.4	84.8	95.2	59.8	74.9	52.9	83.8	75.7	76.
Pre-1512	94.6	82.9	88.2	84.1	60.3	89.0	84.4	90.7	72.1	86.8	69.0	92.1	93.4	88.6	96.1	64.3	86.6	62.3	91.1	79.8	82.

- Pascal VOC 2012 object classification



Pascal VOC 2012 action classification

jumpphon instr read bike horse run phot compwalk mAP NO PRETRAIN 43.2 30.6 50.2 25.0 76.8 80.7 75.2 22.2 37.9 55.6 49.7 73.4 44.8 **74.8** 43.2 92.1 94.3 83.4 **45.7** 65.5 66.8 68.4 74.8 46.0 75.6 45.3 93.5 95.0 86.5 49.3 66.7 69.5 70.2

Other "pre-training" examples

3D hand-object reconstruction

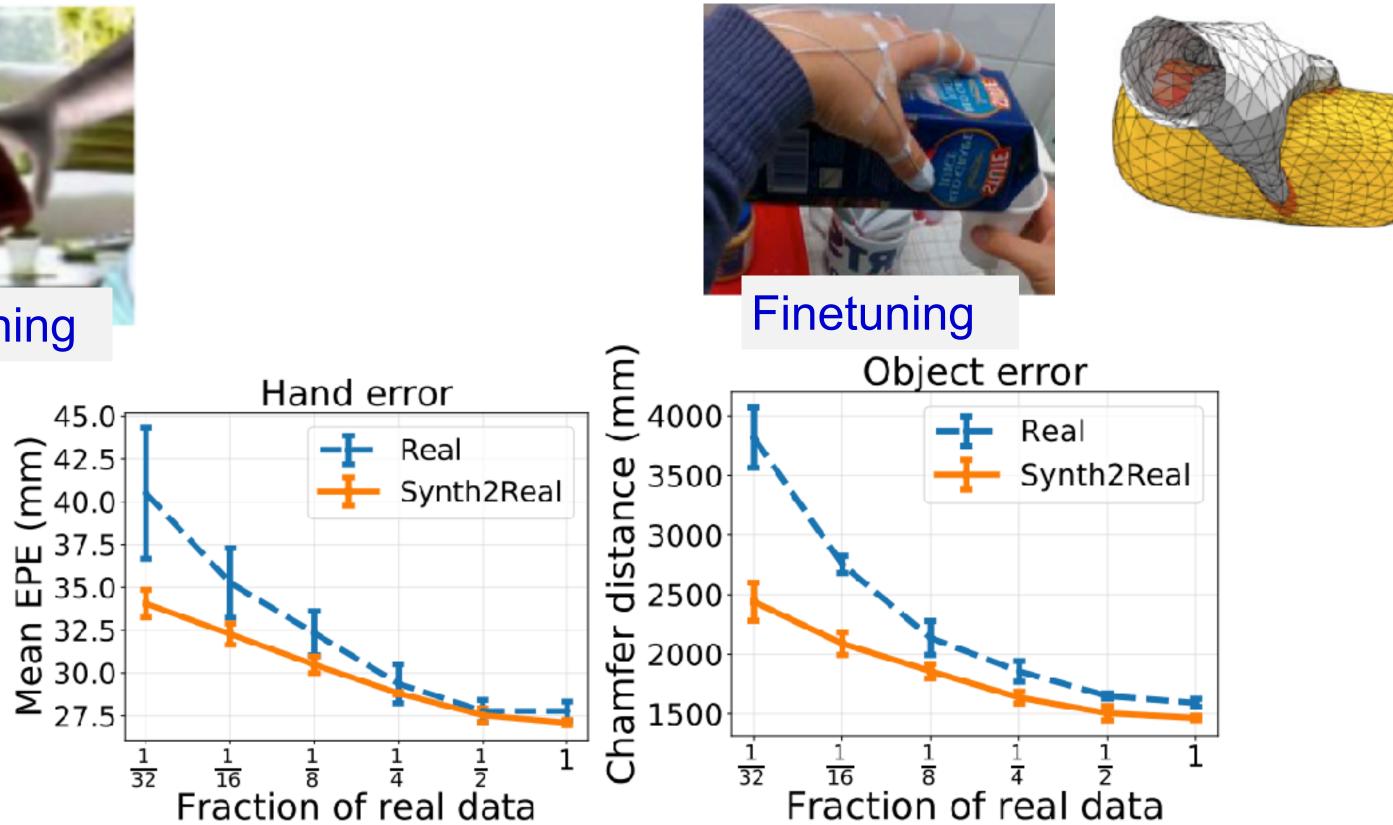
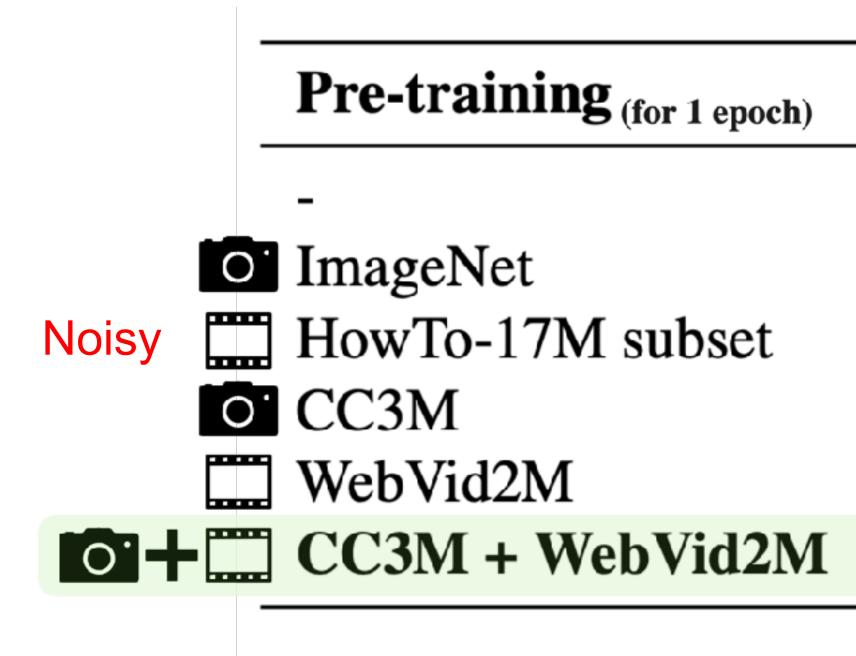


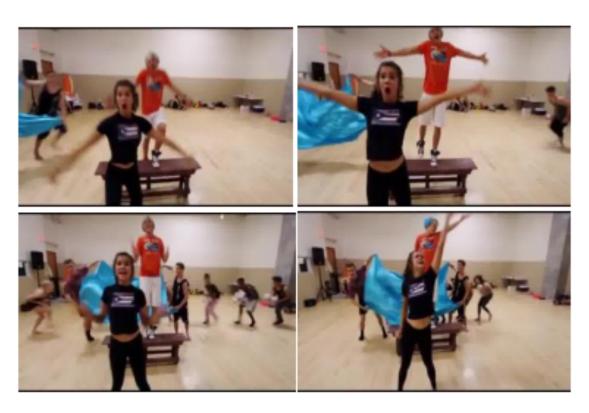
Figure 8: We compare training on FHB only (Real) and pre-training on synthetic, followed by fine-tuning on FHB (Synth2Real). As the amount of real data decreases, the benefit of pre-training increases. For both the object and the hand reconstruction, synthetic pre-training is critical in low-data regimes.

Hasson et al. "Learning joint reconstruction of hands and manipulated objects", CVPR 2019.

Text-to-Video Retrieval

Pretraining on millions of images & videos Finetuning on MSRVTT with 9K training videos



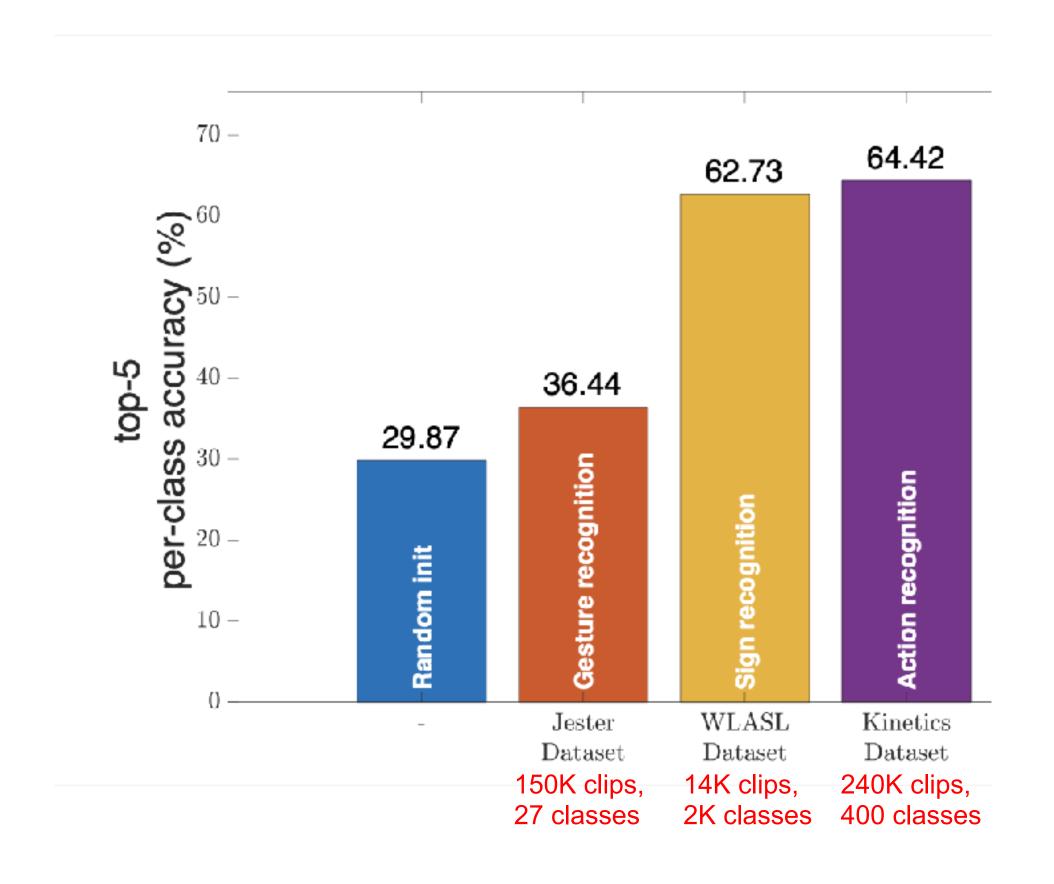


- 1. A man and a woman performing a musical.
- 2. A teenage couple perform in an amateur musical
- 3. Dancers are playing a routine.
- 4. People are dancing in a musical.
- 5. Some people are acting and singing for performance.

#pairs	↑R@1	↑R@10	↓MedR
-	5.6	22.3	55
	15.2	54.4	9.0
17.1M	24.1	63.9	5.0
3.0M	24.5	62.7	5.0
2.5M	26.0	64.9	5.0
5.5M	27.3	68.1	4.0

Sign Language Recognition

Pretraining on various tasks on different datasets Finetuning on 50K videos from BSL-1K sign language dataset



Pretraining Summary

- Common practice: Pretrain on large data, finetune on small data.
 - Remove the last class-specific layer (e.g. 1000 categories)
 - Add new layer(s) for the new task randomly initialized
 - Either "freeze" the pretrained parameters and train a simple classifier on top,
 - Or train "end-to-end" all parameters.
- Avoids overfitting
- Shortens training time
- Lots of pretrained models available online
- Task and domain-relevant pretraining is usually better

Agenda

- 1. Recap: Bag of Visual Words, Analogy with NNs
- 2. Neural networks (NNs) for computer vision:
 - Applications
 - A brief history: from perceptron to MLPs to CNNs

3. Convolutional neural networks (CNNs)

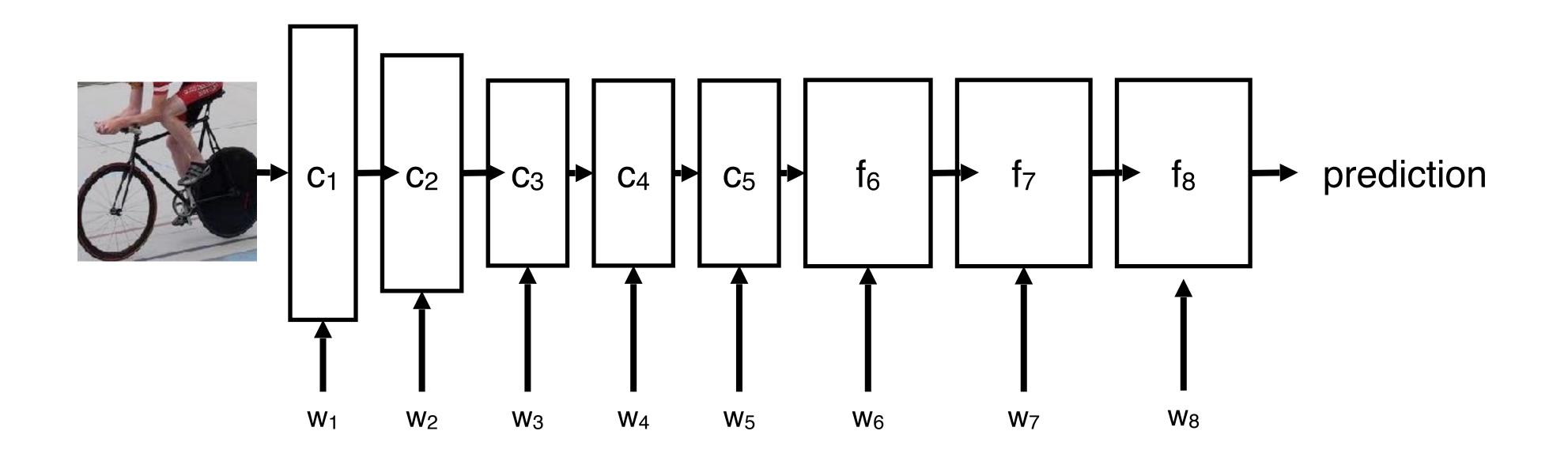
- Standard layers
- Recap: Training NNs
- Visualizing CNNs
- Pretraining & finetuning NNs
- Typical CNN architectures

• 4. Beyond CNNs

- Attention & Transformer
- Vision Transformers

5. Beyond classification

A CNN for image classification

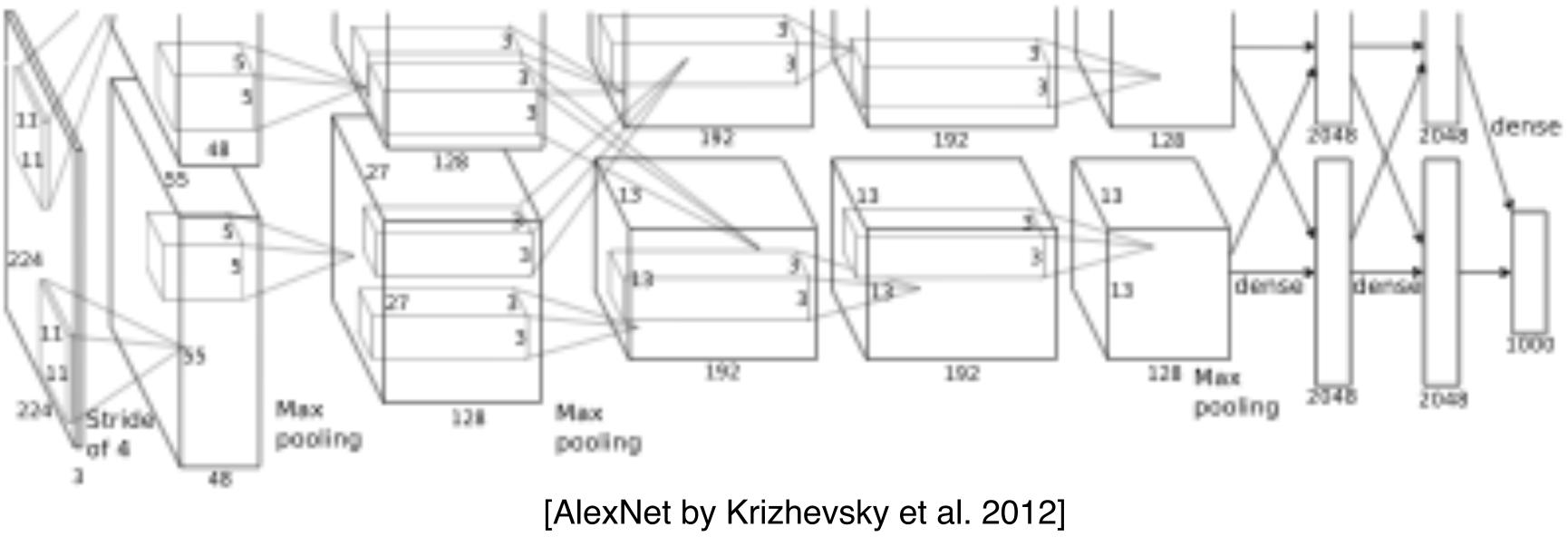


Recall: the goal of this model is to map an input image to a class prediction.

147

Recall: The AlexNet model

A breakthrough in image understanding



Each large block represents a data tensor

Each smaller block represents a filter

The filter size and stride are shown

The number of filters can be deduced from the number of feature channels

There are two parallel streams in this network (for efficiency reasons)

148

5 convolutional layers

3 fully-connected layers

AlexNet (2012)

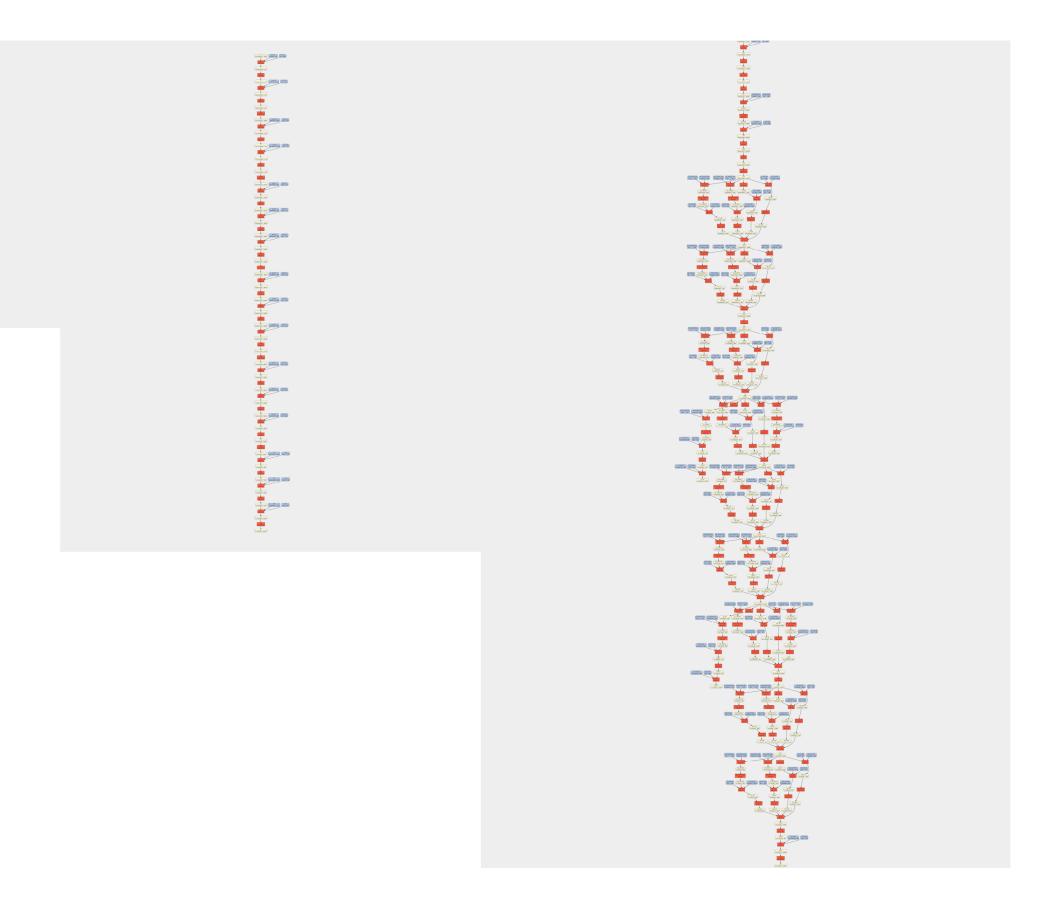
AlexNet (2012)

VGG-M (2013)

VGG-VD-16 (2014)

AlexNet (2012) VGG-M (2013)

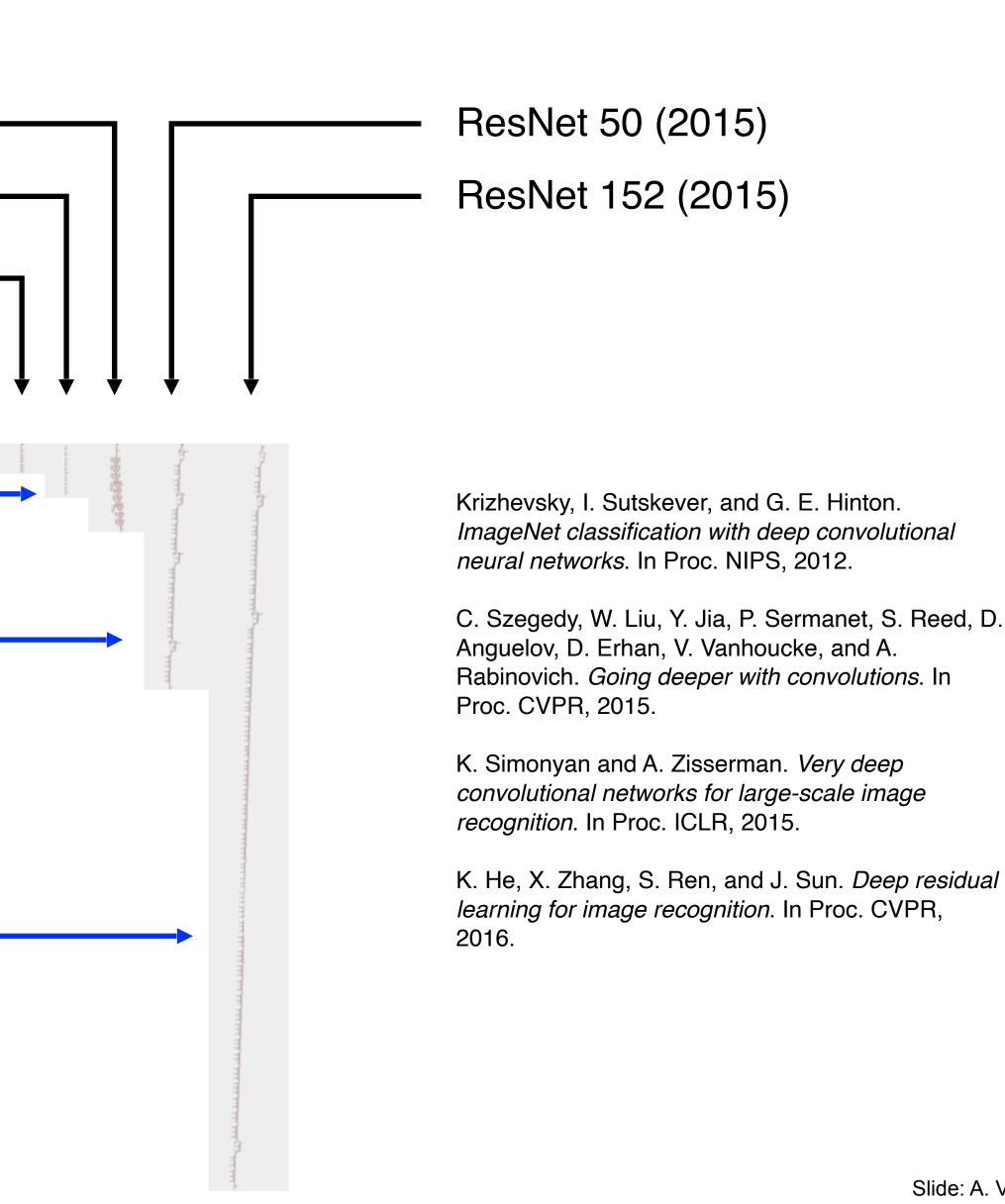
VGG-M (2013) VGG-VD-16 (2014) GoogLeNet (2014)



151

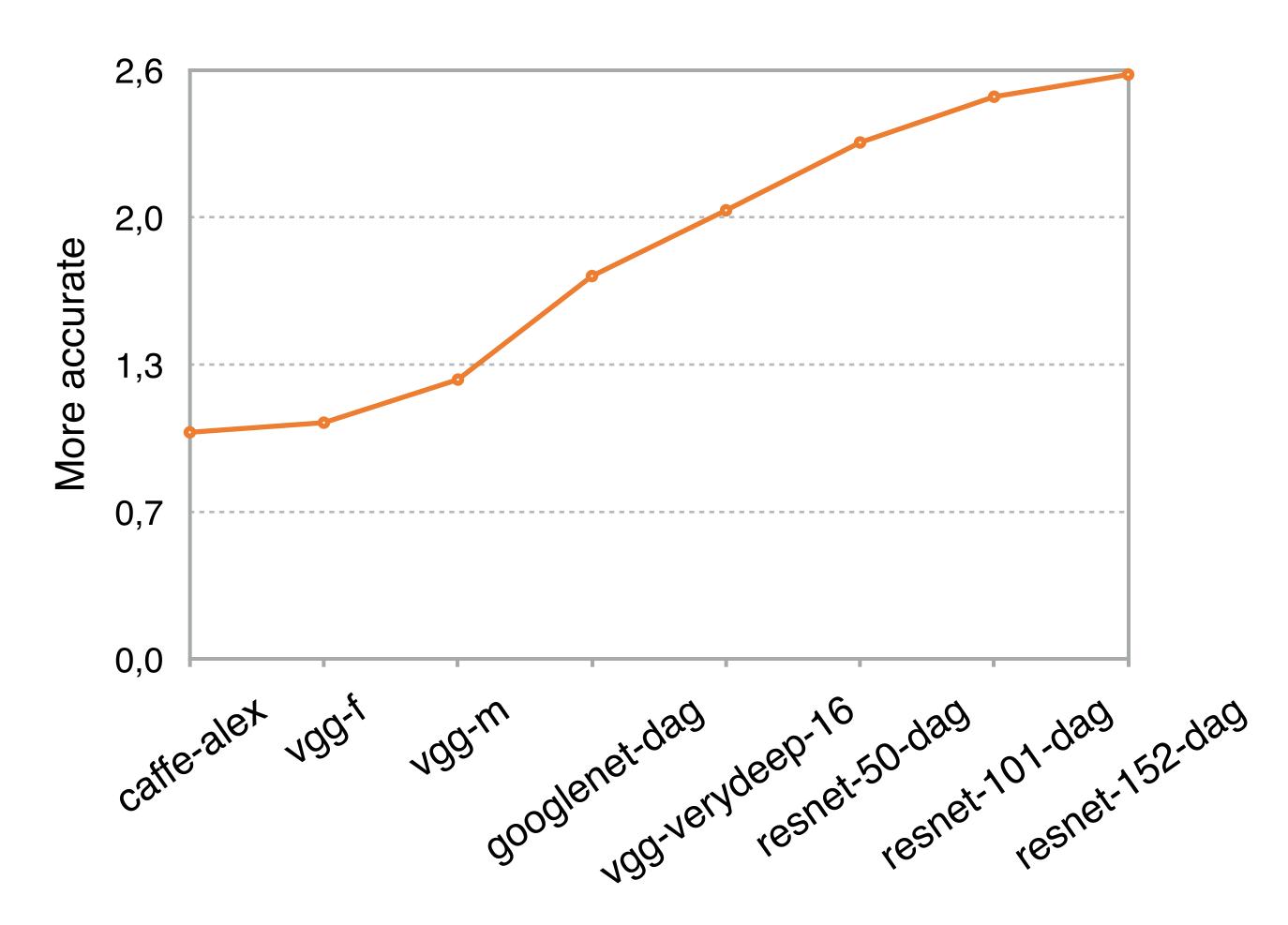
- GoogLeNet (2014)
- VGG-VD-16 (2014)
 - VGG-M (2013)
 - **AlexNet (2012)**
 - 16 convolutional layers

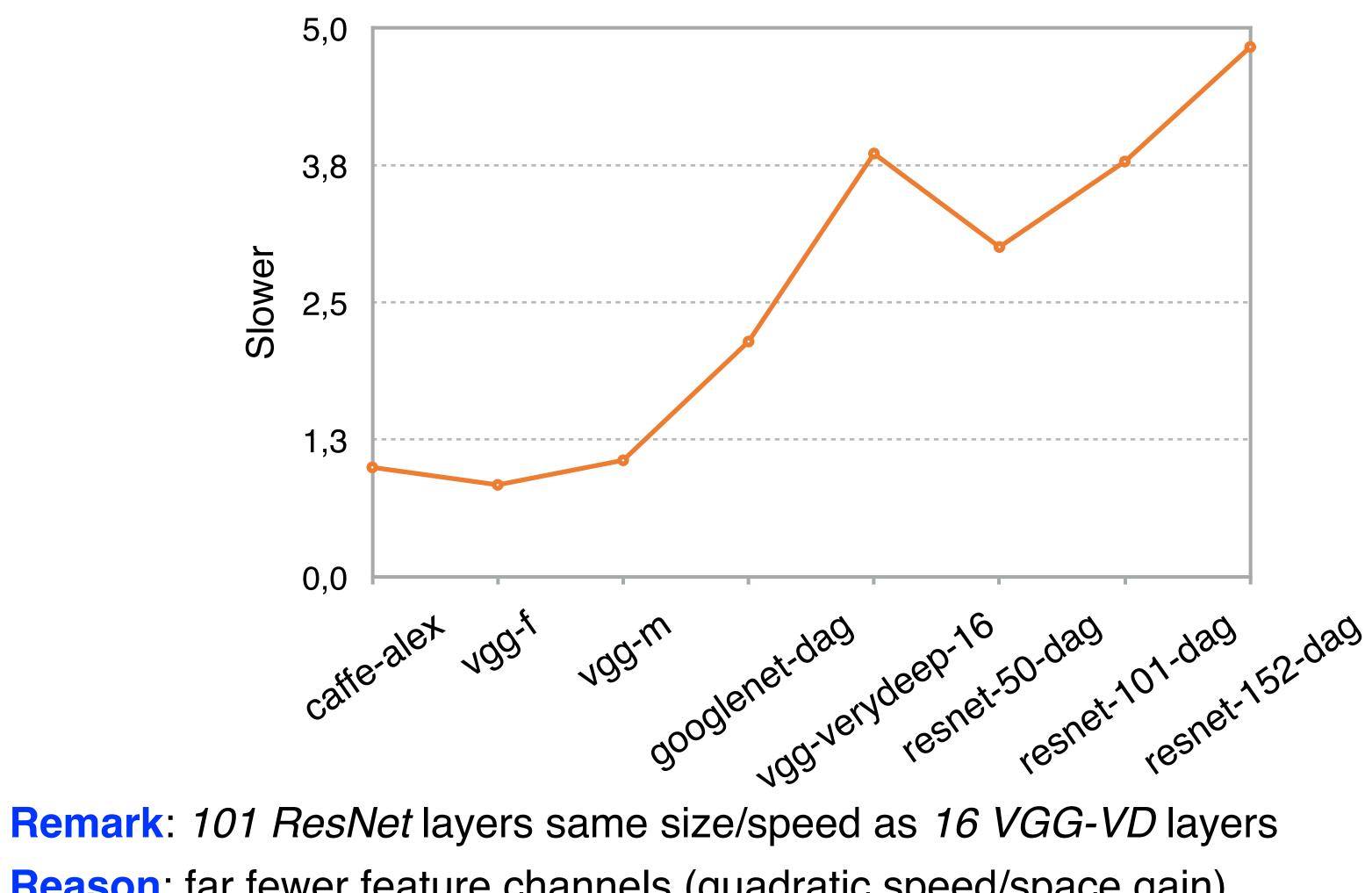
152 convolutional layers



Slide: A. Vedaldi

$3 \times \text{more accurate in 3 years}$





Reason: far fewer feature channels (quadratic speed/space gain) Moral: optimize your architecture

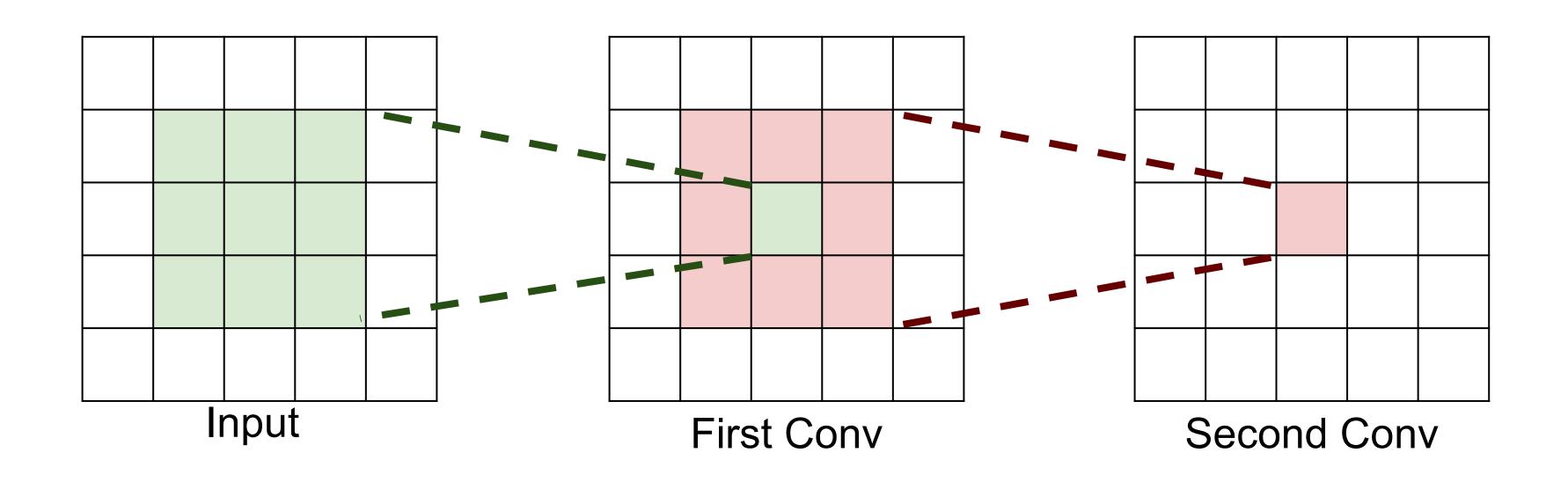
$5 \times slower$

CNN architectures – notes and details

- Increased depth of recent architectures
- Number of parameters matter (How to count parameters?)
- Power of small filters, e.g. 3x3 convolutions
- ResNet architecture

The power of small filters

Q: What region of input does each neuron in 2nd CONV see?



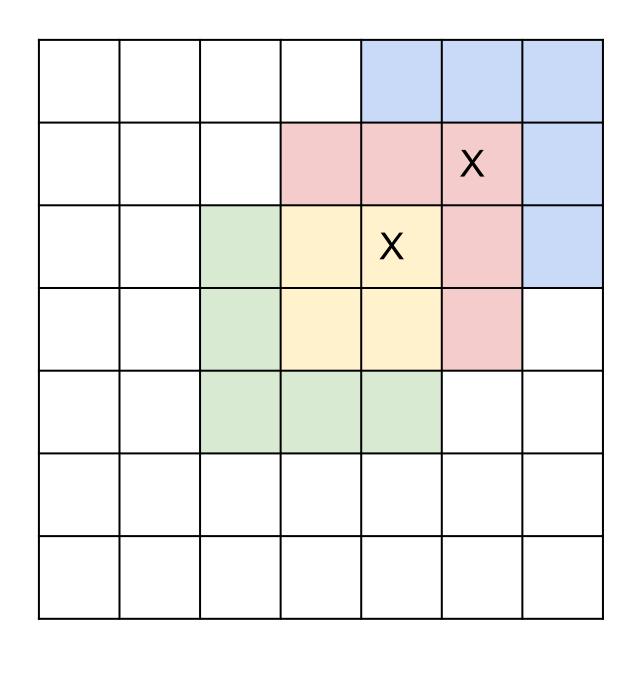
Suppose we stack two CONV layers with receptive field size 3x3

Answer: [5x5]

Slide: A. Karpathy / L. Fei Fei

The power of small filters

Q: What region of input does each neuron in 3rd CONV see?



Suppose we stack three CONV layers with receptive filed size 3x3

Answer: [7x7]

Slide: A. Karpathy / L. Fei Fei

The power of small filters

Suppose input has depth C & we want output depth C as well.

1x CONV with 7x7 filters

Number of weights:

 $C^{*}(7^{*}7^{*}C)$ = 49 C^2

- - 3x CONV with 3x3 filters

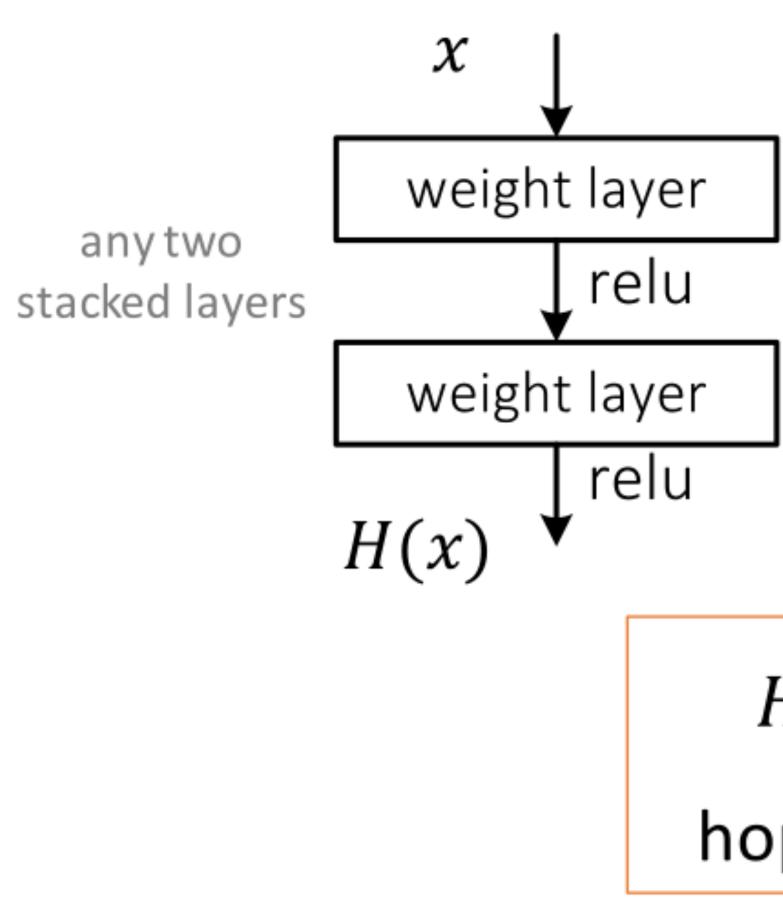
Number of weights:

 $C^{*}(3^{*}3^{*}C) + C^{*}(3^{*}3^{*}C) + C^{*}(3^{*}3^{*}C)$ $= 3 * 9 * C^{2}$ $= 27 C^{2}$

Slide: A. Karpathy / L. Fei Fei

Residual networks [ResNets]

Plain net



Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

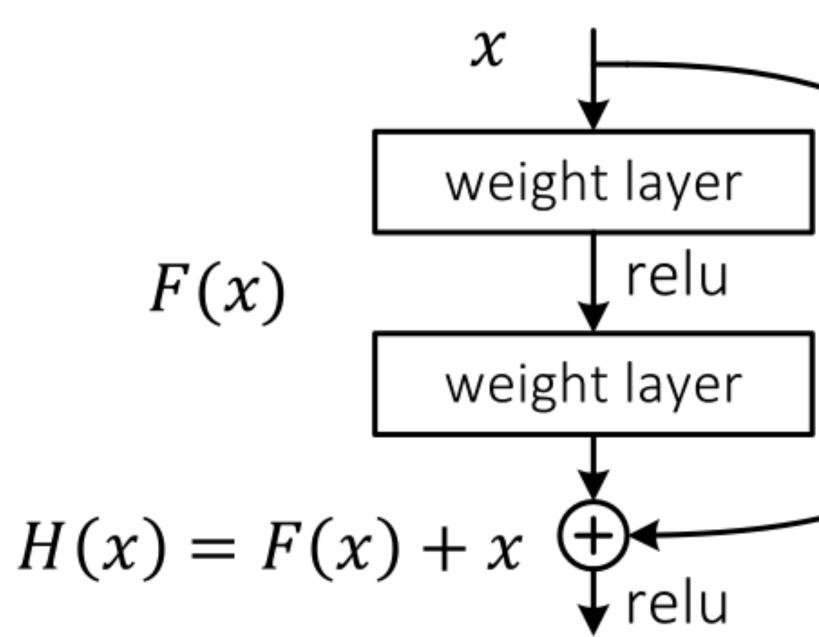
Slide: K. He

H(x) is any desired mapping,

hope the 2 weight layers fit H(x)

Residual networks [ResNets]

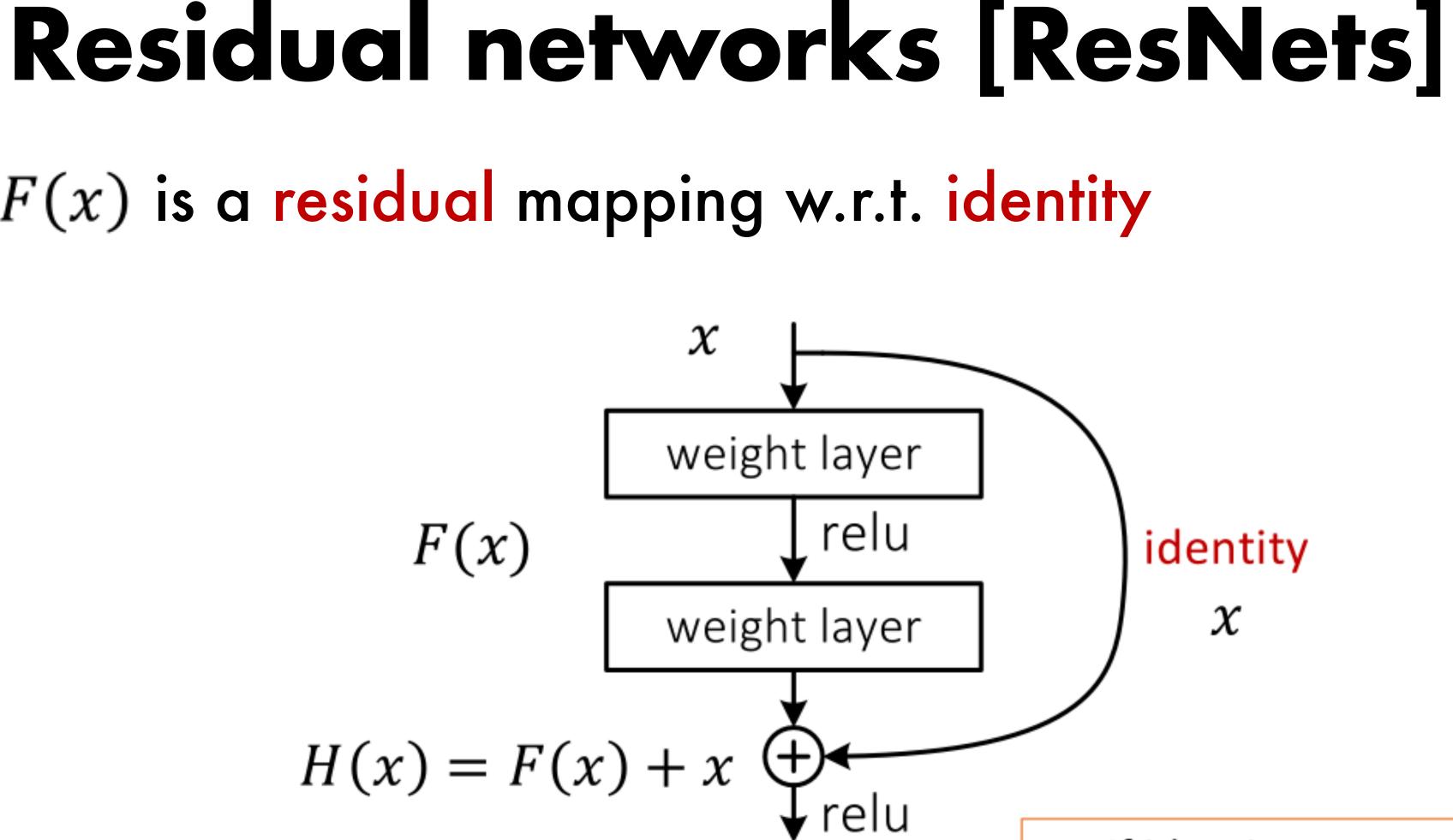
Residual net



identity х

H(x) is any desired mapping, hope the 2 weight layers fit H(x)hope the 2 weight layers fit F(x)let H(x) = F(x) + x

F(x) is a residual mapping w.r.t. identity



- If identity were optimal, • easy to set weights as 0
- If optimal mapping is closer to identity, easier to find small fluctuations

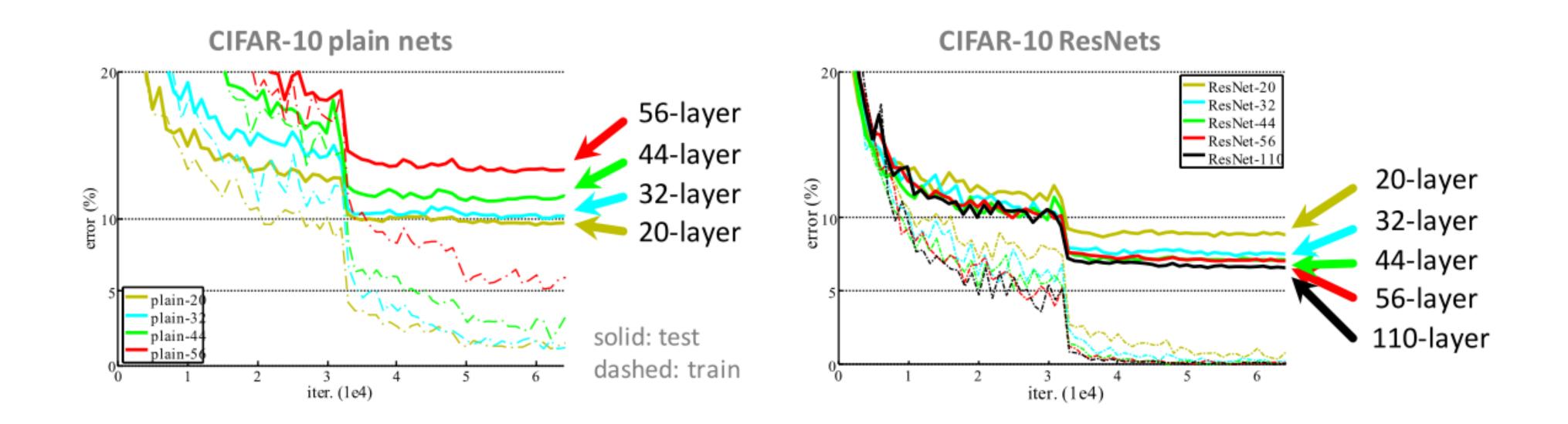
Network design

Basic design (vgg-style)

- almost all 3x3 conv
- Spatial size /2 => # filters x2
- Simple design, just deep
- No fully connected layers
- No dropout

PlainNet

CIFAR-10 experiments



- Deep ResNets can be trained without difficulties
- Deeper ResNets have lower training error and lower test error

Agenda

- 1. Recap: Bag of Visual Words, Analogy with NNs
- 2. Neural networks (NNs) for computer vision:
 - Applications
 - A brief history: from perceptron to MLPs to CNNs

• 3. Convolutional neural networks (CNNs)

- Standard layers
- Recap: Training NNs
- Visualizing CNNs
- Pretraining & finetuning NNs
- Typical CNN architectures

• 4. Beyond CNNs

- Attention & Transformer
- Vision Transformers

5. Beyond classification

Do we need convolutions?

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* [‡] illia.polosukhin@gmail.com

NeurIPS 2017

MLP-Mixer: An all-MLP Architecture for Vision

Ilya Tolstikhin*, Neil Houlsby*, Alexander Kolesnikov*, Lucas Beyer*,

Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner,

Daniel Keysers, Jakob Uszkoreit, Mario Lucic, Alexey Dosovitskiy

*equal contribution

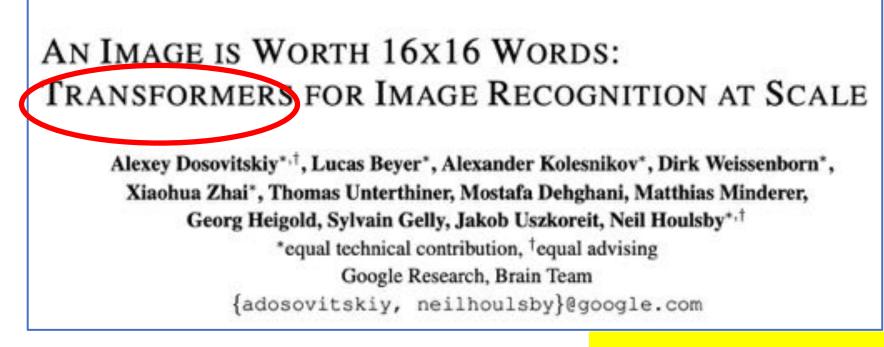
Google Research, Brain Team

{tolstikhin, neilhoulsby, akolesnikov, lbeyer, xzhai, unterthiner, jessicayung[†], andstein, keysers, usz, lucic, adosovitskiy}@google.com

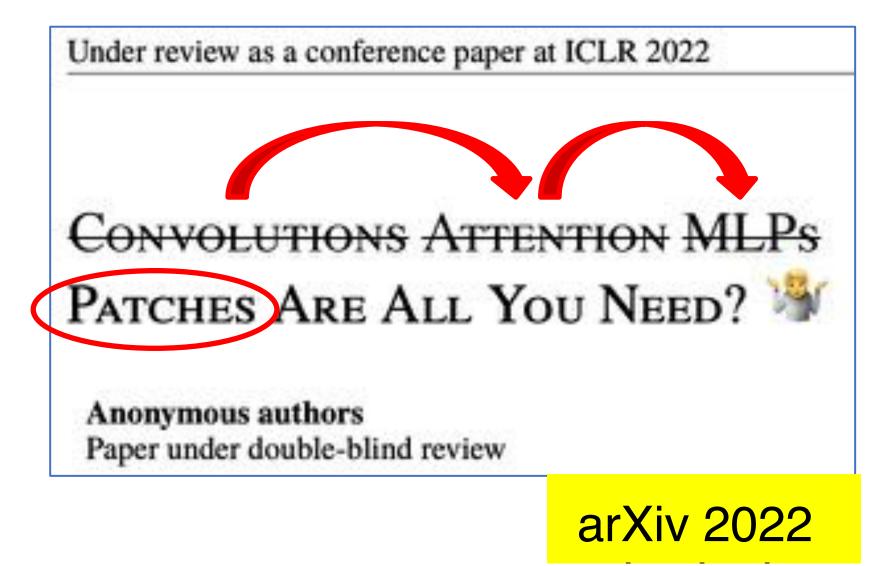
NeurIPS 2021

https://github.com/KentoNishi/awesome-all-you-need-papers

Published as a conference paper at ICLR 2021



ICLR 2021



Recent Hype#1: Transformers

- Transformers = neural network architectures stacking "attention" layers¹
- performance than CNNs given enough data.
- Initially successful for natural language processing • Then applied to computer vision². Better
- The hype still continues today.
- What is attention?

¹ Vaswani et al. "Attention is all you need", NeurIPS 2017.

² Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale", ICLR 2021.

Attention & Transformer

- Basic transformer model
- Image transformers

Attention

Motivation: sequence-to-sequence models

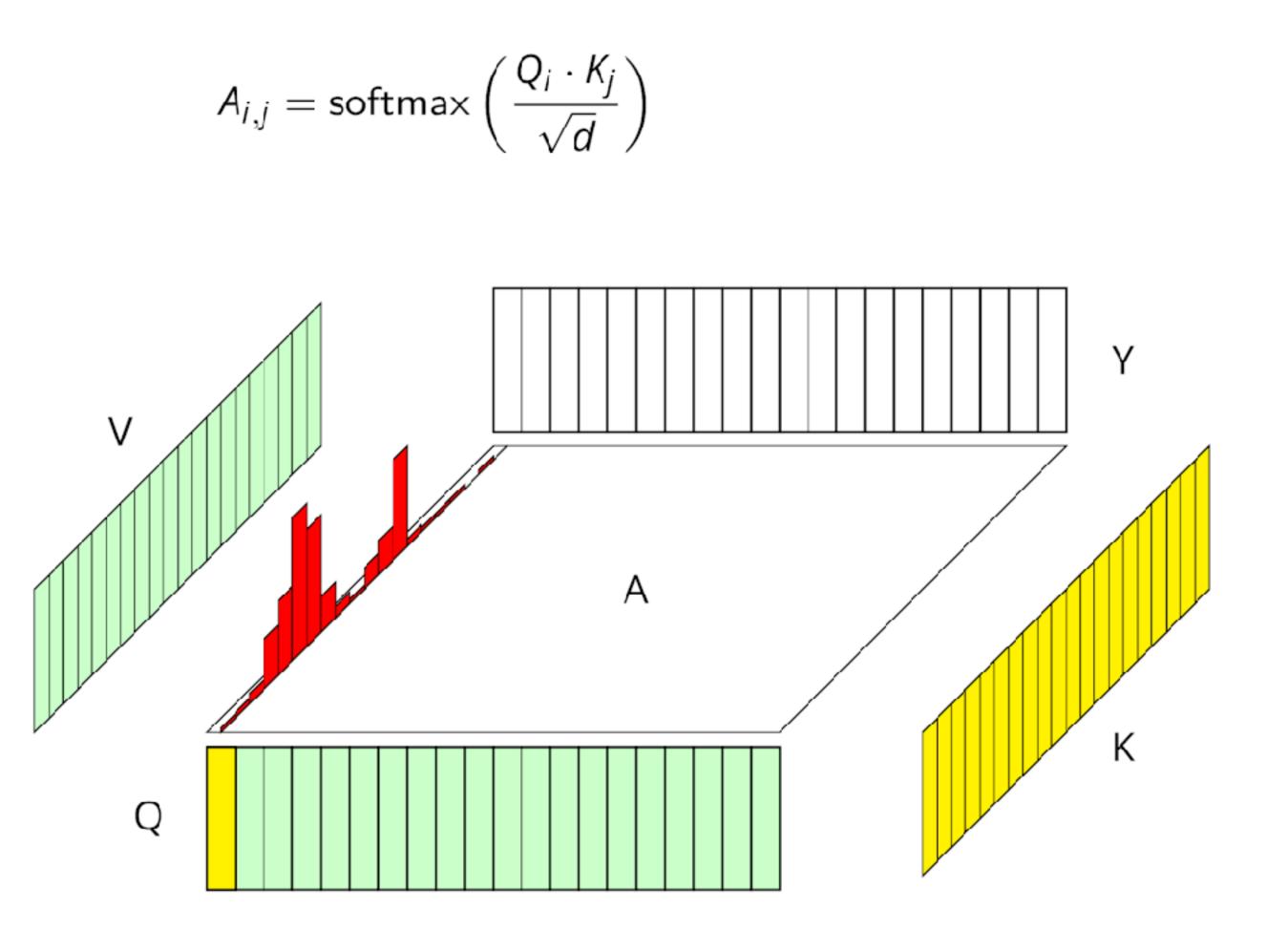
Attention(Q, K, V)

$$A_{i,j} = \operatorname{softmax}\left(\frac{Q_i \cdot K_j}{\sqrt{d}}\right)$$

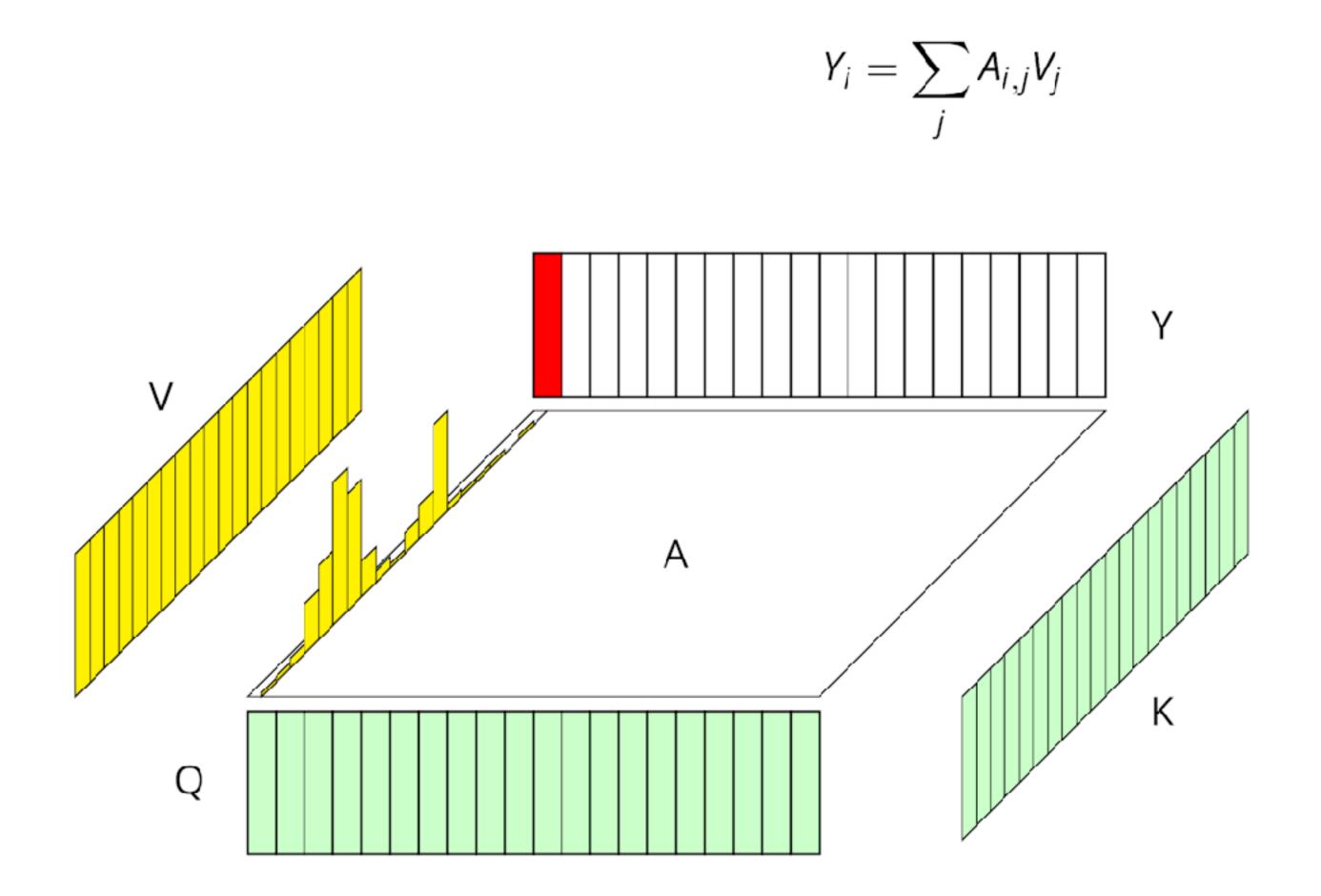
$$= \operatorname{softmax}(\frac{\mathbf{Q}\mathbf{K}^{\mathsf{T}}}{\sqrt{d}})\mathbf{V}$$

$$Y_i = \sum_j A_{i,j} V_j$$

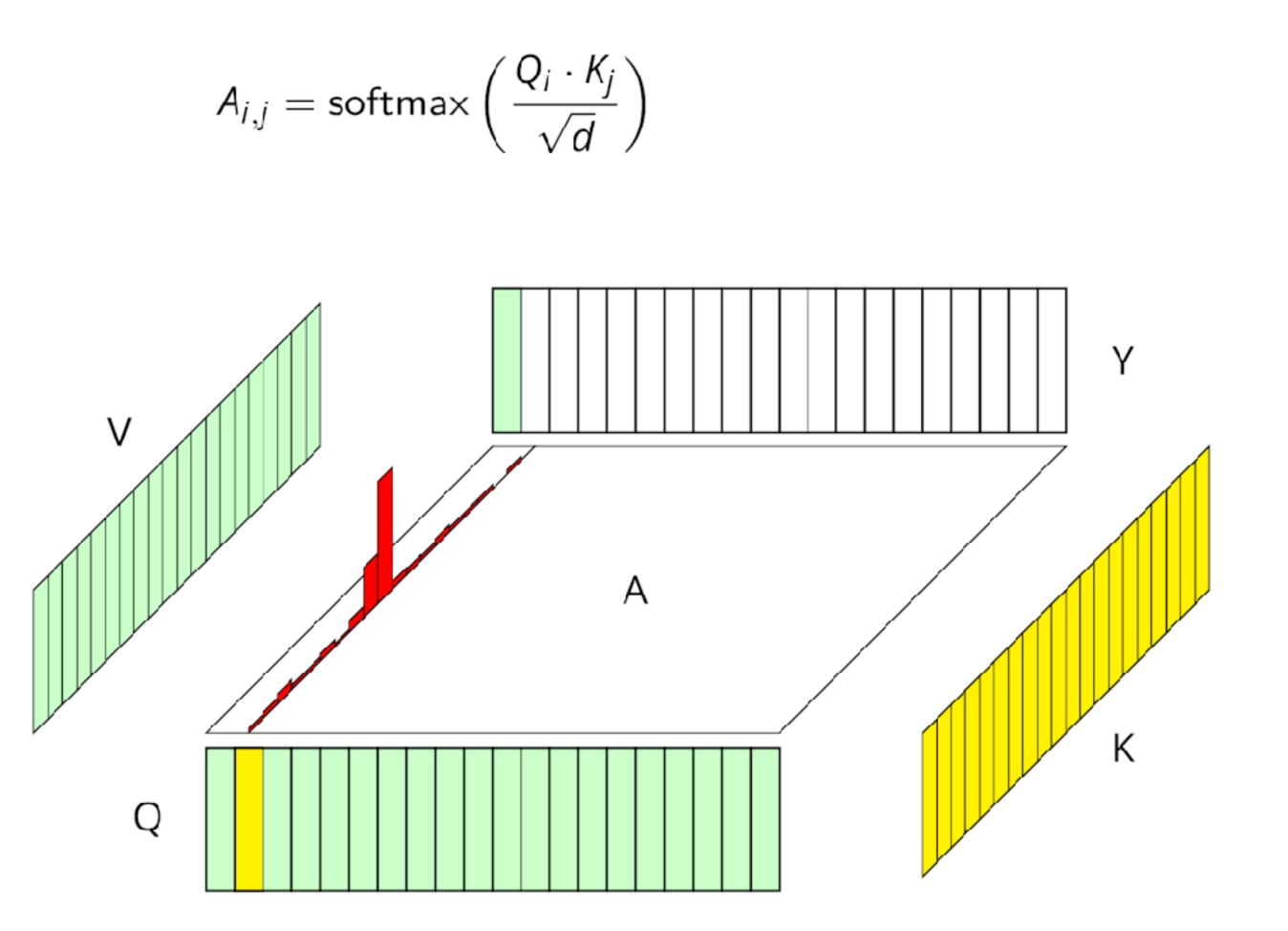
Given a query sequence Q, a key sequence K, and a value sequence V, compute an attention matrix A by matching Qs to Ks, and weight V with it to get the sequence Y.



Given a query sequence Q, a key sequence K, and a value sequence V, compute an attention matrix A by matching Qs to Ks, and weight V with it to get the sequence Y.

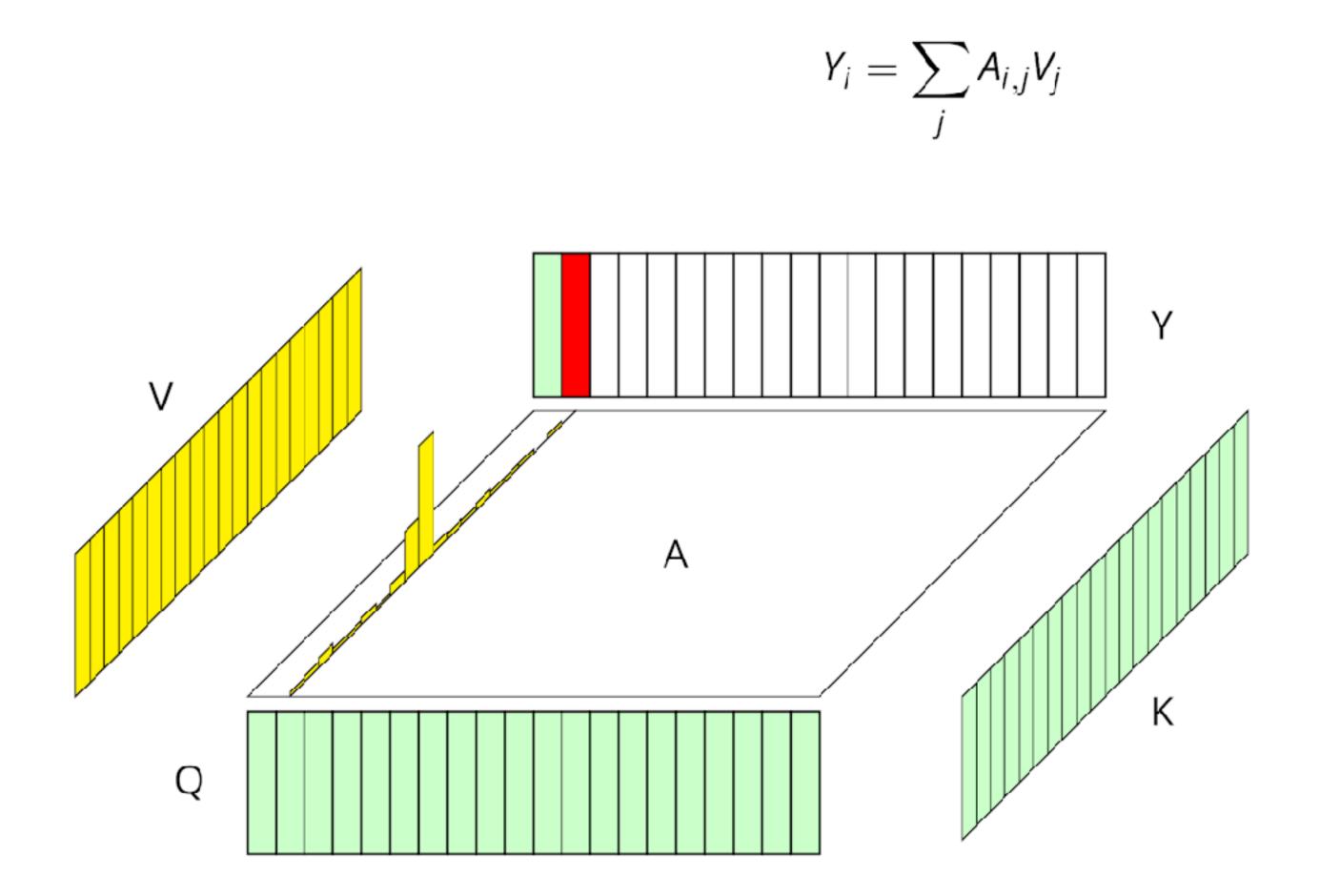


Given a query sequence Q, a key sequence K, and a value sequence V, compute an attention matrix A by matching Qs to Ks, and weight V with it to get the sequence Y.



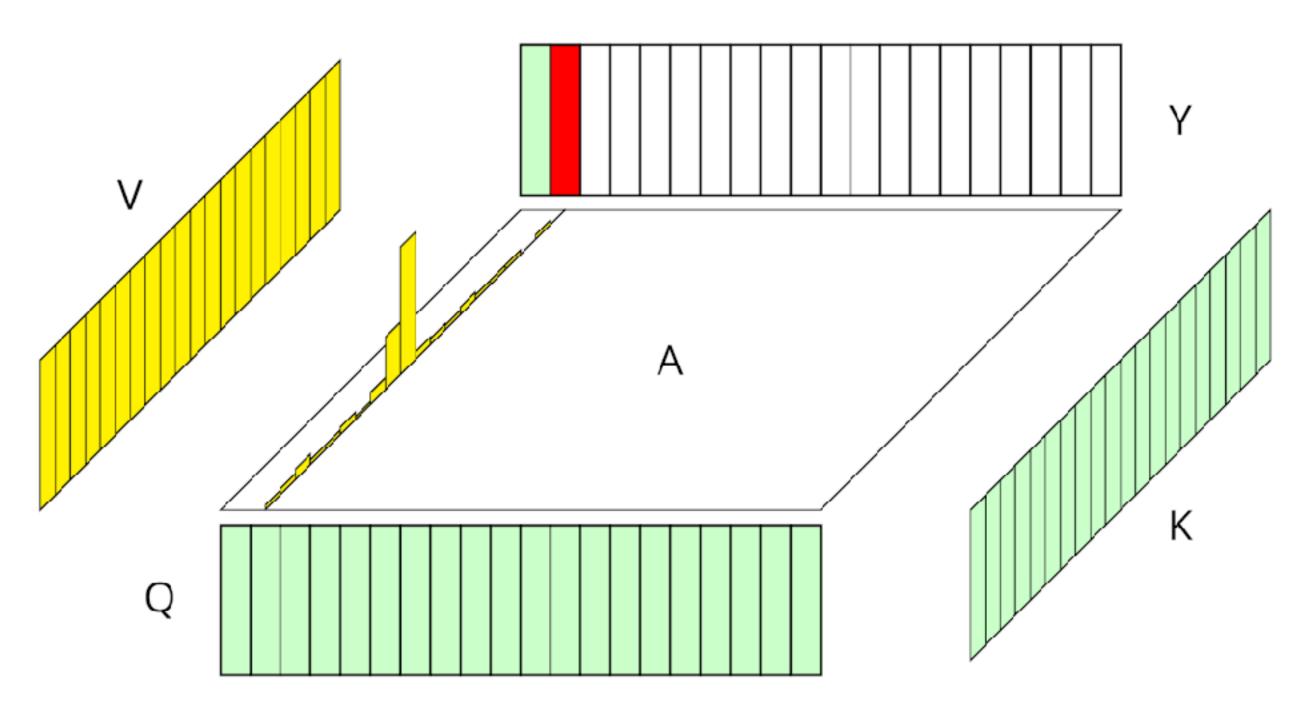
171

Given a query sequence Q, a key sequence K, and a value sequence V, compute an attention matrix A by matching Qs to Ks, and weight V with it to get the sequence Y.



- Query and Key dimensionalities are the same.
- Value dimensionality may be different. •
- Output dimensionality will be the same as Value.

projected three times.

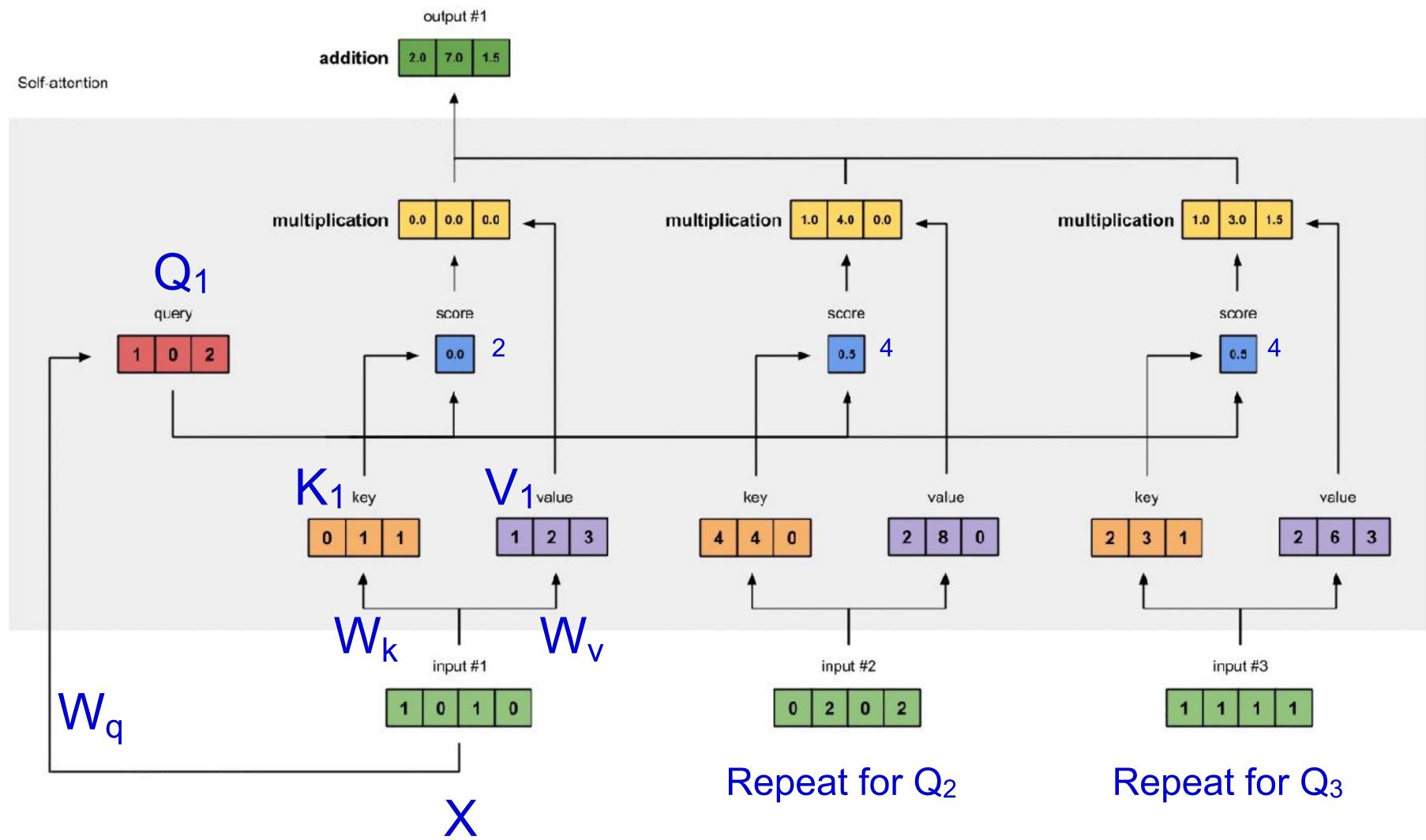


In "self-attention", (Q, K, V) obtained from the same input, linearly

 W_{Q}

Wĸ

Self-Attention Example Y_1



https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

 Y_2

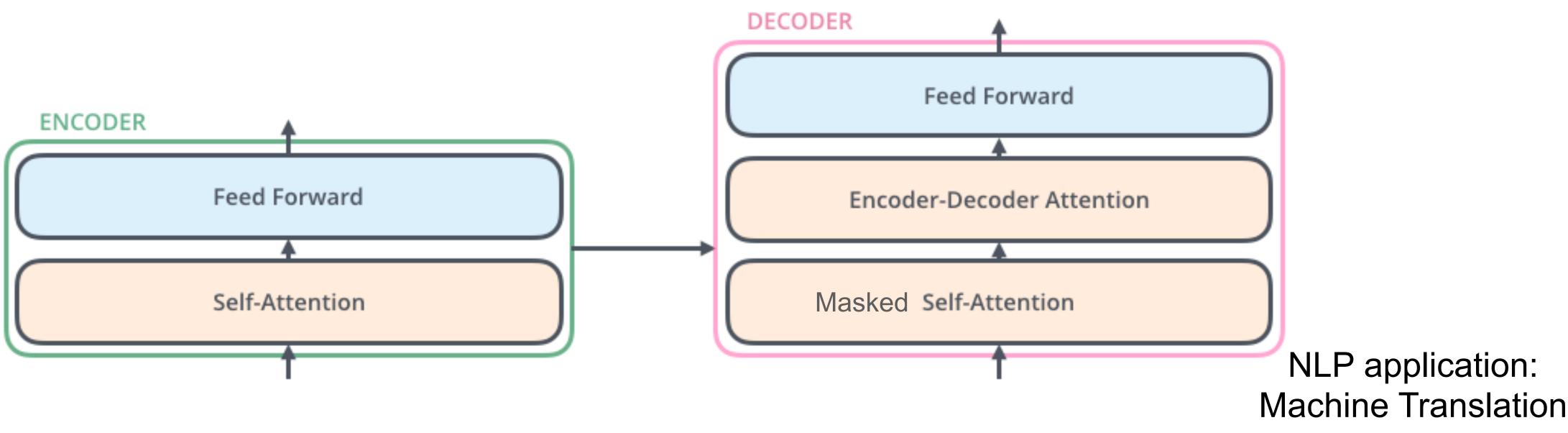
$$A_{i,j} = \operatorname{softmax}\left(\frac{Q_i \cdot K_j}{\sqrt{d}}\right)$$

$$Y_i = \sum_j A_{i,j} V$$

Basic transformer model Sequence-to-sequence architecture using only point-wise processing and attention (no recurrent units or convolutions)

Encoder: receives entire input sequence and outputs encoded sequence of the same length

Image source



A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, NeurIPS 2017

Decoder: predicts next token conditioned on encoder output and previously predicted tokens

Key-Value-Query attention model

- Key vectors: $K = XW_K$
- Value Vectors: $V = XW_V$
- Query vectors
- Similarities: scaled dot-product attention

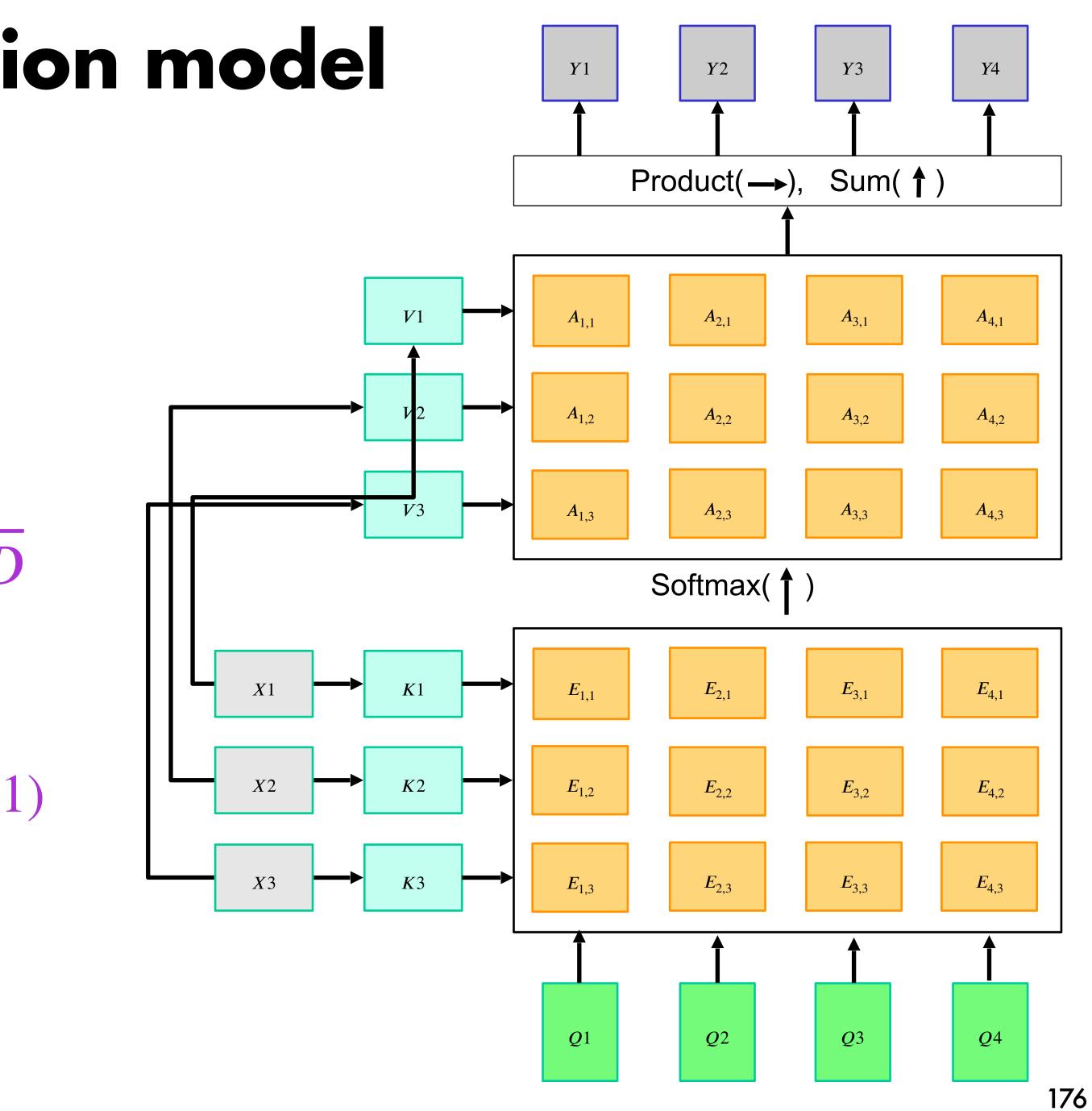
 $E_{i,j} = \frac{\left(Q_i \cdot Kj\right)}{\sqrt{D}} \text{ or } E = QK^T / \sqrt{D}$

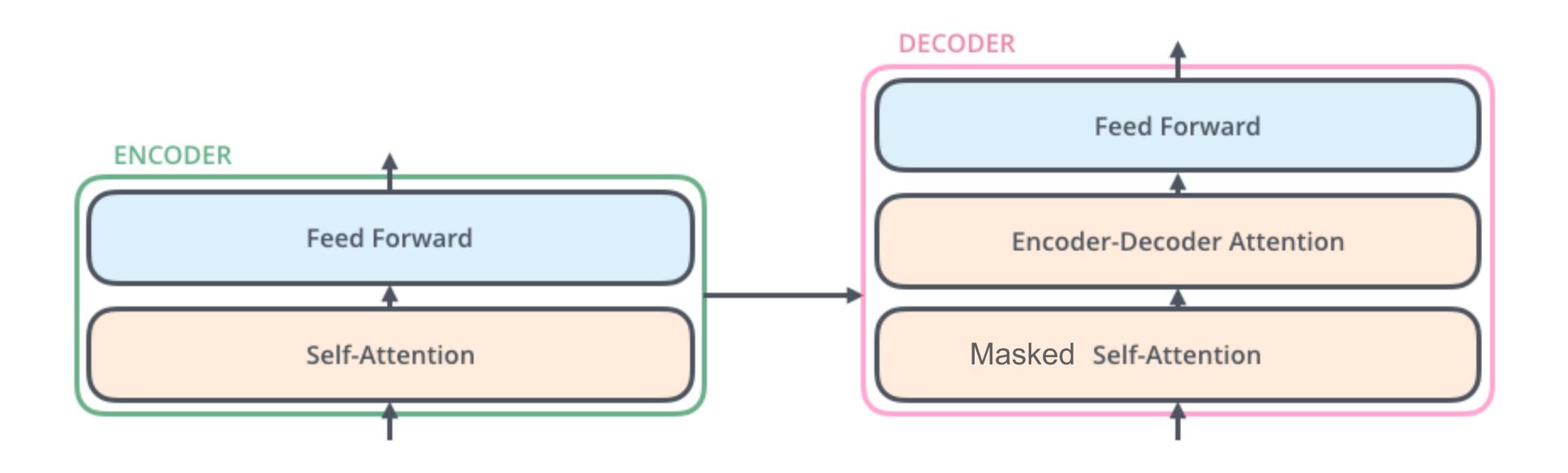
(*D* is the dimensionality of the keys)

- Attn. weights: $A = \operatorname{softmax}(E, \dim = 1)$
- Output vectors:

$$Y_i = \sum_j A_{i,j} V_j$$
 or $Y = AV$

Adapted from <u>J. Johnson</u>





- \bullet
- come from output of encoder

Encoder self-attention: queries, keys, and values come from previous layer of encoder Decoder self-attention: values corresponding to future decoder outputs are masked out Encoder-decoder attention: queries come from previous decoder layer, keys and values

Self-attention

Used to capture context within the sequence •

As we are encoding "it", we should focus on "the animal"

Image source

The animal didn't cross the street animal didn't too too because because it vas vas

As we are encoding "it", we should focus on "the street"

Self-attention layer

- Query vectors: $Q = XW_Q$
- Key vectors: $K = XW_K$
- Value vectors: $V = XW_V$
- Similarities: scaled dot-product attention

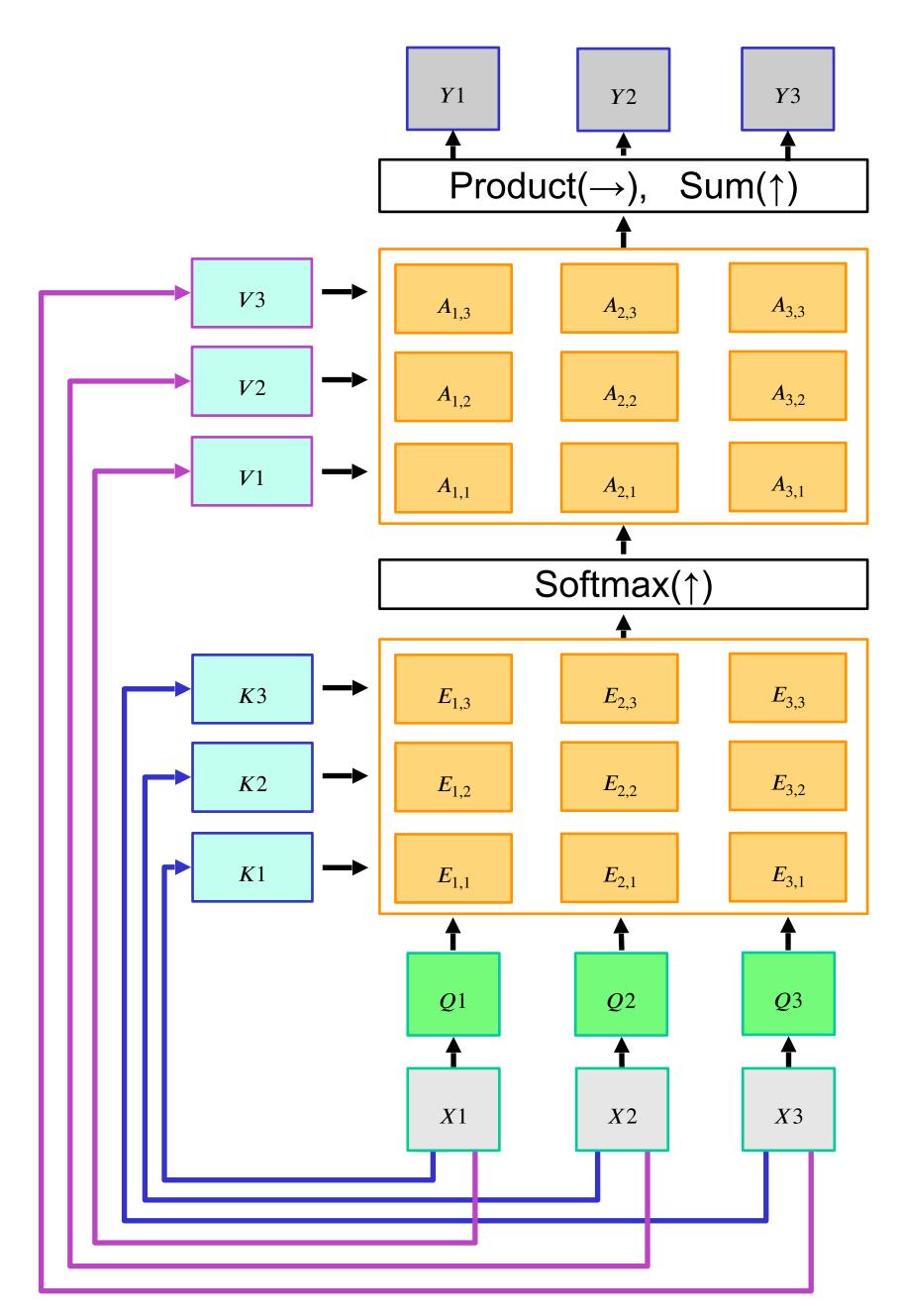
$$E_{i,j} = \frac{(Q_i \cdot Kj)}{\sqrt{D}} \text{ or } E = QK^T / \sqrt{D}$$

(*D* is the dimensionality of the keys)

- Attn. weights: $A = \operatorname{softmax}(E, \dim = 1)$
- Output vectors:

$$Y_i = \sum_j A_{i,j} V_j$$
 or $Y = AV$

Adapted from <u>J. Johnson</u>

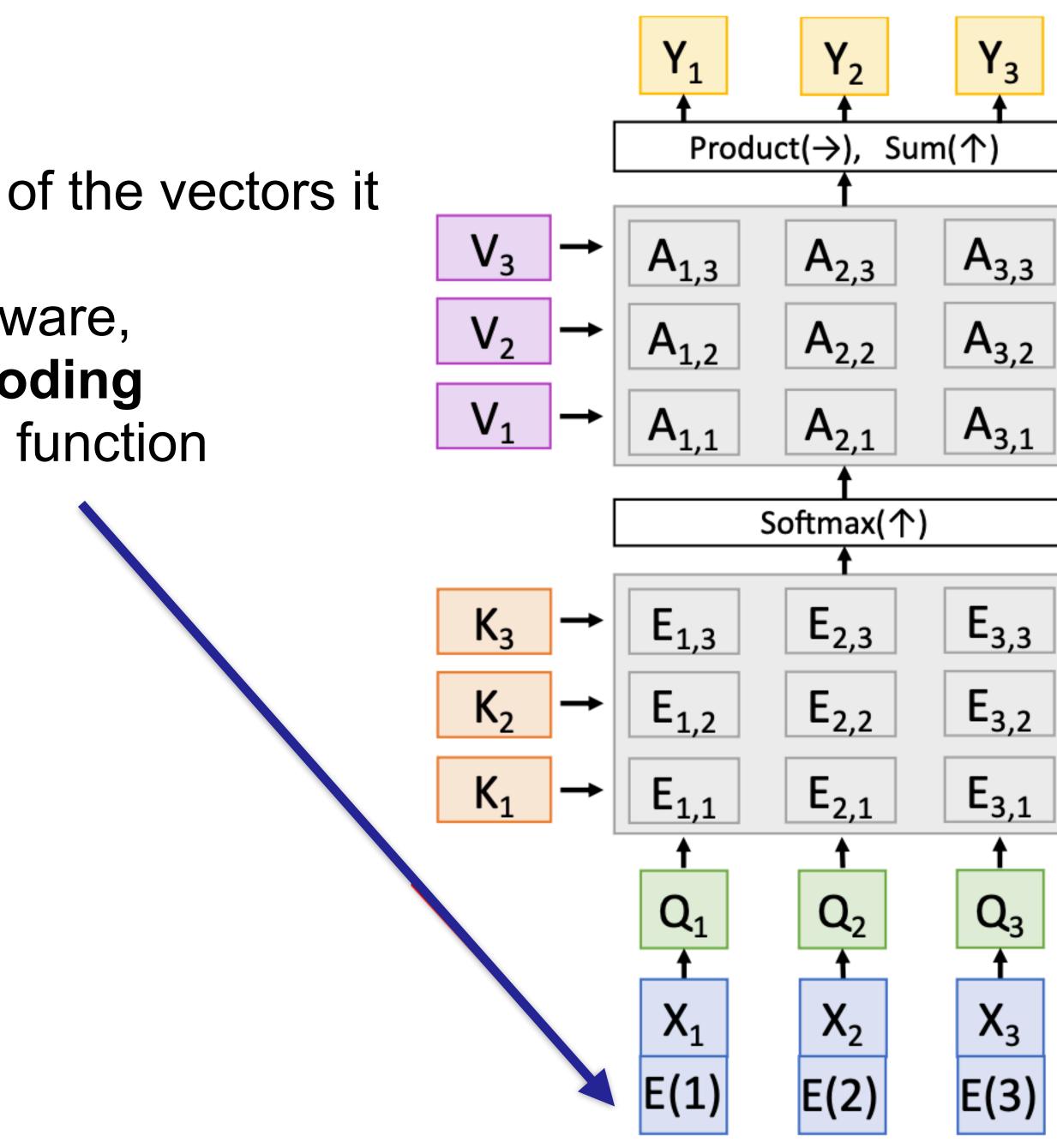


One query per input vector

Positional encoding

- Self attention doesn't "know" the order of the vectors it is processing!
- In order to make processing position-aware, concatenate input with positional encoding
- E can be learned lookup table, or fixed function

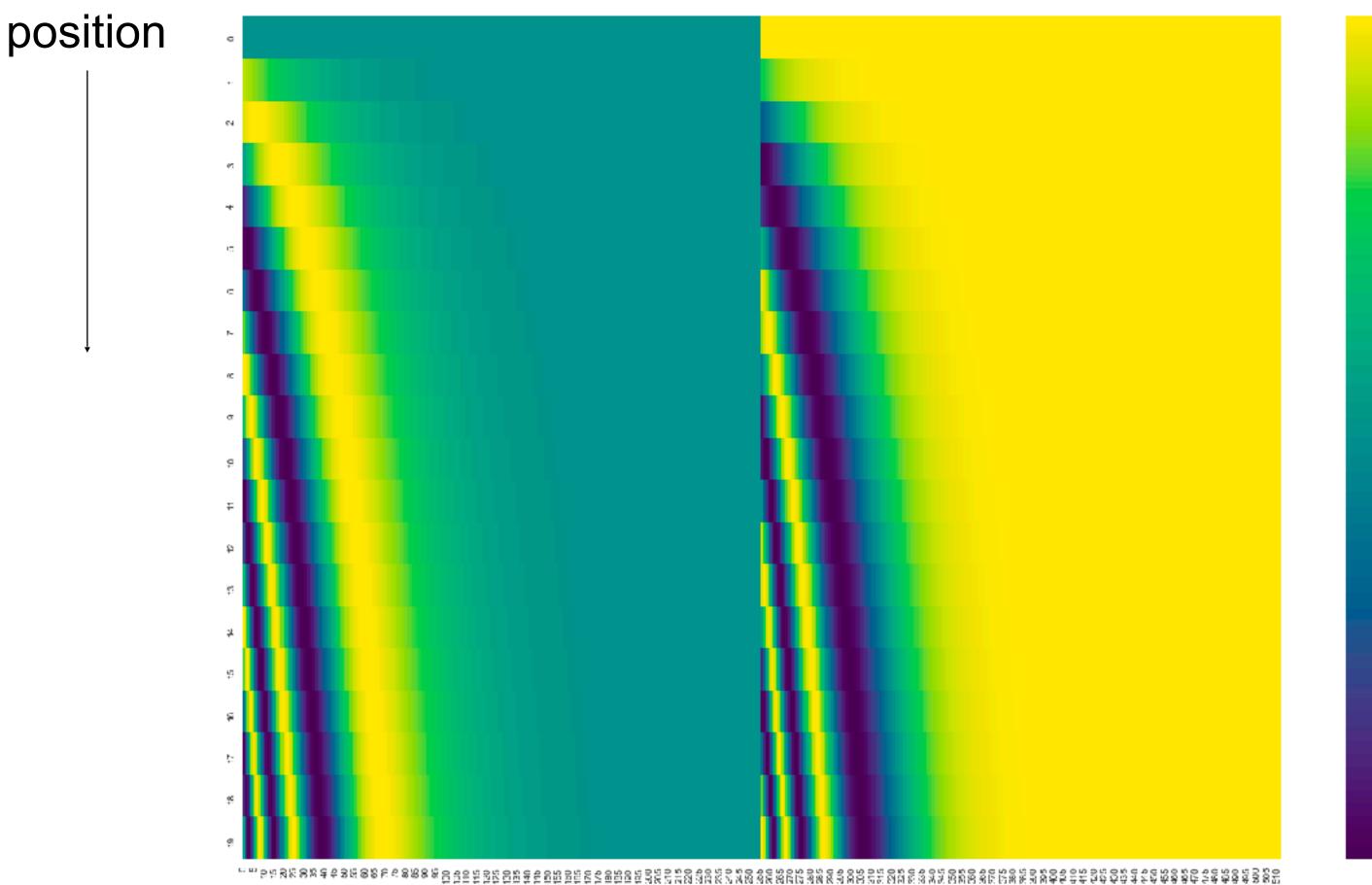
Adapted from <u>J. Johnson</u>



_	_	_	

180

Positional encoding • To give transformer information about ordering of tokens, add function of position (based on sines and cosines) to every input

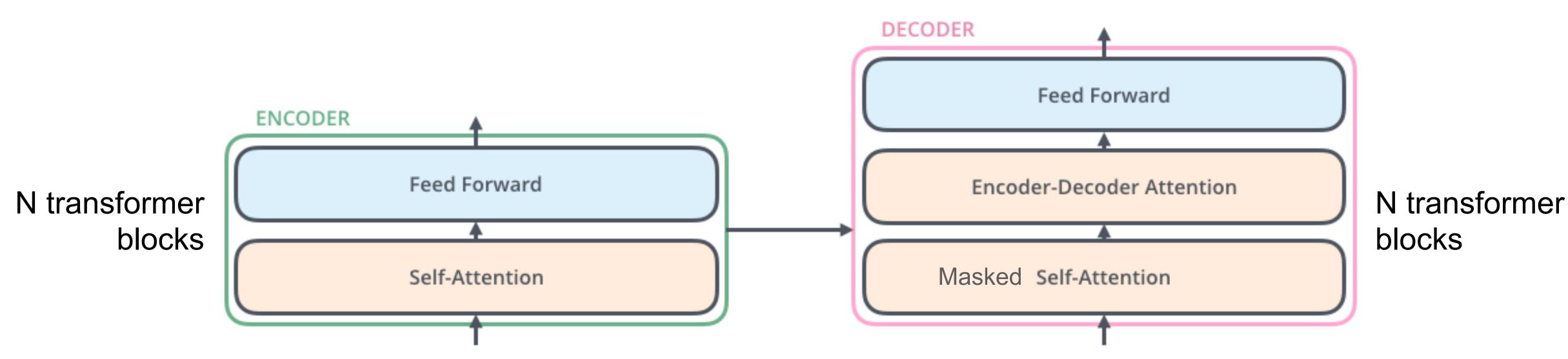


Embedding dimension

Image source

-0.8

Attention mechanisms: Overview



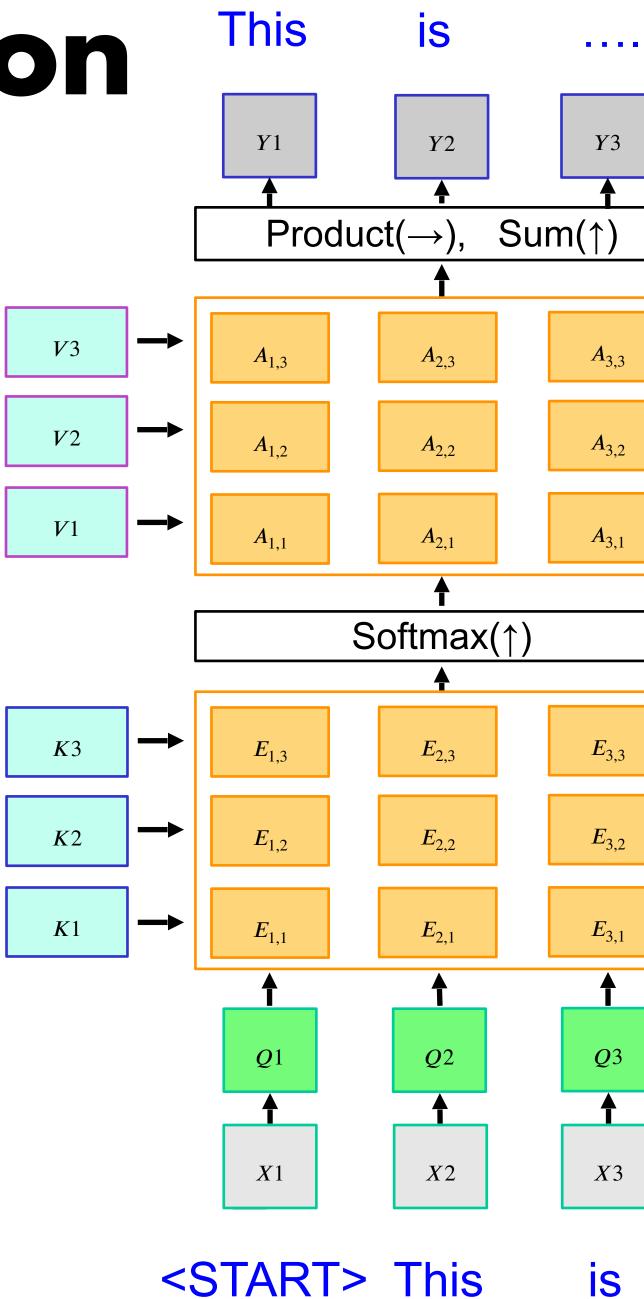
- lacksquare
- come from output of encoder

Encoder self-attention: queries, keys, and values come from previous layer of encoder **Decoder self-attention:** values corresponding to future decoder outputs are masked out Encoder-decoder attention: queries come from previous decoder layer, keys and values

Decoder: Masked self-attention

The decoder should not "look ahead" • in the output sequence

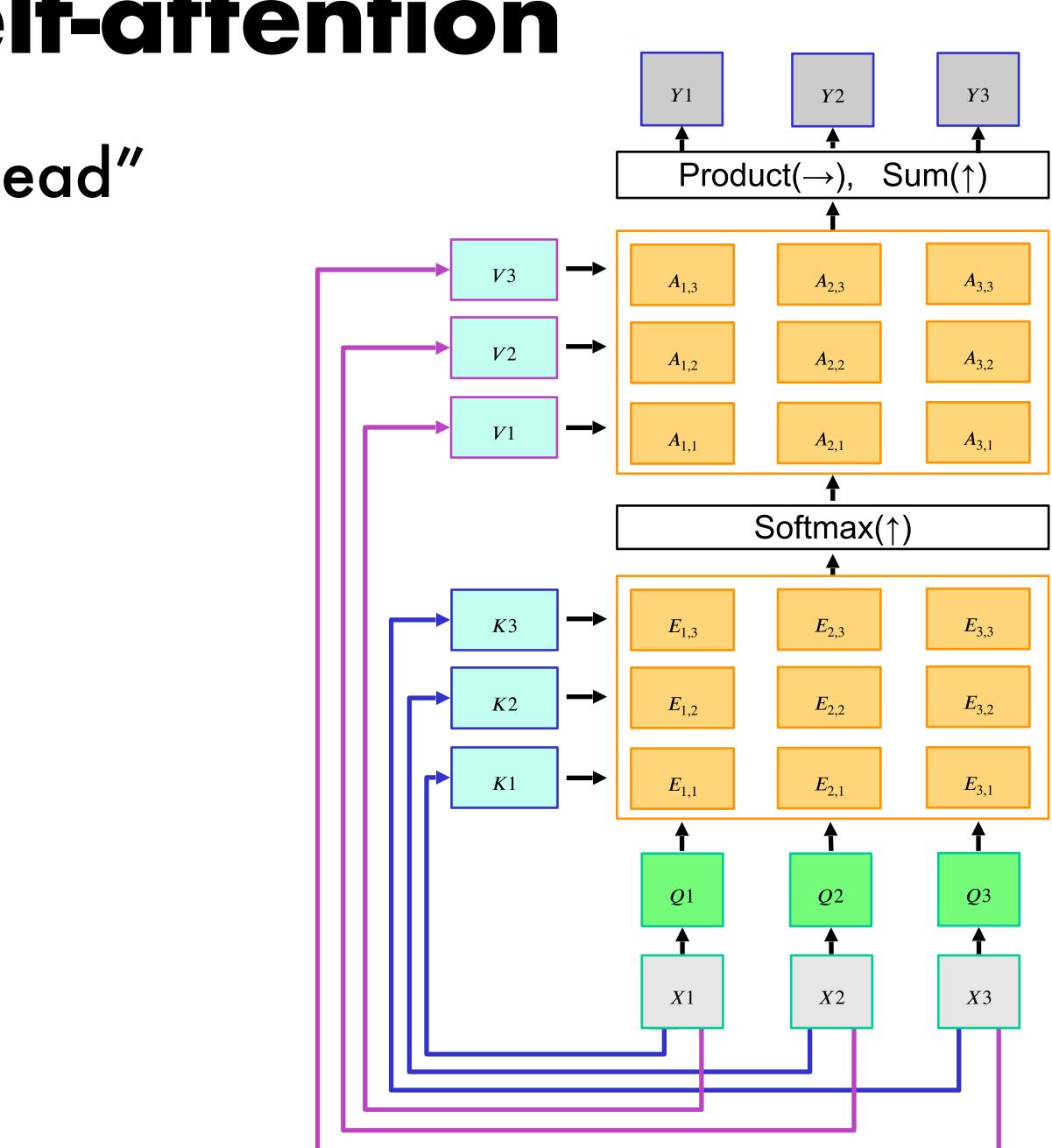
Adapted from <u>J. Johnson</u>



Decoder: Masked self-attention

The decoder should not "look ahead" • in the output sequence

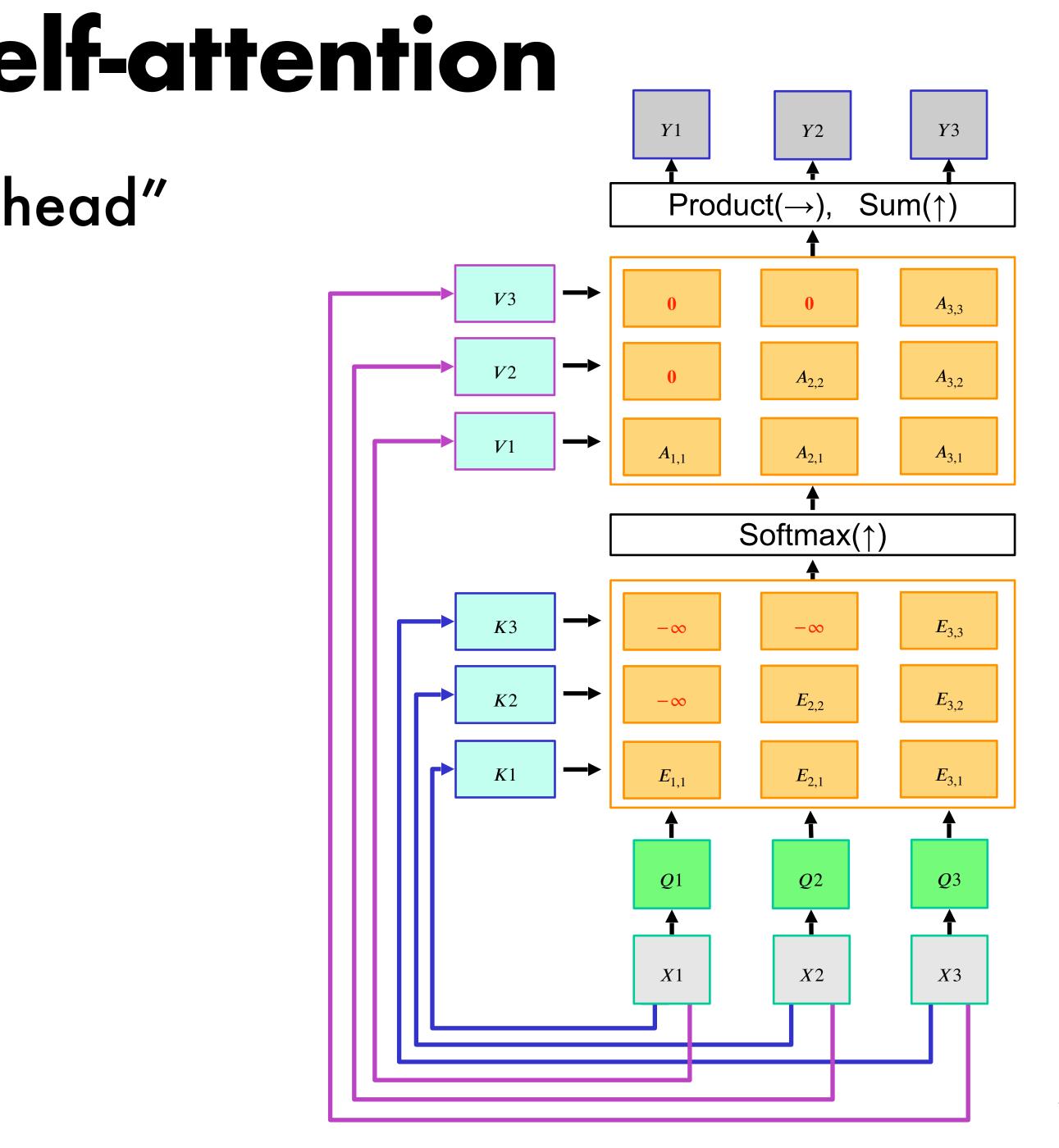
Adapted from <u>J. Johnson</u>



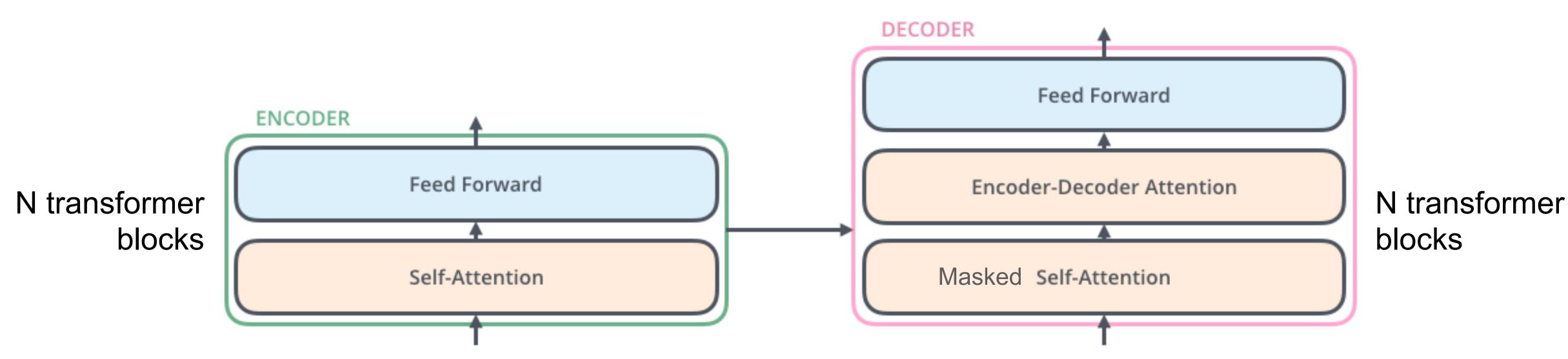
Decoder: Masked self-attention

 The decoder should not "look ahead" in the output sequence

Adapted from <u>J. Johnson</u>



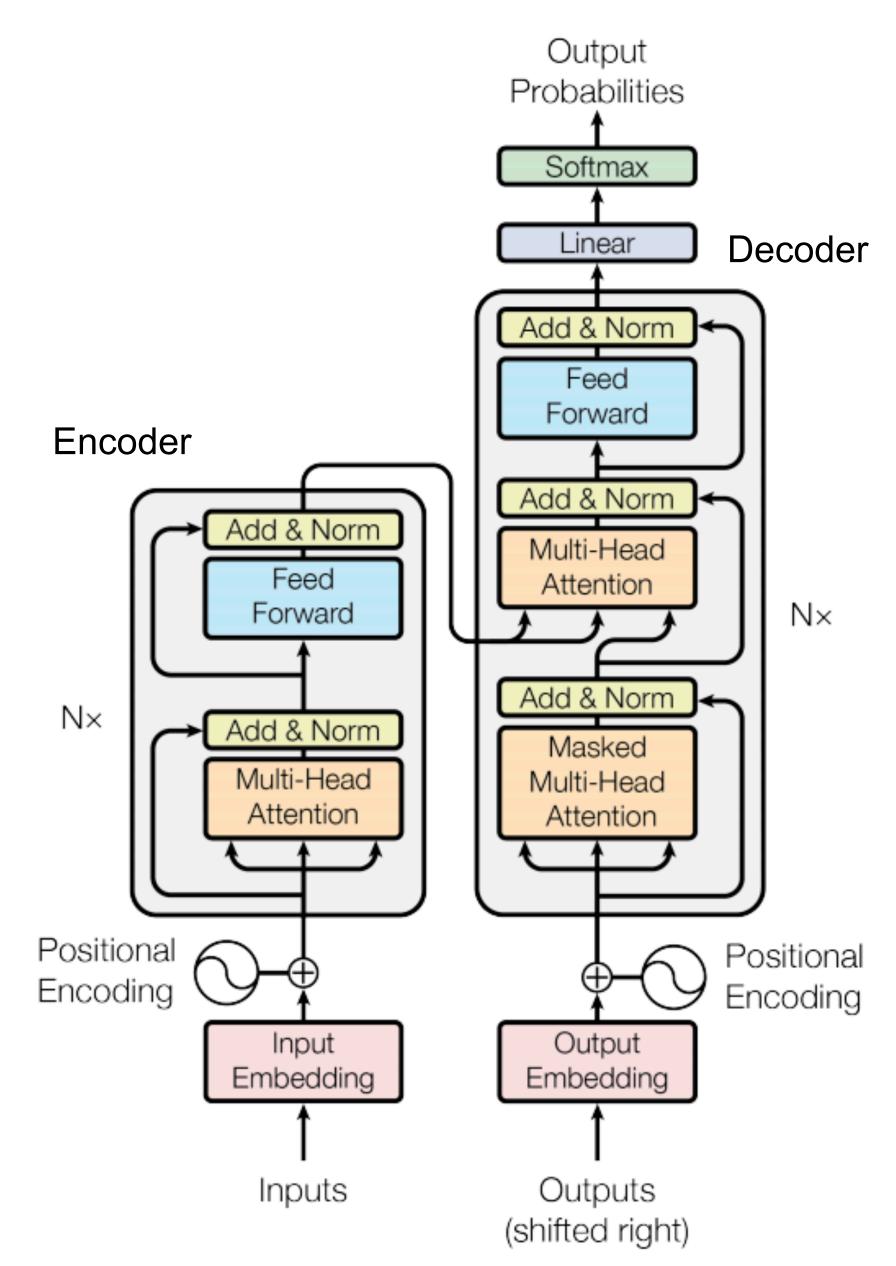
Attention mechanisms: Overview



- lacksquare
- come from output of encoder

Encoder self-attention: queries, keys, and values come from previous layer of encoder **Decoder self-attention:** values corresponding to future decoder outputs are masked out Encoder-decoder attention: queries come from previous decoder layer, keys and values

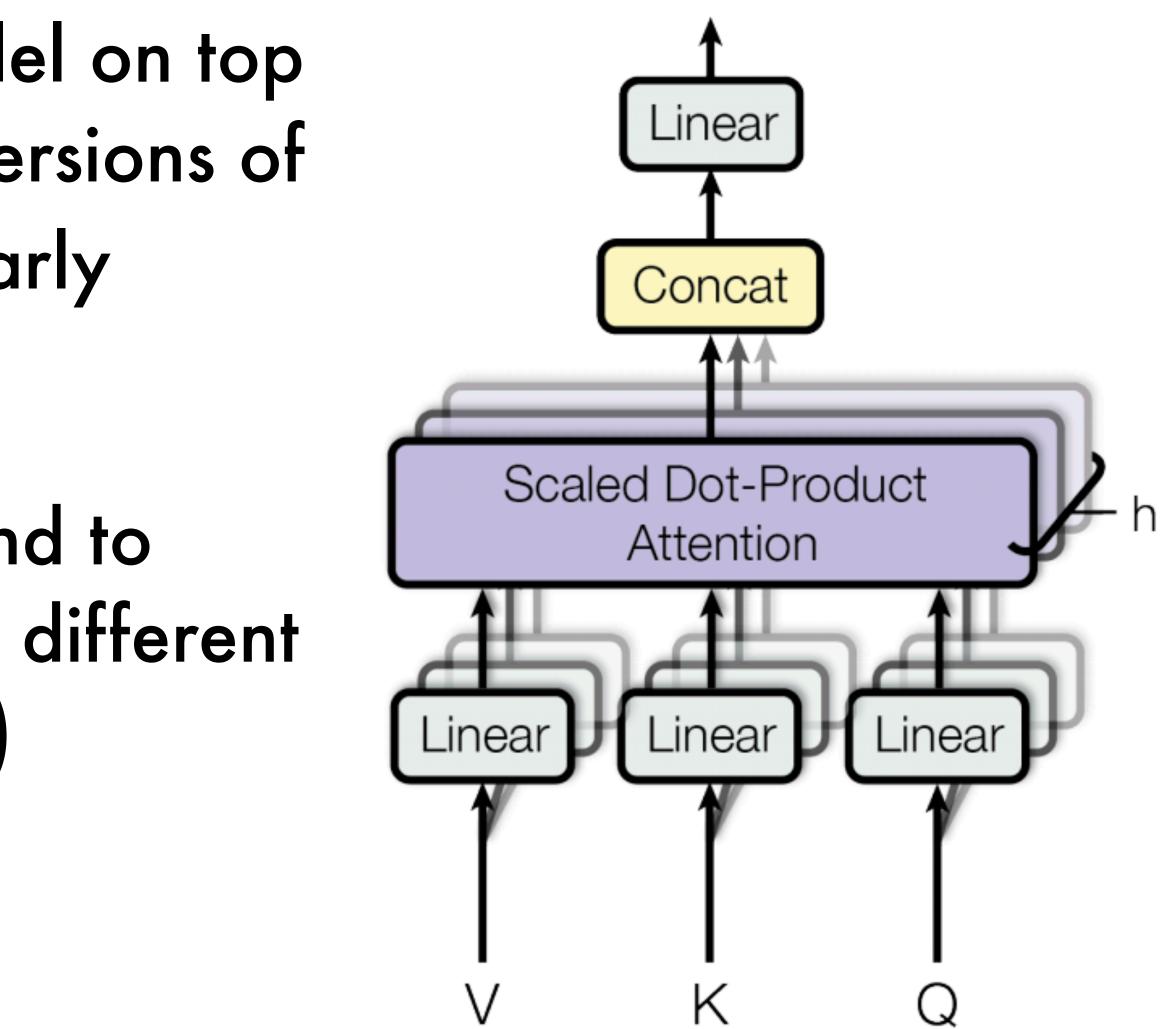
Transformer architecture: Details



A. Vaswani et al., <u>Attention is all you need</u>, NeurIPS 2017

Multi-head attention

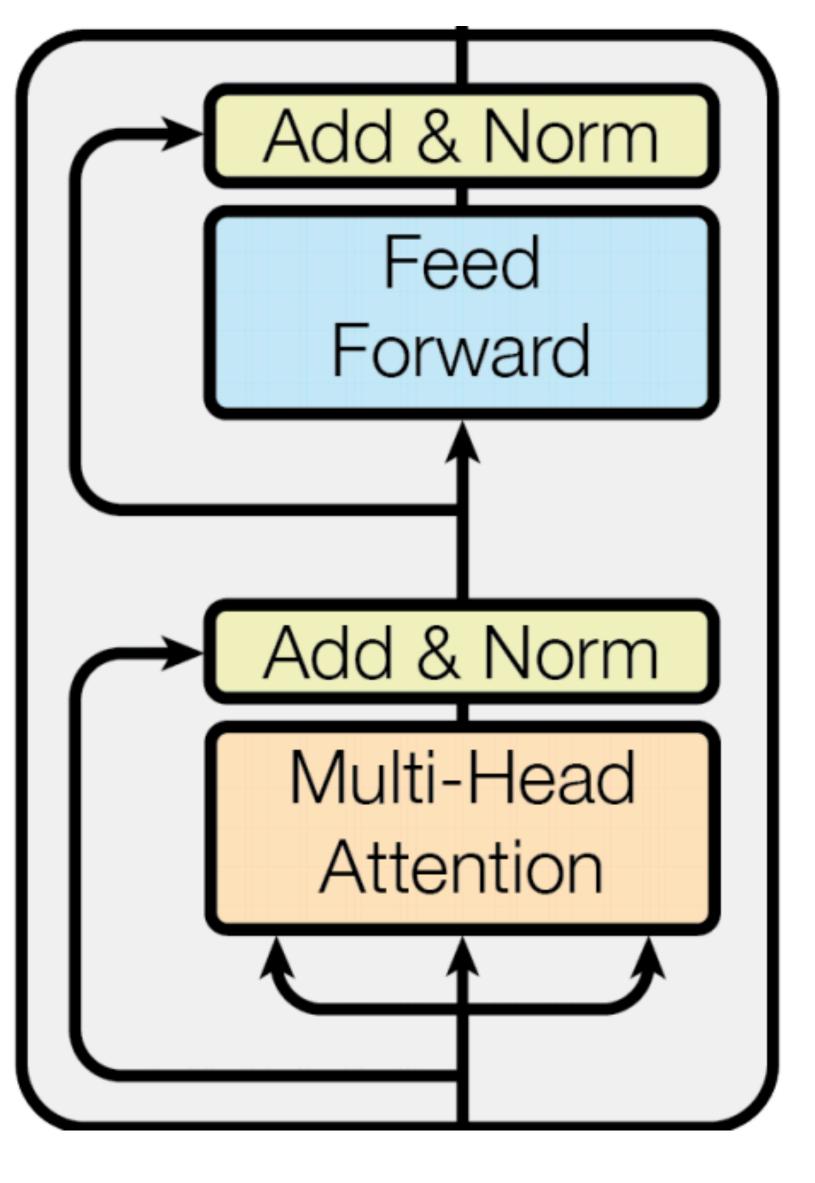
- Run h attention models in parallel on top of different linearly projected versions of Q, K, V; concatenate and linearly project the results
- Intuition: enables model to attend to different kinds of information at different positions (see <u>visualization tool</u>)



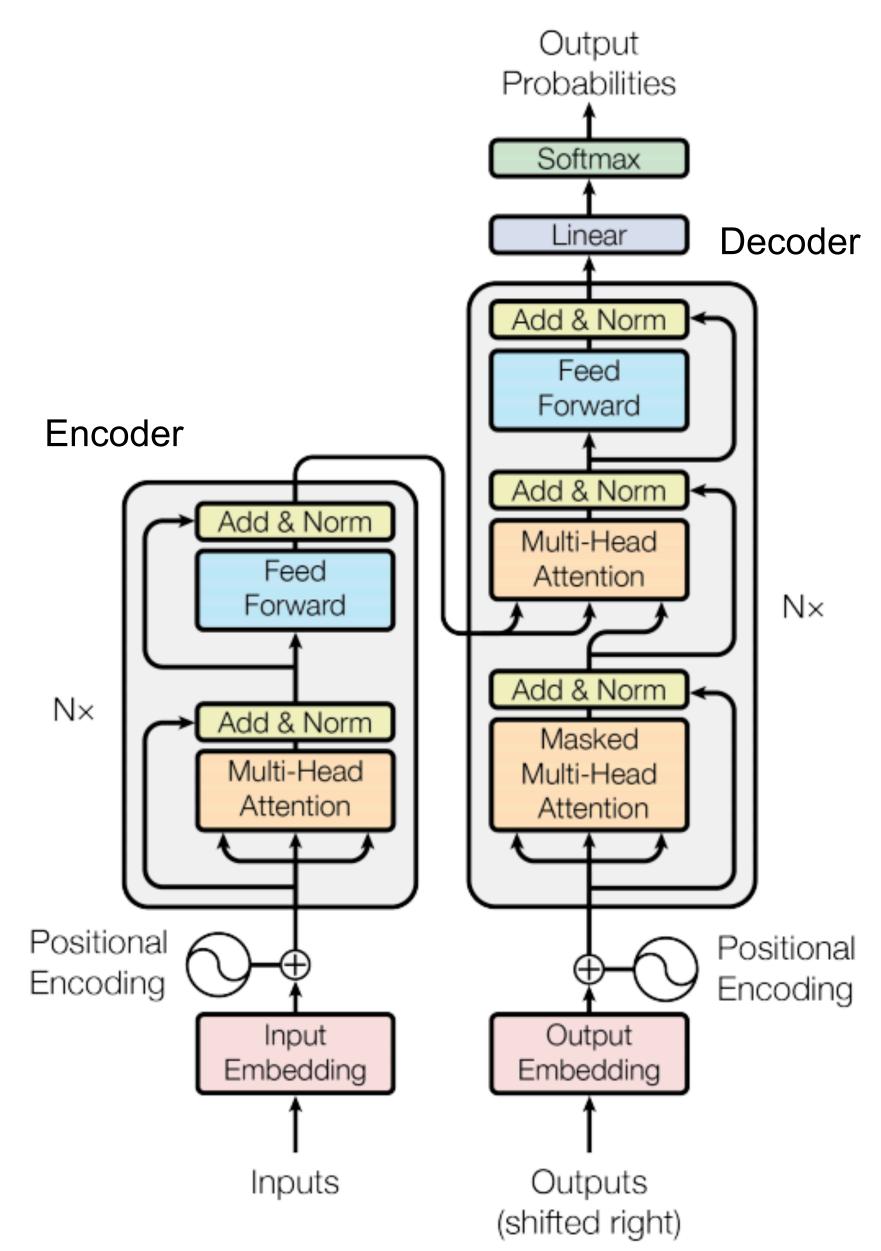
Transformer blocks

- A Transformer is a sequence of transformer blocks
 - Vaswani et al.: N=12 blocks, embedding dimension = 512, 6 attention heads
 - Add & Norm: residual connection followed by • layer normalization
 - Feedforward: two linear layers with ReLUs in • between, applied independently to each vector
 - Attention is the only interaction between inputs!

N×



Transformer architecture: Zooming back out



A. Vaswani et al., <u>Attention is all you need</u>, NeurIPS 2017

Transformer implementation

class MultiHeadedAttention(nn.Module):

Implementation modified from OpenNMT-py. https://github.com/OpenNMT/OpenNMT-py 11 11 11

self.model_size = size

```
def __init__(self, num_heads: int, size: int, dropout: float = 0.1):
   Create a multi-headed attention layer.
    :param num_heads: the number of heads
    :param size: model size (must be divisible by num_heads)
    :param dropout: probability of dropping a unit
    11 11 11
    super(MultiHeadedAttention, self).__init__()
   assert size % num_heads == 0
   self.head_size = head_size = size // num_heads
    self.num_heads = num_heads
    self.k_layer = nn.Linear(size, num_heads * head_size)
    self.v_layer = nn.Linear(size, num_heads * head_size)
   self.q_layer = nn.Linear(size, num_heads * head_size)
   self.output_layer = nn.Linear(size, size)
```

```
self.softmax = nn.Softmax(dim=-1)
self.dropout = nn.Dropout(dropout)
```

nn.Linear: Learnable params

```
Multi-Head Attention module from "Attention is All You Need"
```


Transformer implementation

def):	<pre>forward(self, k: Tensor, v: Tensor, q: Tensor, """</pre>
	Computes multi-headed attention. :param k: keys [B, K, D] with K being :param v: values [B, K, D] :param q: query [B, Q, D] with Q being :param mask: optional mask [B, 1, K] :return:
	<pre>batch_size = k.size(0) # B num_heads = self.num_heads # H # project the queries (q), keys (k), an k = self.k_layer(k) v = self.v_layer(v) q = self.q_layer(q)</pre>
	<pre># reshape q, k, v for our computation k = k.view(batch_size, -1, num_heads, size, -1, num_heads, size, -1, num_heads, size, q = q.view(batch_size, -1, num_heads, size, -1,</pre>
	<pre># compute scores q = q / math.sqrt(self.head_size)</pre>

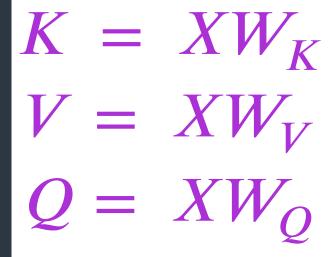
rel_mouth_times=None, mask: Tensor = None

g the sentence length.

g the sentence length.

nd values (v)

```
to [B, H, ..., D/H]
self.head_size).transpose(1, 2)
self.head_size).transpose(1, 2)
self.head_size).transpose(1, 2)
```



192

Transformer implementation

```
# [B, H, Q, K]
scores = torch.matmul(q, k.transpose(2, 3))
  # apply the mask (if we have one)
  # we add a dimension for the heads to it below: [B, 1, 1, K]
  if mask is not None:
      scores = scores.masked_fill(~mask.unsqueeze(1), float("-inf"))
  # apply attention dropout and compute context vectors.
  # [B, H, Q, K]
 attention_map = self.softmax(scores)
  attention = self.dropout(attention_map)
  # get context vector (select values with attention)
  # [B, H, Q, D/H]
context = torch_matmul(attention, v)
  # reshape back to [B, Q, D]
  context = (
      context.transpose(1, 2)
      .contiguous()
      .view(batch_size, -1, num_heads * self.head_size)
  # [B, Q, D]
  output = self.output_layer(context)
  return output, attention_map
```

 $E = QK^T / \sqrt{D}$

$A = \operatorname{softmax}(E, \dim = 1)$

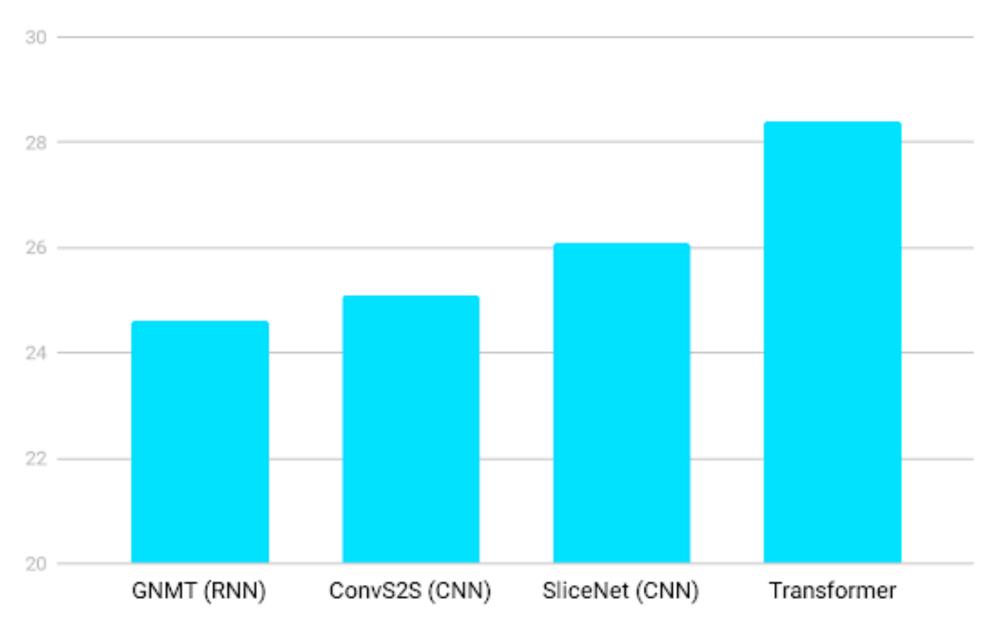
Y = AV

193

```
class TransformerEncoderLayer(nn.Module):
   One Transformer encoder layer has a Multi-head attention layer plus
   a position-wise feed-forward layer.
    11111
   def __init__(
       self, size: int = 0, ff_size: int = 0, num_heads: int = 0, dropout: float = 0.1
   ):
        .....
       A single Transformer layer.
        :param size:
       :param ff_size:
       :param num_heads:
        :param dropout:
        .....
       super(TransformerEncoderLayer, self).__init__()
       self.layer_norm = nn.LayerNorm(size, eps=1e-6)
     self.src_src_att = MultiHeadedAttention(num_heads, size, dropout=dropout)
       self.feed_forward = PositionwiseFeedForward(
           size, ff_size=ff_size, dropout=dropout
       self.dropout = nn.Dropout(dropout)
       self.size = size
   # pylint: disable=arguments-differ
   def forward(self, x: Tensor, mask: Tensor) -> Tensor:
        11111
       Forward pass for a single transformer encoder layer.
        First applies layer norm, then self attention,
        then dropout with residual connection (adding the input to the result),
       and then a position-wise feed-forward layer.
        :param x: layer input
        :param mask: input mask
        :return: output tensor
        .....
       x_norm = self.layer_norm(x)
     h, att_map_src_src = self.src_src_att(k=x_norm, v=x_norm, q=x_norm, mask=mask)
       h = self.dropout(h) + x
       o = self.feed_forward(h)
       return o
```

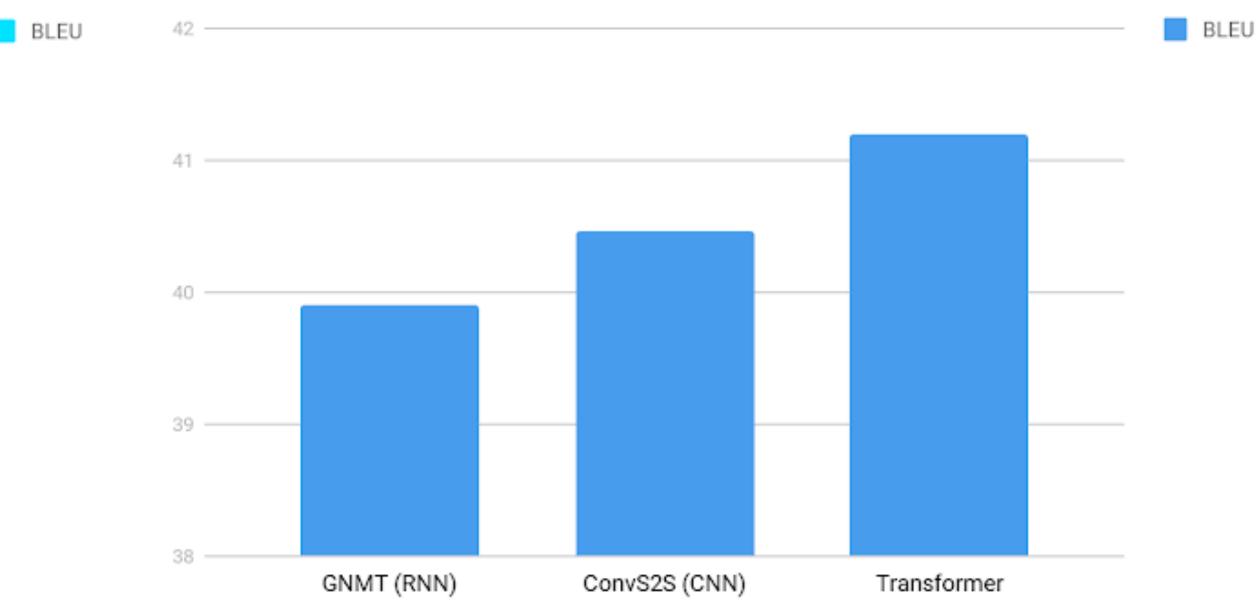

Original transformer results on machine translation

English German Translation quality



https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

English French Translation Quality



Agenda

- 1. Recap: Bag of Visual Words, Analogy with NNs
- 2. Neural networks (NNs) for computer vision:
 - Applications
 - A brief history: from perceptron to MLPs to CNNs

3. Convolutional neural networks (CNNs)

- Standard layers
- Recap: Training NNs
- Visualizing CNNs
- Pretraining & finetuning NNs
- Typical CNN architectures

• 4. Beyond CNNs

- Attention & Transformer
- **Vision Transformers**

5. Beyond classification

Attention & Transformers

- Basic transformer model
- Image transformers

Image transformer – Google Self-attention only locally Image generation and super-resolution with 32x32 output, attention restricted to local neighborhoods

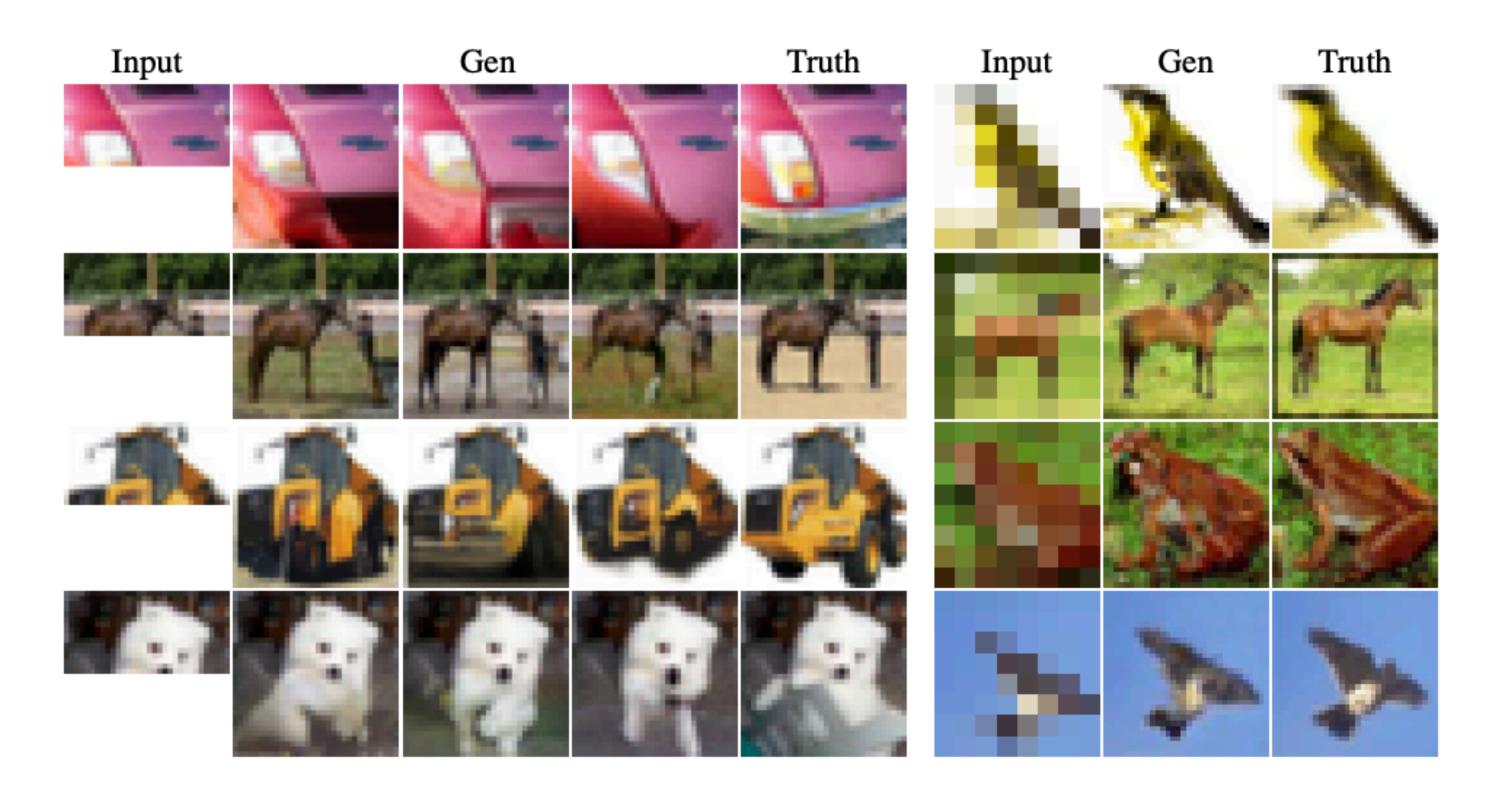


Table 2. On the left are image completions from our best conditional generation model, where we sample the second half. On the right are samples from our four-fold super-resolution model trained on CIFAR-10. Our images look realistic and plausible, show good diversity among the completion samples and observe the outputs carry surprising details for coarse inputs in super-resolution.

N. Parmar et al., <u>Image transformer</u>, ICML 2018

Sparse transformers – OpenAl

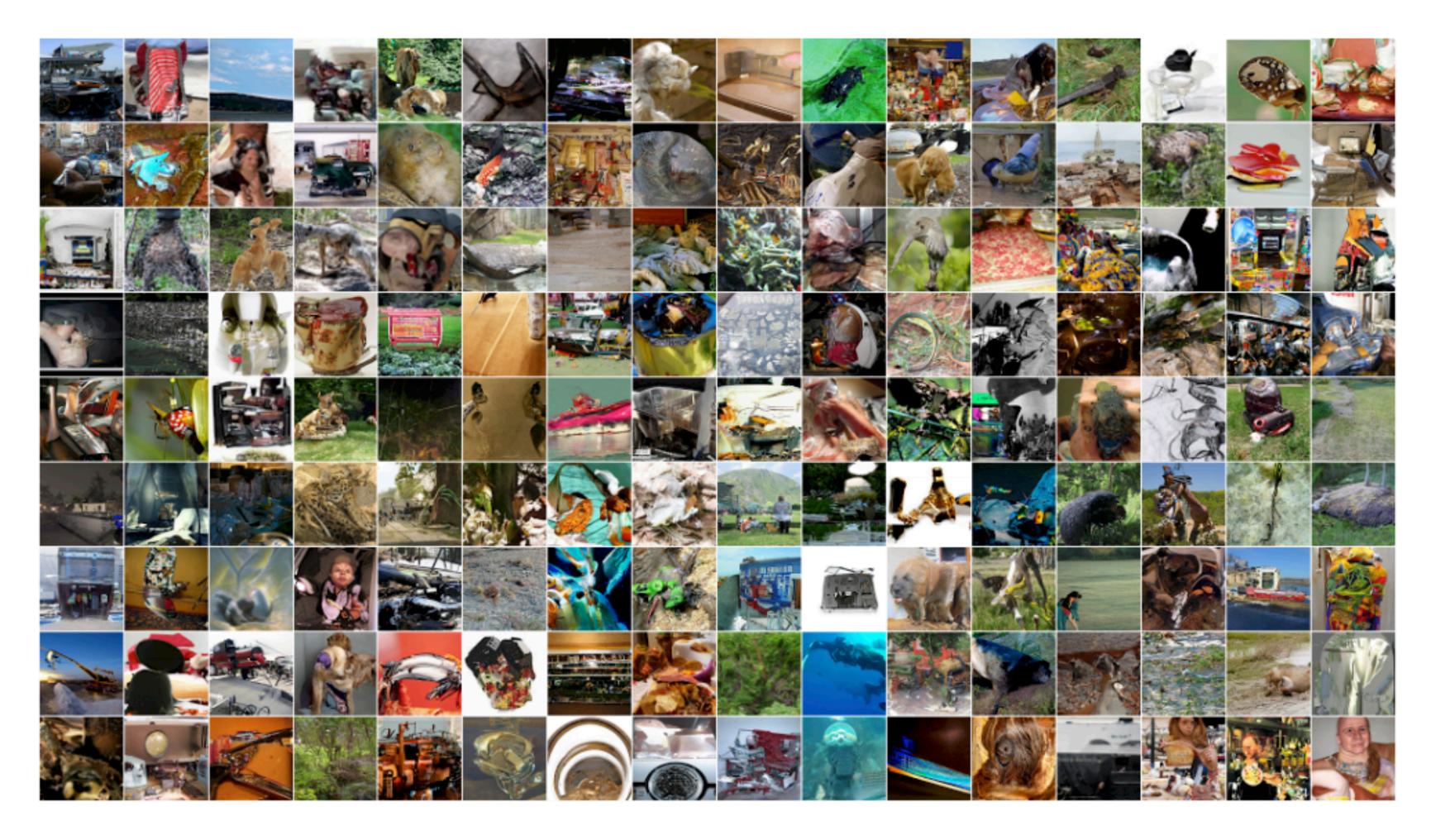


Figure 5. Unconditional samples from ImageNet 64x64, generated with an unmodified softmax temperature of 1.0. We are able to learn long-range dependencies directly from pixels without using a multi-scale architecture.

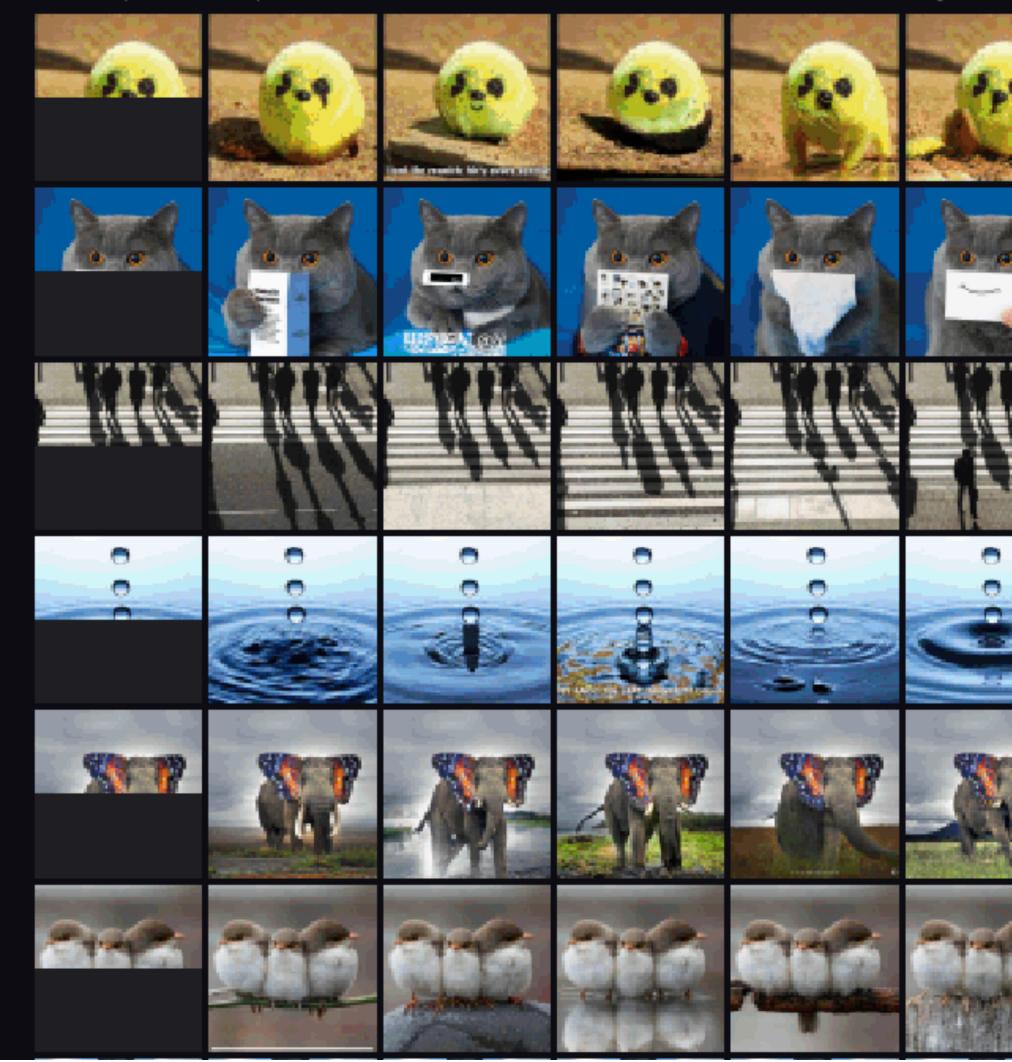
R. Child et al., <u>Generating Long Sequences with Sparse Transformers</u>, arXiv 2019

scalable approximations to global self-attention in order to be applicable to images

Image GPT* – OpenAl

Model Input Completions →

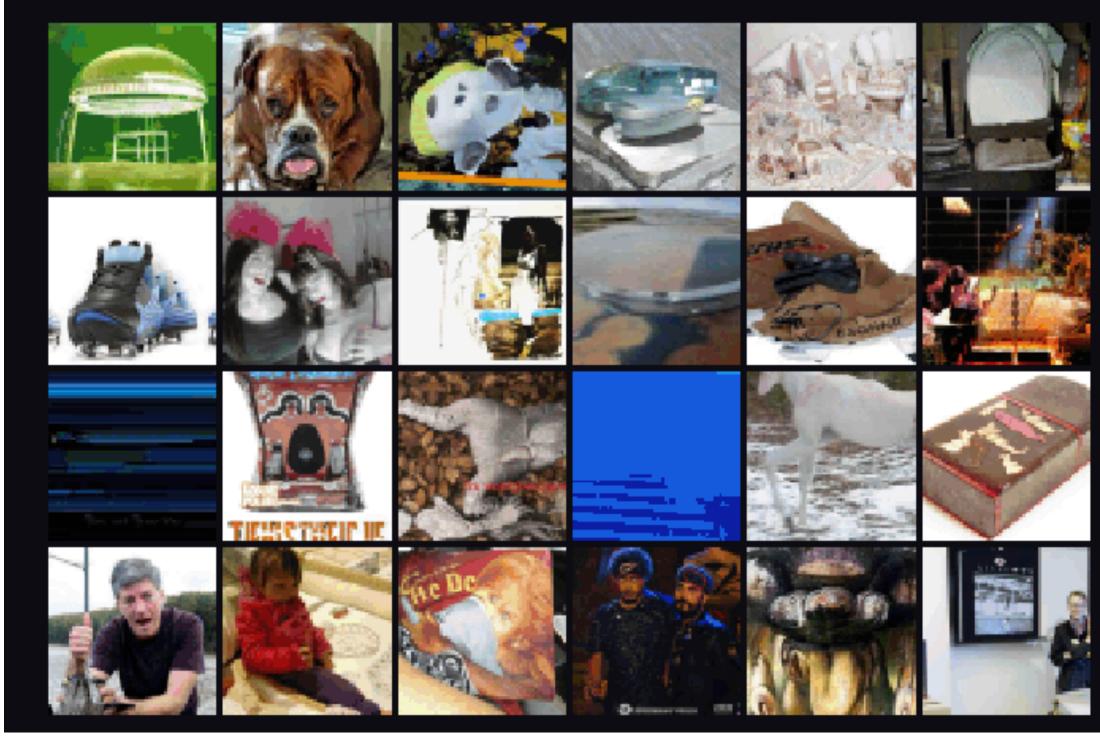
Original



*GPT: Generative pre-trained Transformer

works on reduced resolutions

Samples



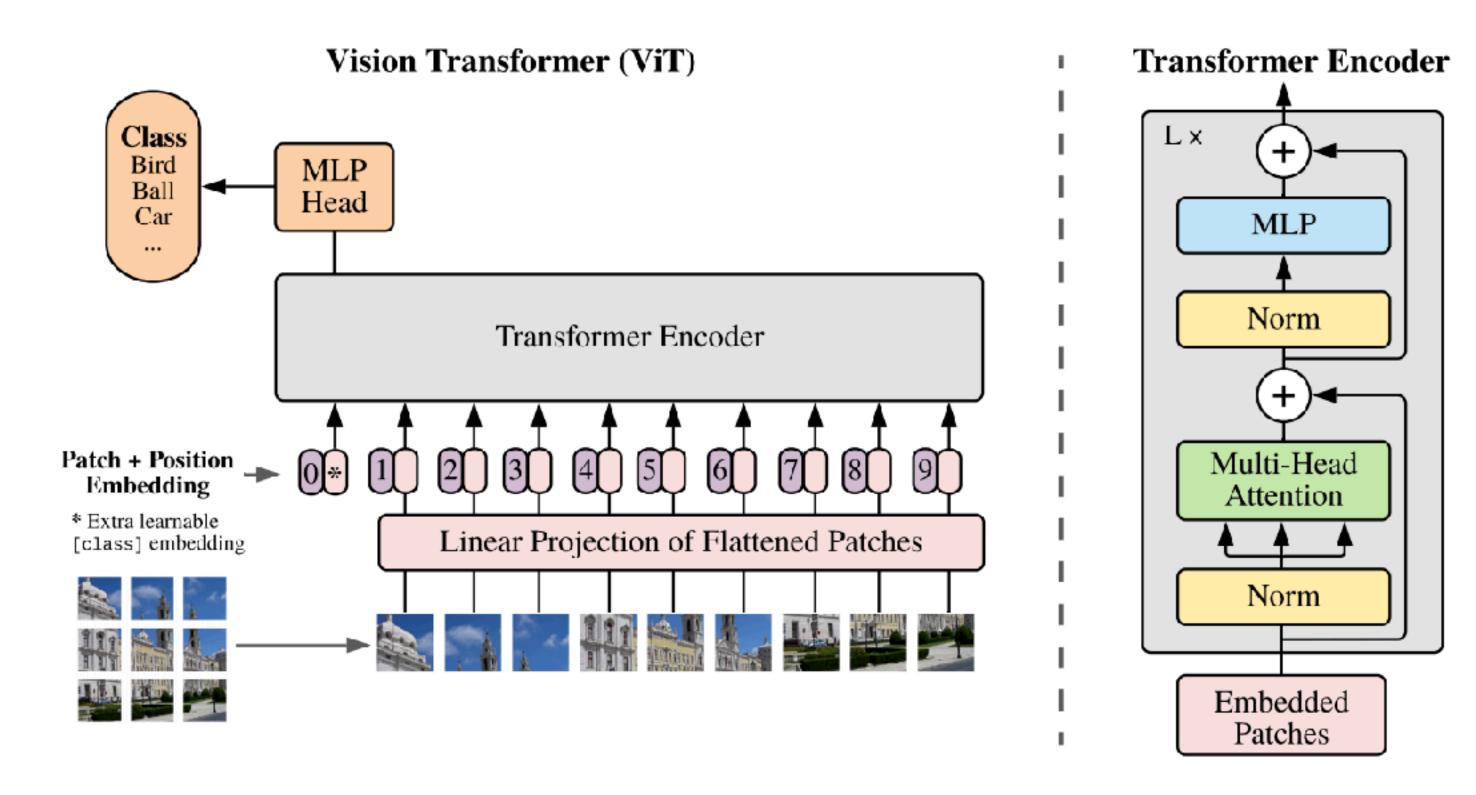
https://openai.com/blog/image-gpt/

M. Chen et al., <u>Generative pretraining from pixels</u>, ICML 2020

200

Vision transformer (ViT) - Google Full resolution

- standard transformer encoder

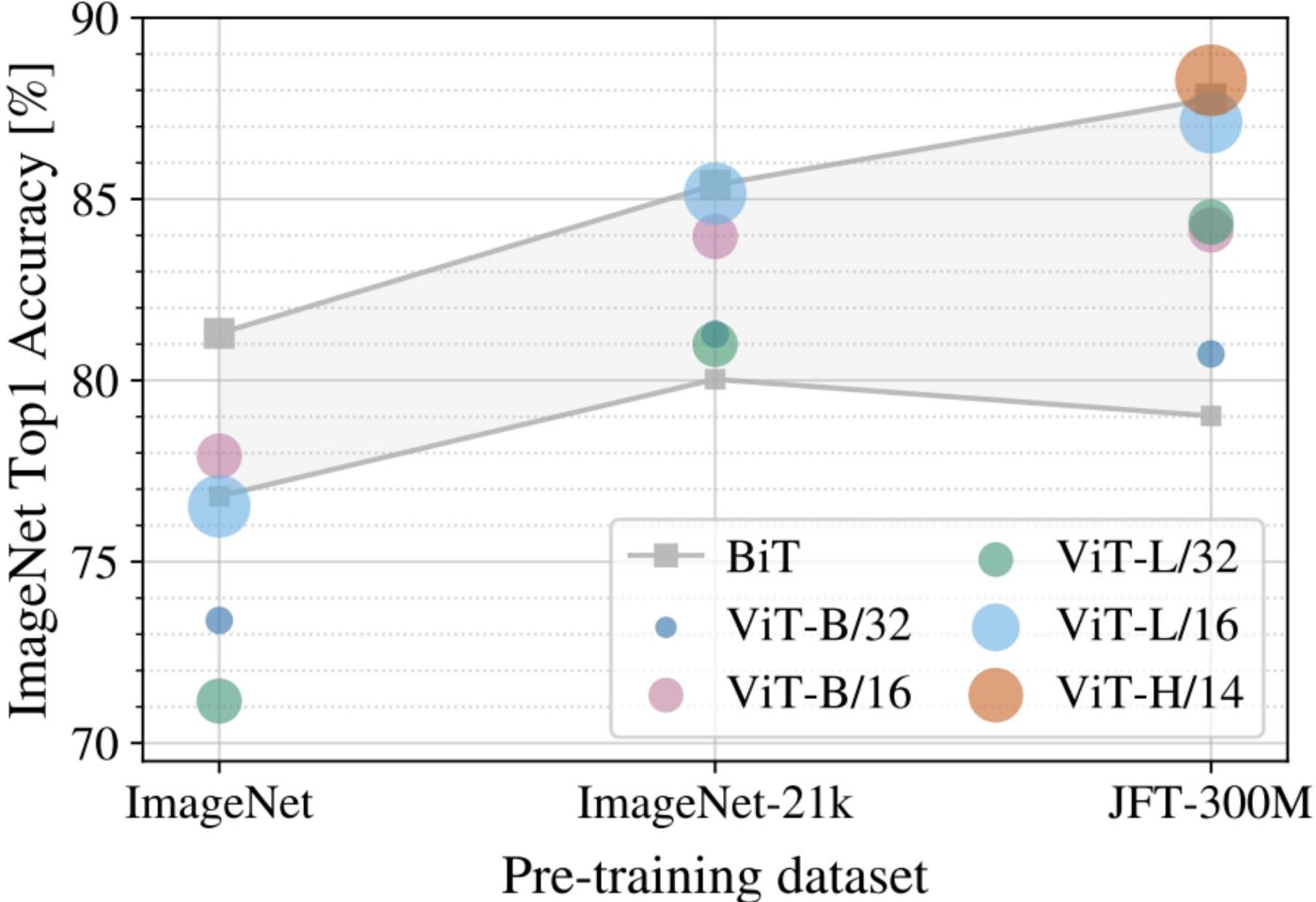


A. Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021

Split an image into patches, feed linearly projected patches into

With patches of 14x14 pixels, you need 16x16=256 patches to represent 224x224 images

Vision transformer (ViT)



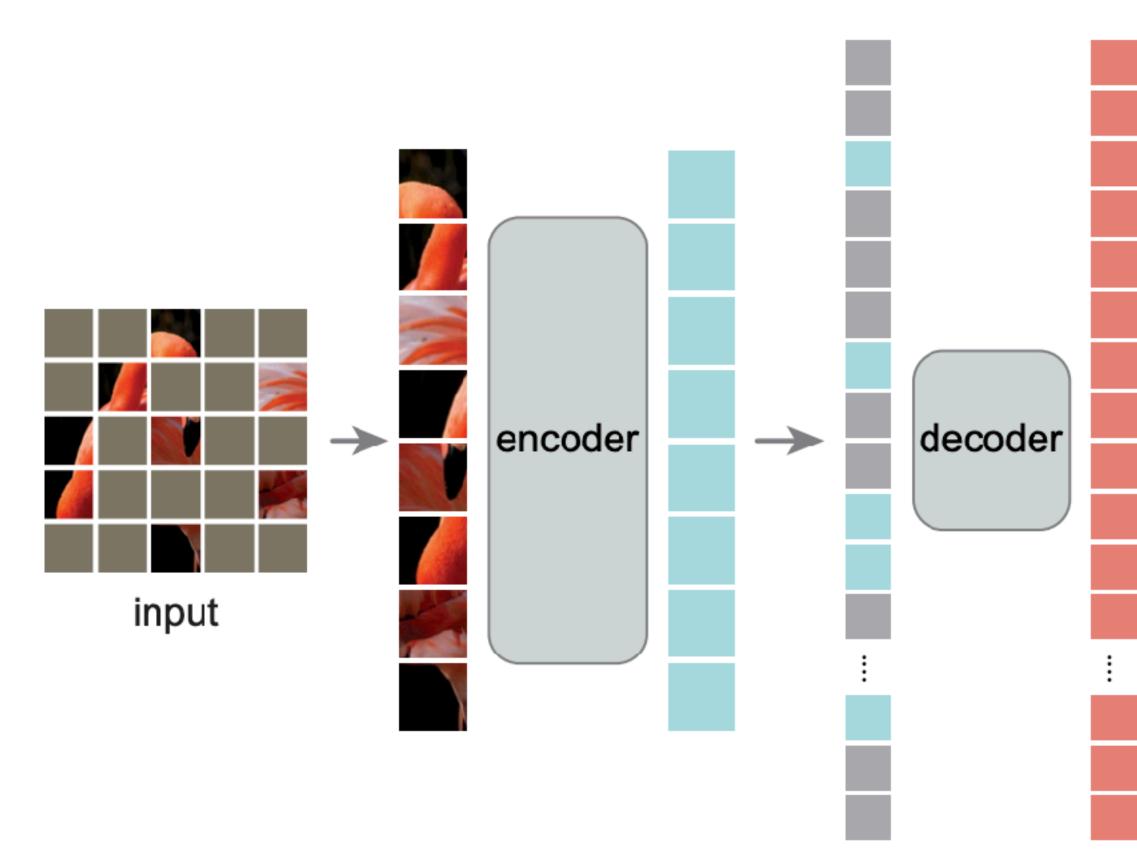
A. Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021

Figure 3: Transfer to ImageNet. While large ViT models perform worse than BiT ResNets (shaded area) when pre-trained on small datasets, they shine when pre-trained on larger datasets. Similarly, larger ViT variants overtake smaller ones as the dataset grows.

BiT: <u>Big Transfer</u> (ResNet) ViT: Vision Transformer (Base/Large/Huge, patch size of 14x14, 16x16, or 32x32)

Internal Google dataset (not public) JFT-300M

Masked autoencoders are scalable vision learners



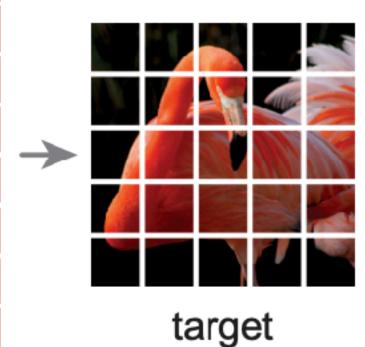
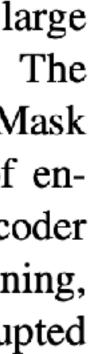
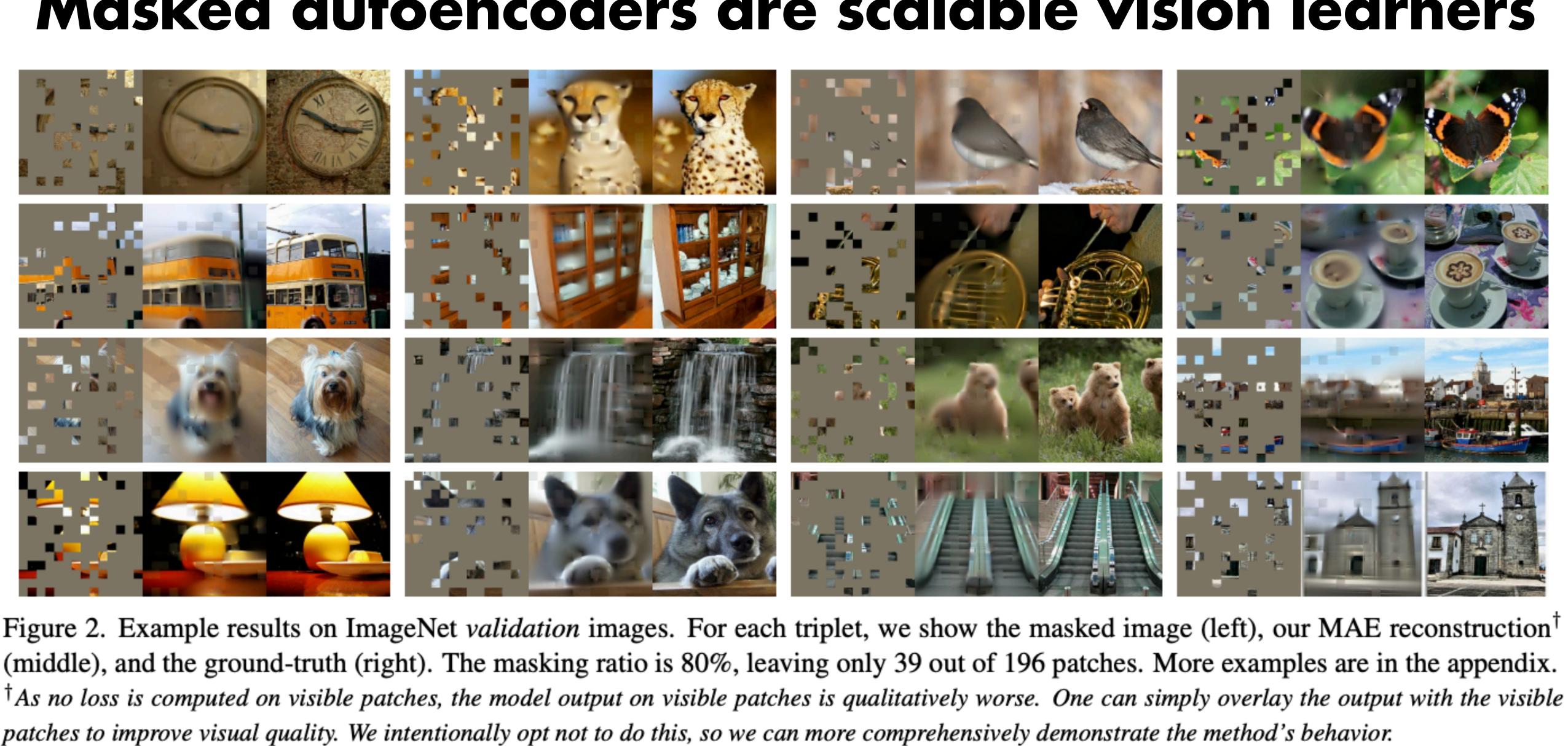


Figure 1. Our MAE architecture. During pre-training, a large random subset of image patches (e.g., 75%) is masked out. The encoder is applied to the small subset of visible patches. Mask tokens are introduced after the encoder, and the full set of encoded patches and mask tokens is processed by a small decoder that reconstructs the original image in pixels. After pre-training, the decoder is discarded and the encoder is applied to uncorrupted images to produce representations for recognition tasks.

K. He et al. Masked autoencoders are scalable vision learners. arXiv 2021



Masked autoencoders are scalable vision learners

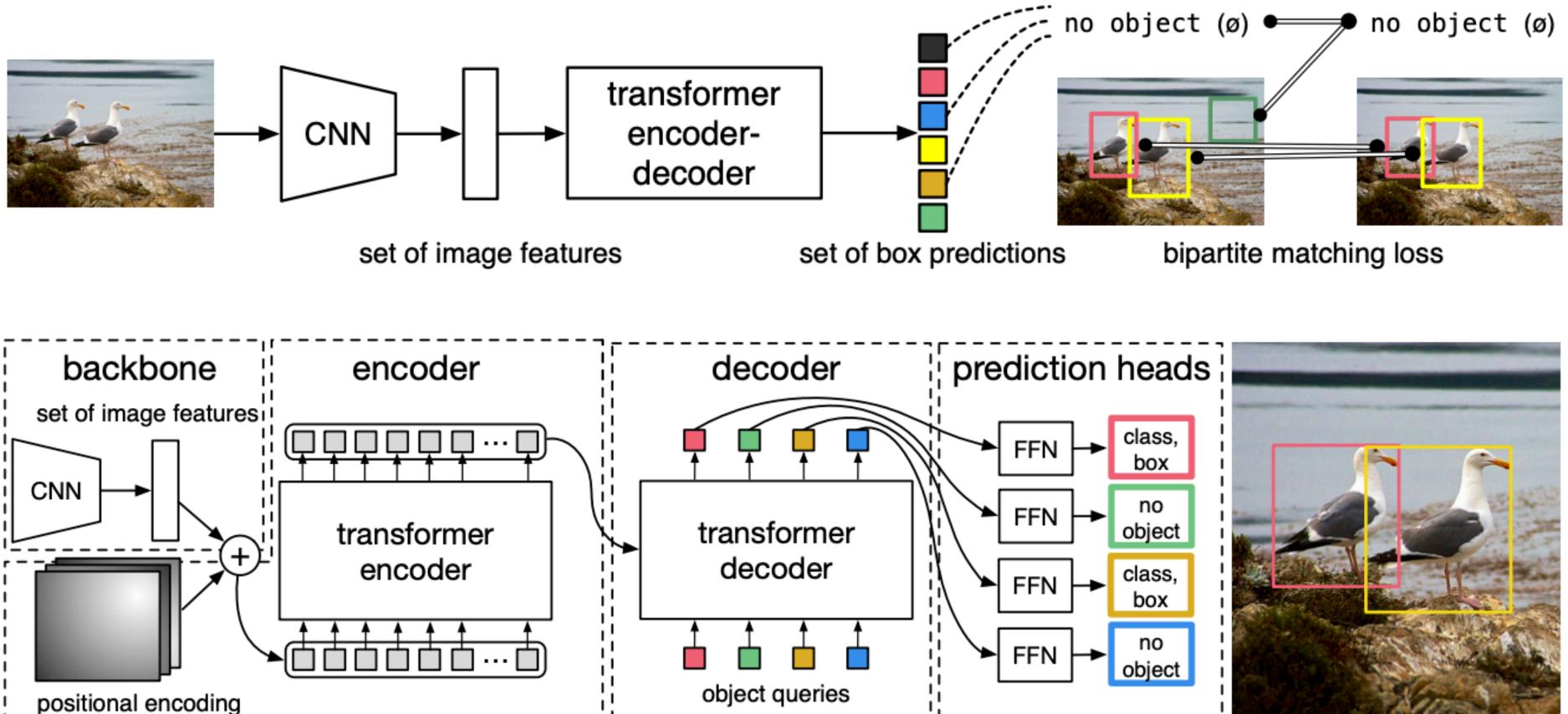


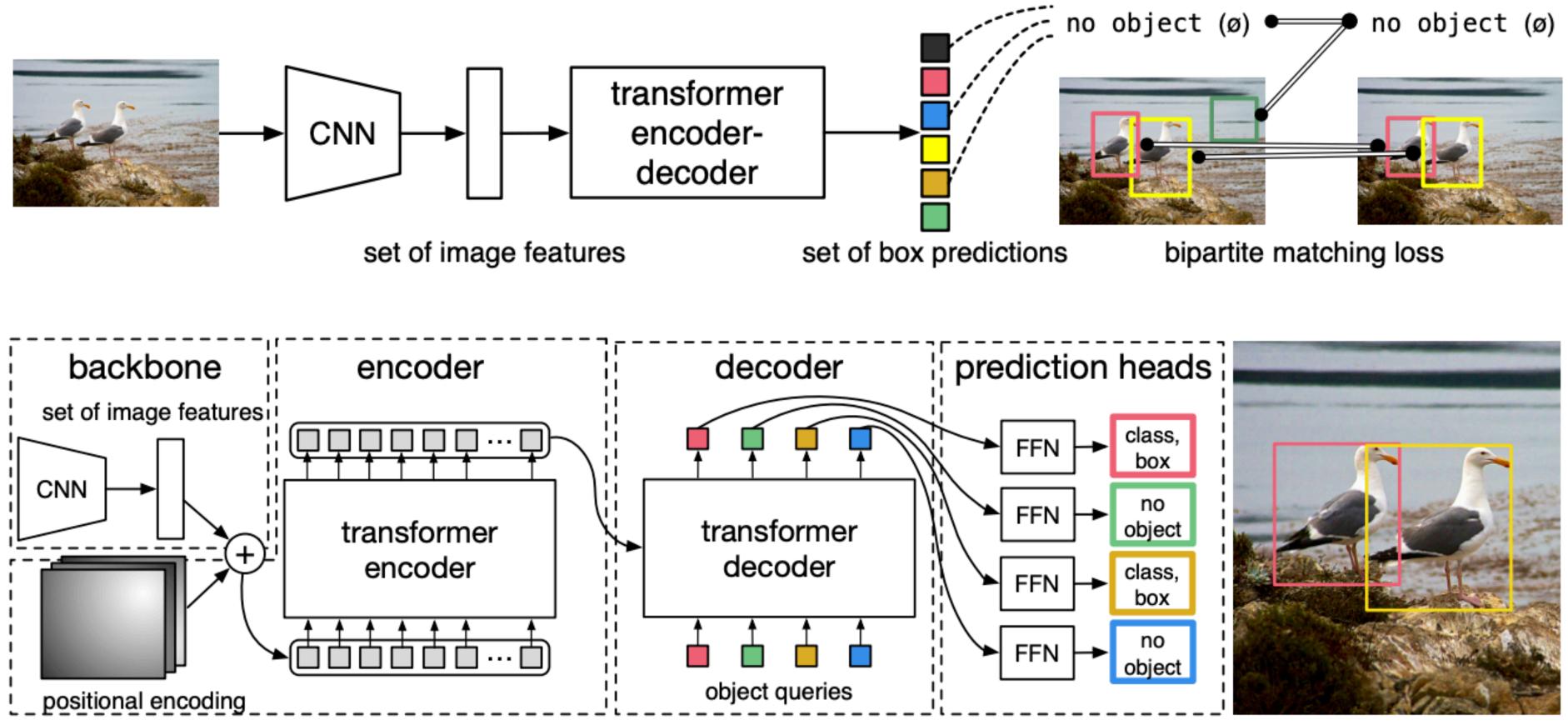
patches to improve visual quality. We intentionally opt not to do this, so we can more comprehensively demonstrate the method's behavior.

K. He et al. Masked autoencoders are scalable vision learners. arXiv 2021

Detection Transformer (DETR) Hybrid of CNN and transformer, aimed at standard \bullet

recognition task





N. Carion et al., End-to-end object detection with transformers, ECCV 2020

Do we need attention?

[R] Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet

Research

https://www.reddit.com/r/MachineLearning/comments/n62qhn/r_do_you_even_need_attention_a_stack_of/

Do we need attention?

MLP-Mixer: An all-MLP Architecture for Vision

Ilya Tolstikhin*, Neil Houlsby*, Alexander Kolesnikov*, Lucas Beyer*, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, Alexey Dosovitskiy *equal contribution Google Research, Brain Team {tolstikhin, neilhoulsby, akolesnikov, lbeyer, xzhai, unterthiner, jessicayung[†], andstein,

keysers, usz, lucic, adosovitskiy}@google.com

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet

Luke Melas-Kyriazi Oxford University

lukemk@robots.ox.ac.uk

Pay Attention to MLPs

Hanxiao Liu, Zihang Dai, David R. So, Quoc V. Le Google Research, Brain Team {hanxiaol,zihangd,davidso,qvl}@google.com

O May 202

4

May 202

Recent Hype#2: MLPs (!)

- Back to basics \bullet
- MLPs perform similar to \bullet Transformers while being more efficient
- CNNs and MLPs \bullet complexity linear with the number of input pixels, Transformers quadratic

MLP-Mixer: An all-MLP Architecture for Vision

Ilya Tolstikhin*, Neil Houlsby*, Alexander Kolesnikov*, Lucas Beyer*, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, Alexey Dosovitskiy *equal contribution

Google Research, Brain Team

{tolstikhin, neilhoulsby, akolesnikov, lbeyer, xzhai, unterthiner, jessicayung¹, andstein, keysers, usz, lucic, adosovitskiy}@google.com

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet

> Luke Melas-Kyriazi Oxford University

lukemk@robots.ox.ac.uk

Pay Attention to MLPs

Hanxiao Liu, Zihang Dai, David R. So, Quoc V. Le Google Research, Brain Team {hanxiaol,zihangd,davidso,qvl}@google.com

4 May 20 N

> 0 May 20 N

7 May 202

Summary: Beyond CNNs

- CNNs (convolution), Transformers (attention), MLPs (fully connected)
- There is no answer to which architecture is better.
- Often depends on the data.
- If you have infinite data, more complex can be better (e.g., MLP ~ Transformers > CNN).
- Similar performance can be obtained with more efficient models (e.g., MLP ~ Transformers)
- It is possible there will be newer/better architectures/ hypes before you graduate. Stay tuned.

Agenda

- 1. Recap: Bag of Visual Words, Analogy with NNs
- 2. Neural networks (NNs) for computer vision:
 - Applications
 - A brief history: from perceptron to MLPs to CNNs

• 3. Convolutional neural networks (CNNs)

- Standard layers
- Recap: Training NNs
- Visualizing CNNs
- Pretraining & finetuning NNs
- Typical CNN architectures

• 4. Beyond CNNs

- Attention & Transformer
- Vision Transformers

• 5. Beyond classification - preview

The field makes progress Beyond Classification

Computer vision tasks

*Visual signal: Image, video, depth, 3D point cloud, MRI, scans, ...

Slide credit: Naila Murray

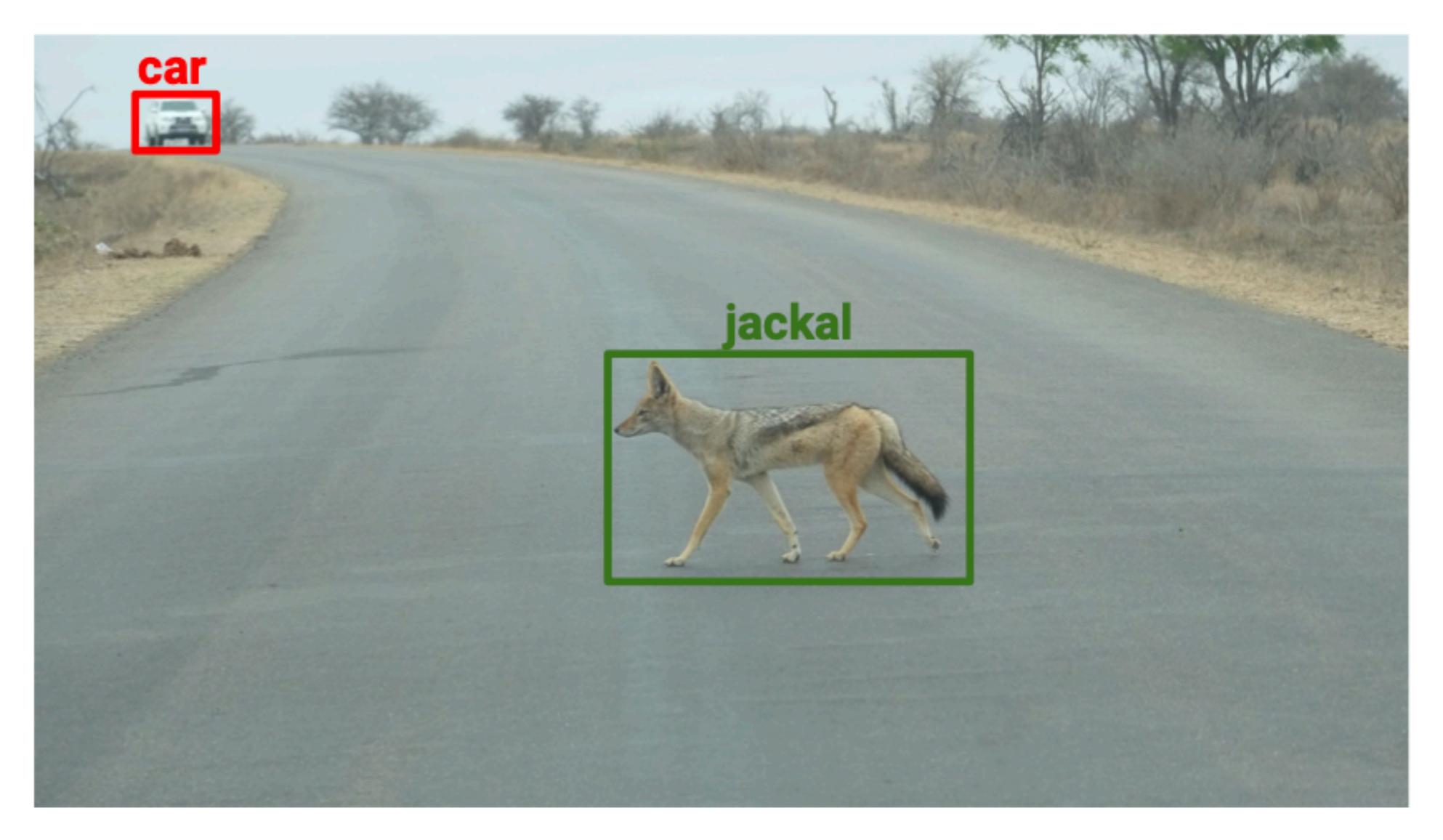
Extracting meaning from visual signals

Object recognition, **Object detection**, **Pixel-level segmentation**, 3D localization, etc.

Example tasks

Slide credit: Naila Murray

Object recognition and localization (detection)



Slide credit: Naila Murray

214

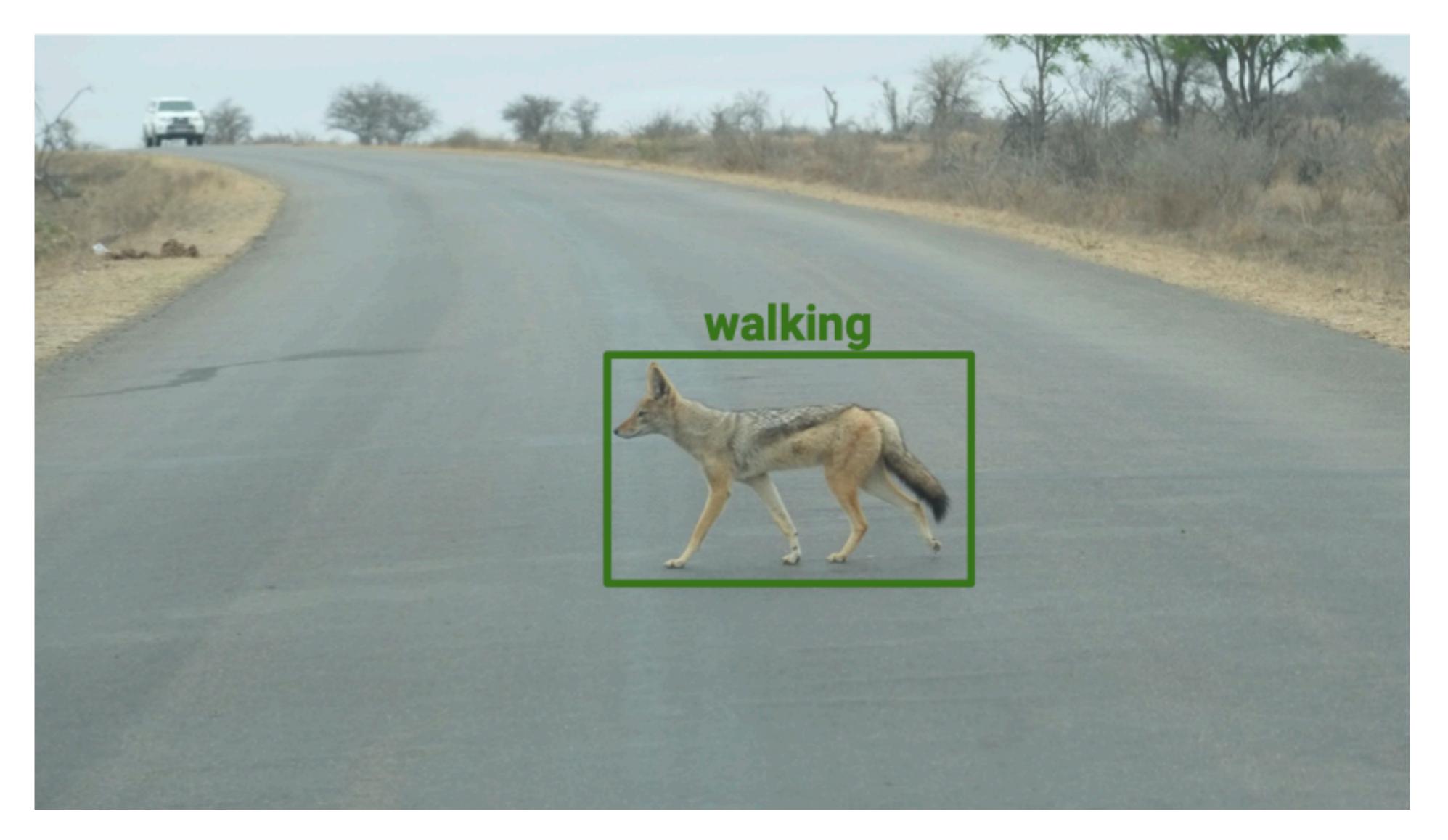
Visual question answering

Q: Is this an outdoor scene? A: Yes

Q: What is the weather like? A: Cloudy but dry

Slide credit: Naila Murray

Activity recognition

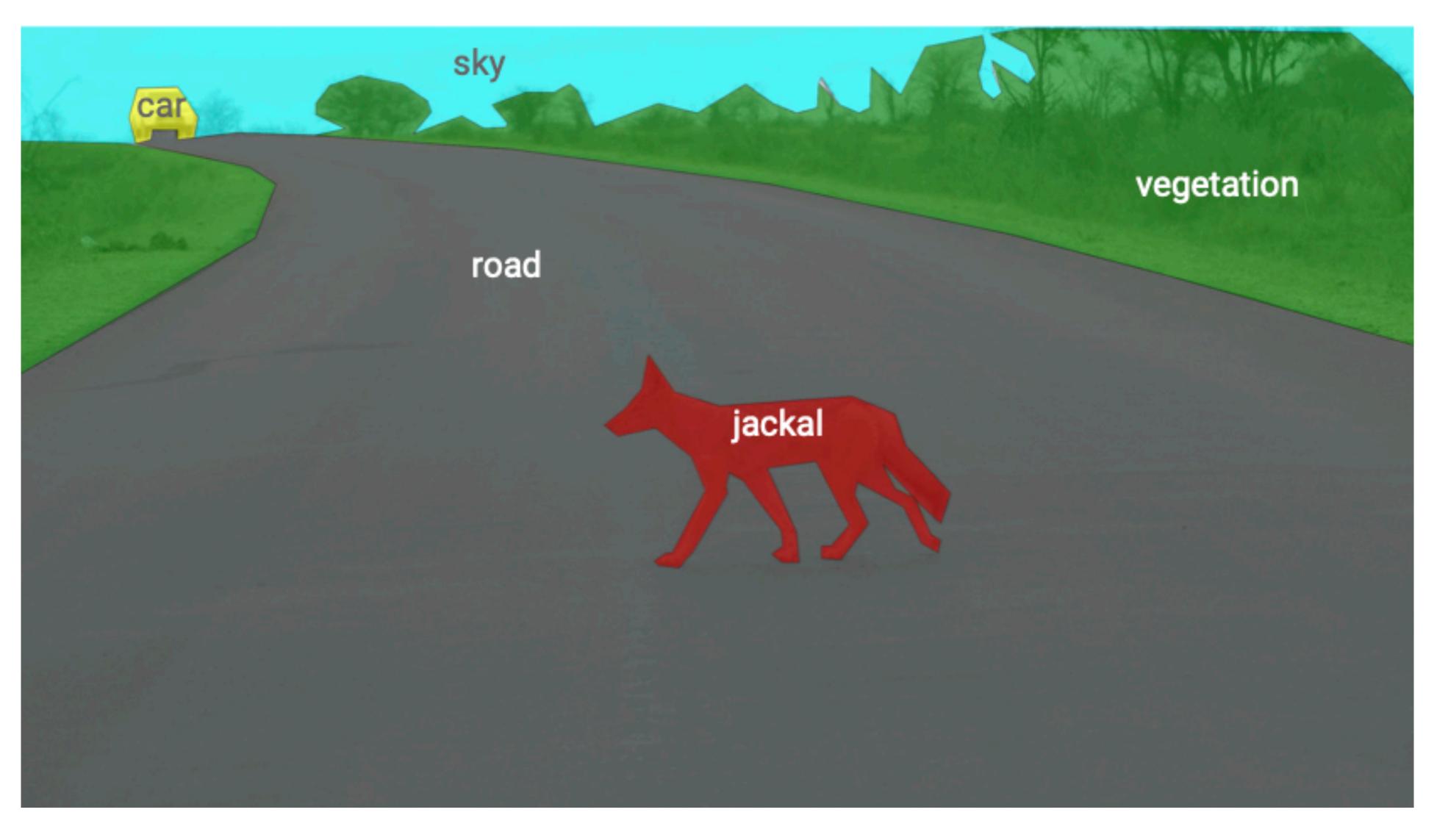


Slide credit: Naila Murray

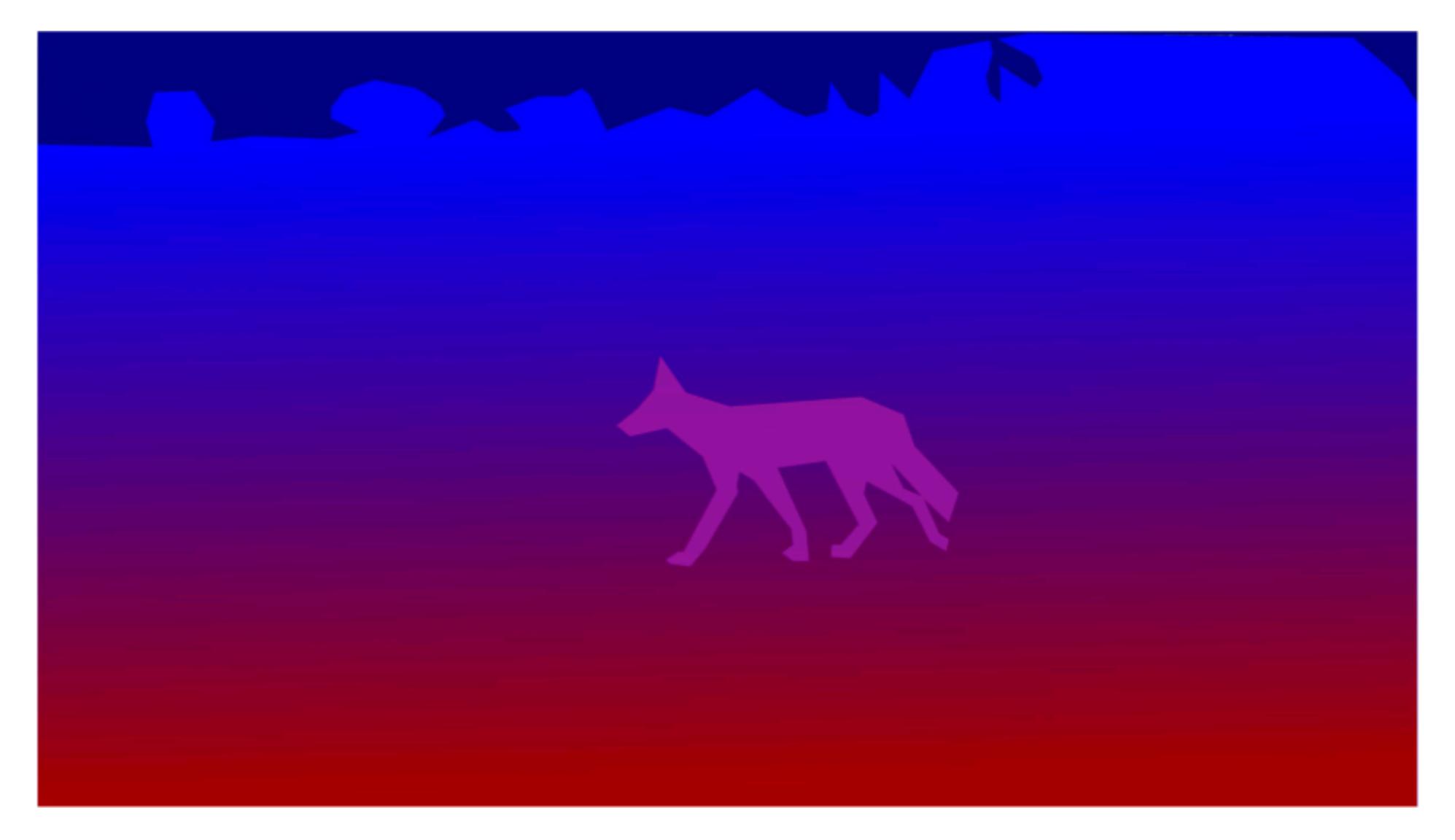
Pose estimation

Captioning A jackal walking across a rural asphalt road

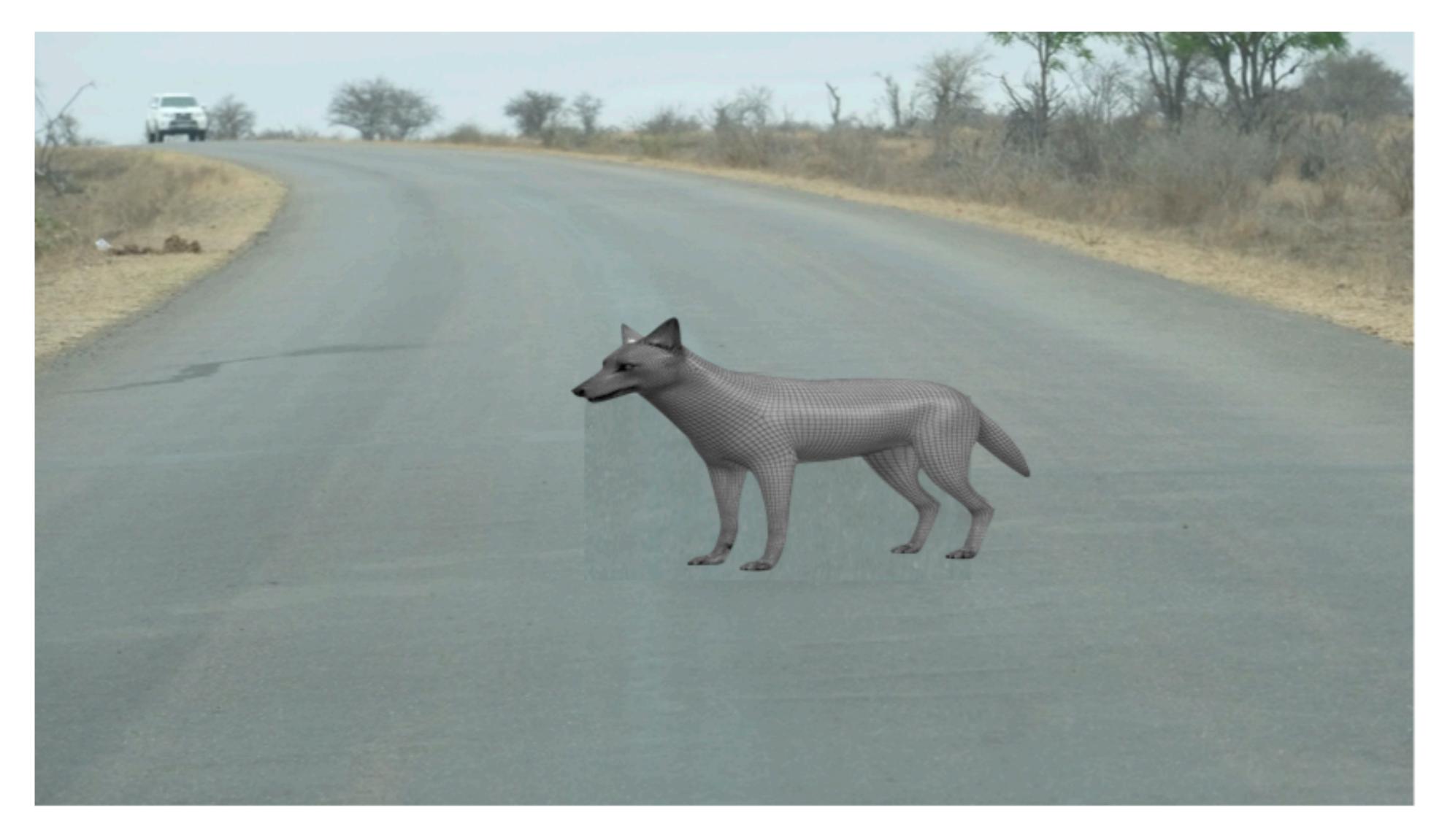
Semantic segmentation



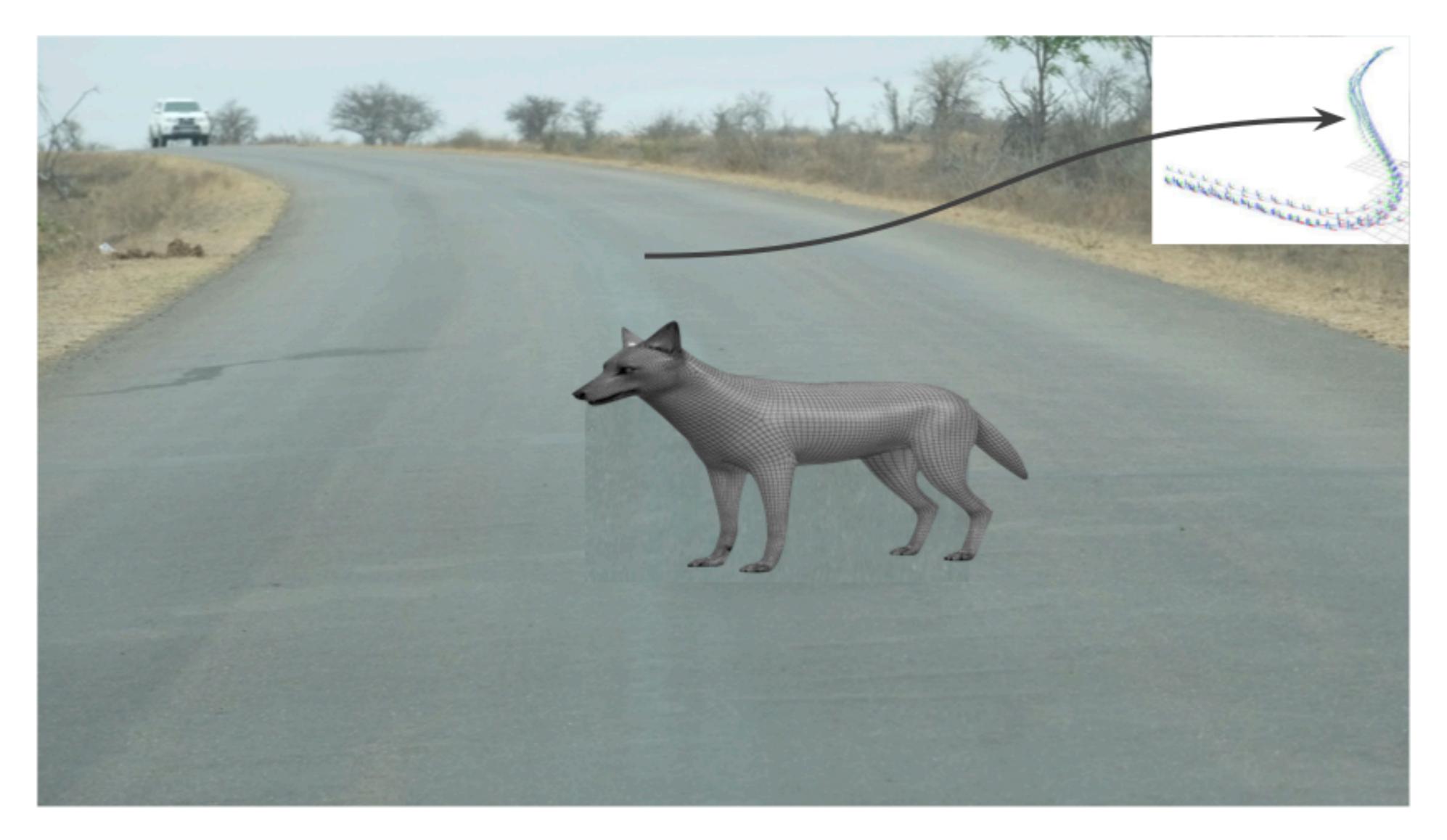
Depth estimation



3D shape estimation

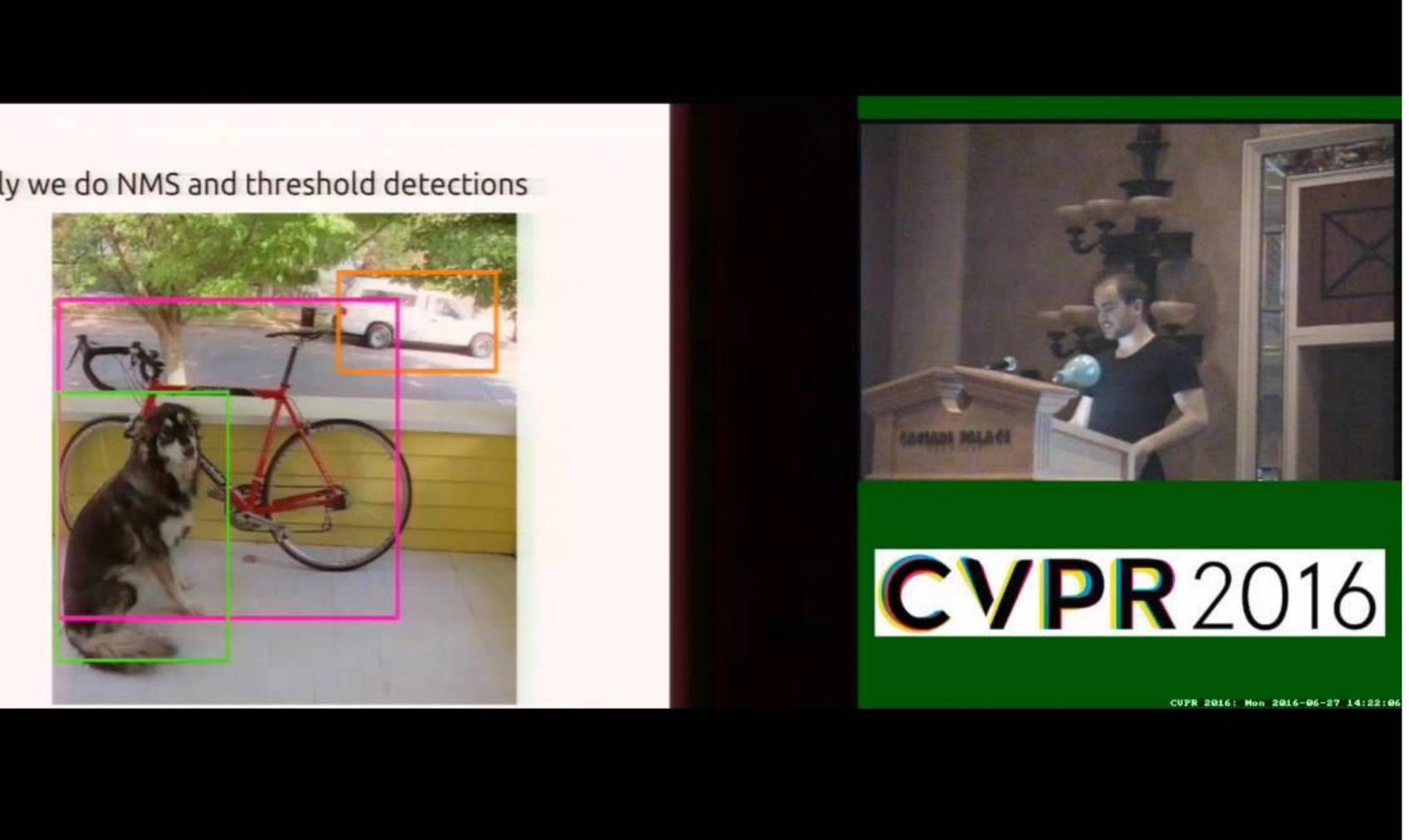


Visual localization



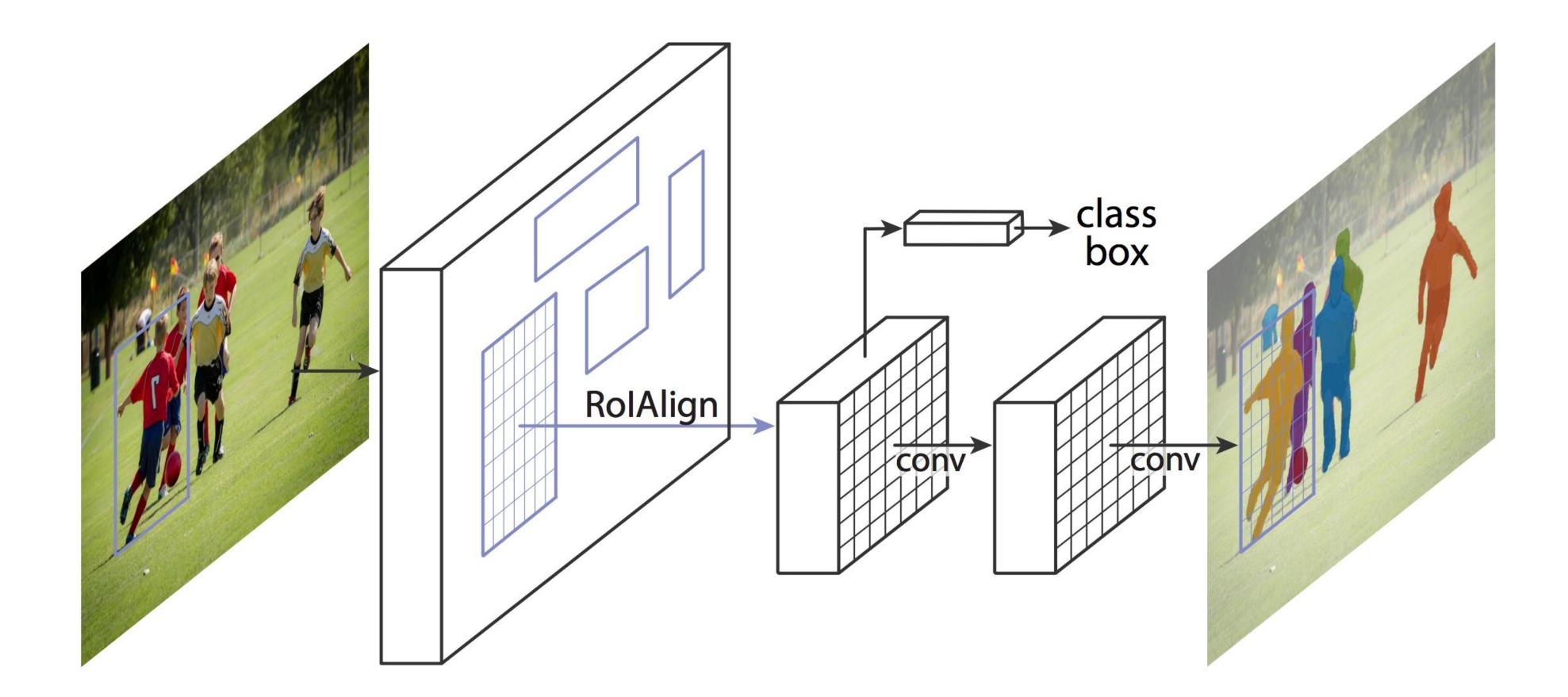
Object detection

Finally we do NMS and threshold detections



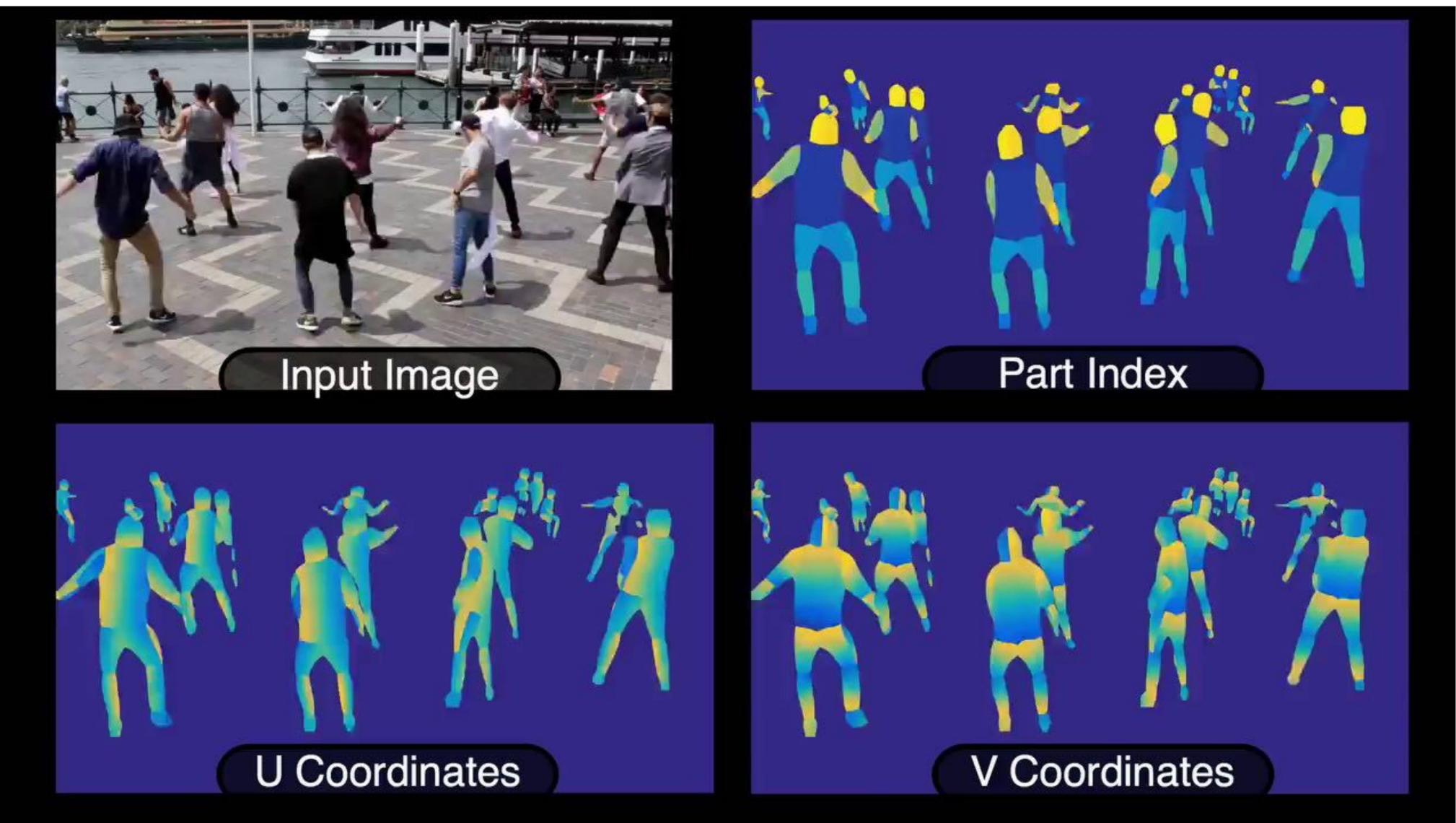
Redmon et al. YOLO, CVPR 2016

Segmentation



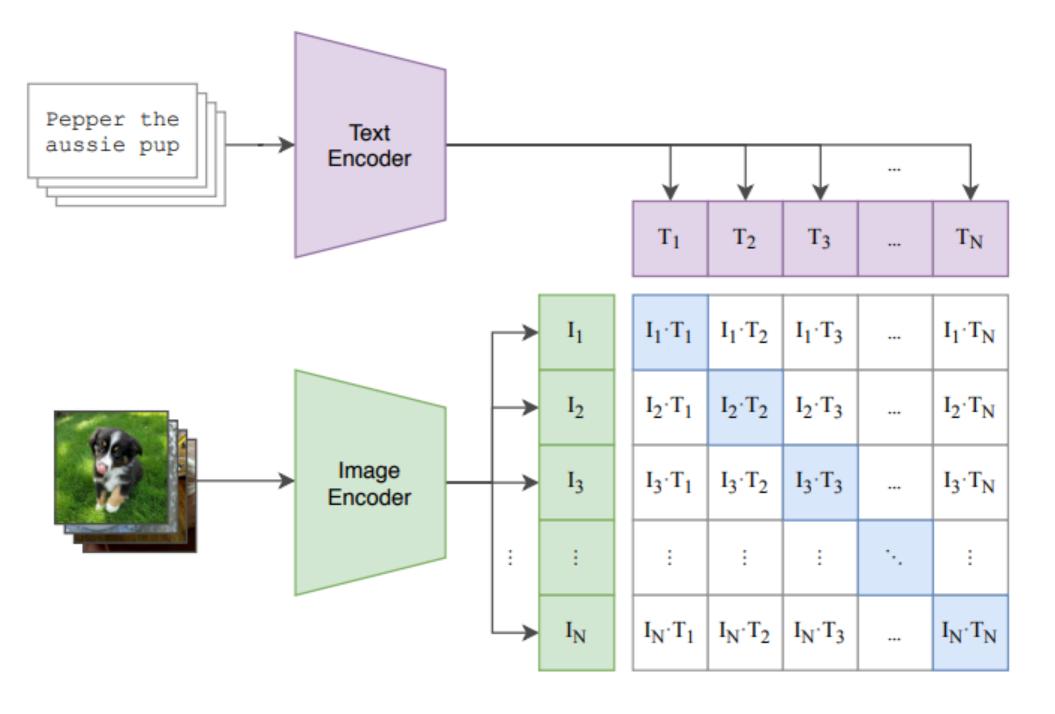
He et al. Mask R-CNN. ICCV 2017.

Human pose estimation



Guler et al. DensePose, CVPR 2018

Text-to-image retrieval Contrastive Language-Image Pretraining (CLIP)



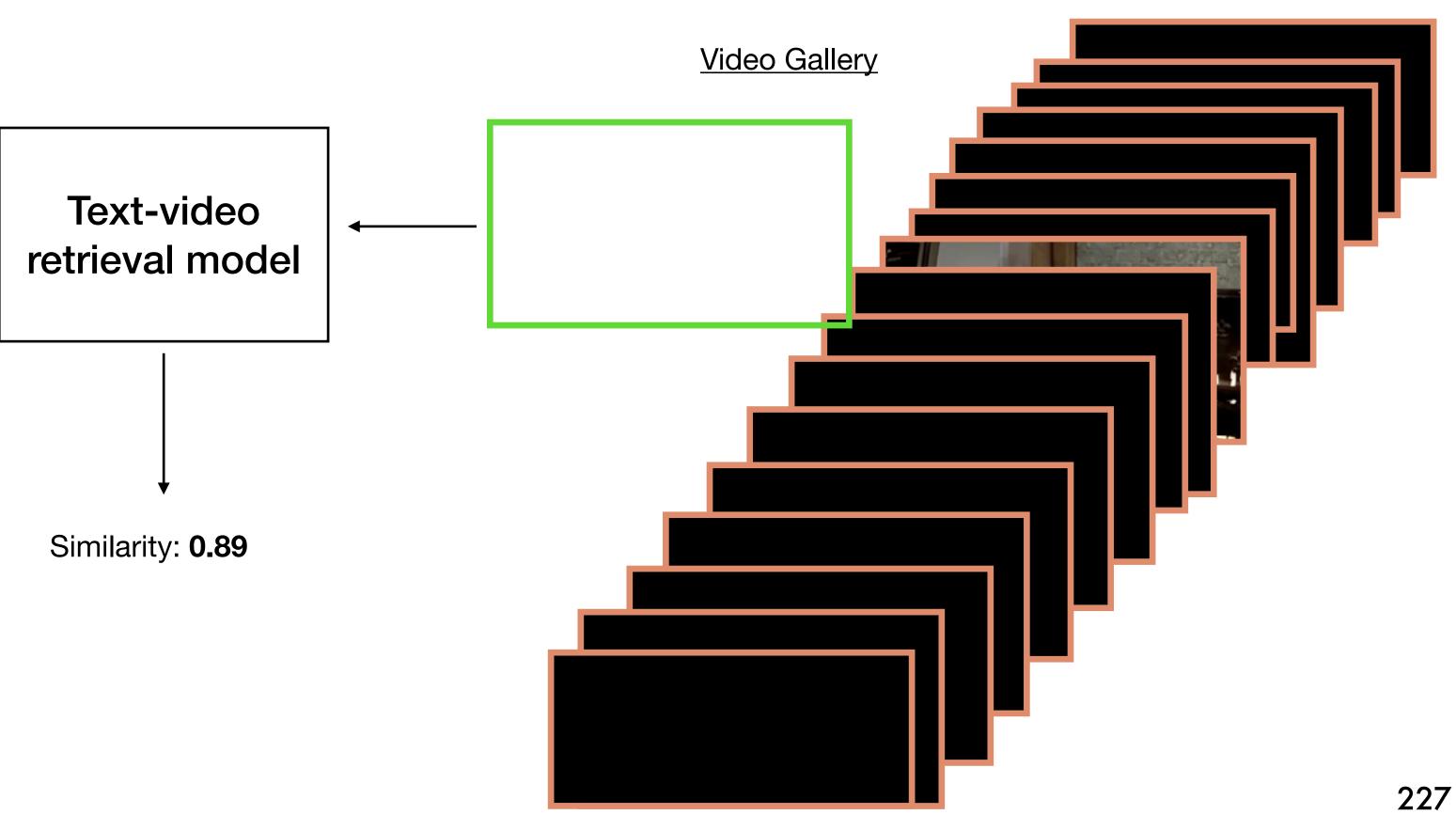
Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021 Α. https://openai.com/blog/clip/

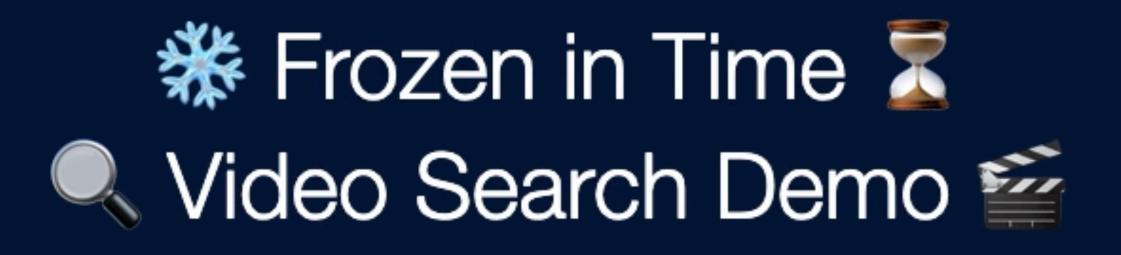
Contrastive objective: in a batch of N image-text pairs, classify each text string to the correct image and vice versa

Text-to-video retrieval

<u>Text Query</u>

Billy reveals the truth to Louis about the Duke's bet which changed both their lives





Visual search of ~2.6M videos are based on research described in Frozen in time: A joint video and image encoder for end-to-end retrieval.

[Bain, Nagrani, Varol, Zisserman, ICCV 2021]

Text-based image generation: DALL-E

(a) a tapir made of accordion. (b) an illustration of a baby (c) a neon sign that reads a tapir with the texture of an hedgehog in a christmas "backprop". a neon sign that accordion.

> A. Ramesh et al., Zero-Shot Text-to-Image Generation, ICML 2021 https://openai.com/blog/dall-e/

sweater walking a dog

reads "backprop". backprop neon sign

Summary of today

- 1. Recap: Bag of Visual Words, Analogy with NNs
- 2. Neural networks (NNs) for computer vision:
 - Applications
 - A brief history: from perceptron to MLPs to CNNs

• 3. Convolutional neural networks (CNNs)

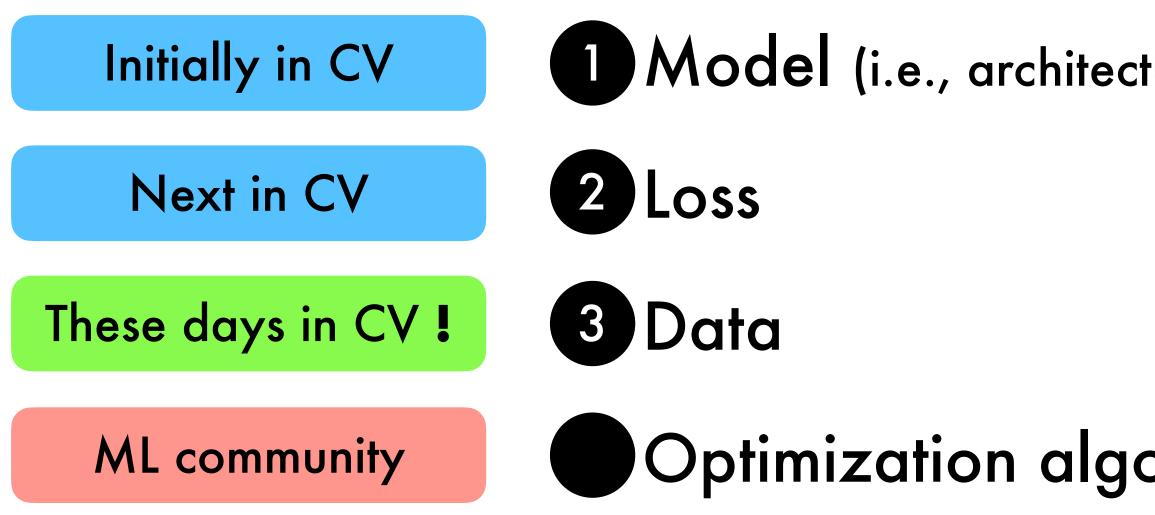
- Standard layers
- Recap: Training NNs
- Visualizing CNNs
- Pretraining & finetuning NNs
- Typical CNN architectures

• 4. Beyond CNNs

- Attention & Transformer
- Vision Transformers

5. Beyond classification

Key elements of DL for CV



DModel (i.e., architectural definition of connectivity and learnable parameters)

Optimization algorithm (i.e., variations of SGD)

231

Still many open questions

- 3D
- Videos
- Visual perception in robotics

