How to avoid manual annotation?

Part I: Weakly-supervised learning
Coarse or cheap labels

Part II: Self-supervised learning
No labels
The ImageNet Challenge Story …

1000 categories

• Training: 1000 images for each category
• Testing: 100k images
The ImageNet Challenge Story … strong supervision

Classification Results (CLS)
The ImageNet Challenge Story … outcomes

Strong supervision:

- Features from networks trained on ImageNet can be used for other visual tasks, e.g. detection, segmentation, action recognition, fine grained visual classification.

- To some extent, any visual task can be solved now by:
 1. Construct a large-scale dataset labelled for that task
 2. Specify a training loss and neural network architecture
 3. Train the network and deploy

- Are there alternatives to strong supervision for training? Self-Supervised learning ….
Why Self-Supervision?

1. Expense of producing a new dataset for each new task

2. Some areas are supervision-starved, e.g. medical data, where it is hard to obtain annotation

3. Untapped/availability of vast numbers of unlabelled images/videos
 - Facebook: one billion images uploaded per day
 - 300 hours of video are uploaded to YouTube every minute

4. How infants may learn …
Self-Supervised Learning

The Scientist in the Crib: What Early Learning Tells Us About the Mind
by Alison Gopnik, Andrew N. Meltzoff and Patricia K. Kuhl

The Development of Embodied Cognition: Six Lessons from Babies
by Linda Smith and Michael Gasser
What is Self-Supervision?

• A form of unsupervised learning where the data provides the **supervision**

• In general, withhold some part of the data, and task the network with predicting it

• The task defines a proxy loss, and the network is forced to learn what we really care about, e.g. a semantic representation, in order to solve it
Example: relative positioning

Train network to predict relative position of two regions in the same image

Unsupervised visual representation learning by context prediction,
Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015
Example: relative positioning

Unsupervised visual representation learning by context prediction, Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015
Semantics from a non-semantic task
Outline

Self-supervised learning in three parts:

A. from images
B. from videos
C. from videos and sound
Part A
Self-Supervised Learning from Images
Context as Supervision
[Collobert & Weston 2008; Mikolov et al. 2013]

house, where the professor lived without his wife and child; or so he said jokingly sometimes: “Here’s where I live. My house.” His daughter often added, without resentment, for the visitor’s information, “It started out to be for me, but it’s really his.” And she might reach in to bring forth an inch-high table lamp with fluted shade, or a blue dish the size of her little fingernail, marked “Kitty” and half full of eternal life, but she was sure to replace these, after they had been admired, pretty near exactly where they had been. The little house was very orderly, and just big enough for all it contained, though to some tastes the bric-à-brac in the parlor might seem excessive. The daughter’s preference was for the store-bought gimmicks and appliances, the toasters and carpet sweepers of Lilliput, but she knew that most adult visitors would
Recap: relative positioning

Train network to predict relative position of two regions in the same image

Randomly Sample Patch
Sample Second Patch

Unsupervised visual representation learning by context prediction, Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015
CNN Classifier

Patch Embedding

Input

Nearest Neighbors

Note: connects *across* instances!
Evaluation: PASCAL VOC Detection

• 20 object classes (car, bicycle, person, horse …)

• Predict the bounding boxes of all objects of a given class in an image (if any)
Evaluation: PASCAL VOC Detection

- Pre-train CNN using self-supervision (no labels)
- Train CNN for detection in R-CNN object category detection pipeline

Pre-train on relative-position task, w/o labels

[Girshick et al. 2014]
Relative Positioning in ImageNet Labels:

- Average Precision: 56.8%

Relative Positioning without Pretraining:

- Average Precision: 51.1%

No Pretraining:

- Average Precision: 45.6%
Avoiding Trivial Shortcuts

Include a gap

Jitter the patch locations
A Not-So “Trivial” Shortcut
Chromatic Aberration
Chromatic Aberration
What is learned?

<table>
<thead>
<tr>
<th>Input</th>
<th>Ours</th>
<th>Random Initialization</th>
<th>ImageNet AlexNet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ours: [Image Link]
Input: [Image Link]
Random Initialization: [Image Link]
ImageNet AlexNet: [Image Link]
Visual Data Mining?
Image example II: colourization

Train network to predict pixel colour from a monochrome input

Grayscale image: L channel

$X \in \mathbb{R}^{H \times W \times 1}$

Concatenate (L, ab)

(X, \hat{Y})

“Free” supervisory signal
Image example II: colourization

Train network to predict pixel colour from a monochrome input

Colorful Image Colorization, Zhang et al., ECCV 2016
Inherent Ambiguity

Our Output

Ground Truth
Biases
Image example III: exemplar networks

- Exemplar Networks (Dosovitskiy et al., 2014)
- Perturb/distort image patches, e.g. by cropping and affine transformations
- Train to classify these exemplars as same class
Multi-Task Self-Supervised Learning

<table>
<thead>
<tr>
<th>Self-supervision task</th>
<th>ImageNet Classification top-5 accuracy</th>
<th>PASCAL VOC Detection mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rel. Pos</td>
<td>59.21</td>
<td>66.75</td>
</tr>
<tr>
<td>Colour</td>
<td>62.48</td>
<td>65.47</td>
</tr>
<tr>
<td>Exemplar</td>
<td>53.08</td>
<td>60.94</td>
</tr>
<tr>
<td>Rel. Pos + colour</td>
<td>66.64</td>
<td>68.75</td>
</tr>
<tr>
<td>Rel. Pos + Exemplar</td>
<td>65.24</td>
<td>69.44</td>
</tr>
<tr>
<td>Rel. Pos + colour + Exemplar</td>
<td>68.65</td>
<td>69.48</td>
</tr>
<tr>
<td>ImageNet labels</td>
<td>85.10</td>
<td>74.17</td>
</tr>
</tbody>
</table>

Procedure:

- ImageNet-frozen: self-supervised training, network fixed, classifier trained on features
- PASCAL: self-supervised pre-training, then train Faster-RCNN
- ImageNet labels: strong supervision

NB: all methods re-implemented on same backbone network (ResNet-101)
Which image has the correct rotation?

Unsupervised representation learning by predicting image rotations, Spyros Gidaris, Praveer Singh, Nikos Komodakis, ICLR 2018
Figure 1: Images rotated by random multiples of 90 degrees (e.g., 0, 90, 180, or 270 degrees). The core intuition of our self-supervised feature learning approach is that if someone is not aware of the concepts of the objects depicted in the images, he cannot recognize the rotation that was applied to them.

Unsupervised representation learning by predicting image rotations, Spyros Gidaris, Praveer Singh, Nikos Komodakis, ICLR 2018
Unsupervised representation learning by predicting image rotations,
Spyros Gidaris, Praveer Singh, Nikos Komodakis, ICLR 2018
Unsupervised representation learning by predicting image rotations, Spyros Gidaris, Praveer Singh, Nikos Komodakis, ICLR 2018

Image Transformations – 2018

- Uses AlexNet
- Closes gap between ImageNet and self-supervision

<table>
<thead>
<tr>
<th>Transformation</th>
<th>PASCAL VOC Detection mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>43.4</td>
</tr>
<tr>
<td>Rel. Pos.</td>
<td>51.1</td>
</tr>
<tr>
<td>Colour</td>
<td>46.9</td>
</tr>
<tr>
<td>Rotation</td>
<td>54.4</td>
</tr>
<tr>
<td>ImageNet Labels</td>
<td>56.8</td>
</tr>
</tbody>
</table>
SimCLR: Contrastive Learning of Visual Representations

Overview

SimCLR Framework

Original Image

Data Augmentation

X_i

X_j

T

Transformed Images

Base Encoder f(.)

h_i

h_j

Encoder

Encoder

Downstream tasks

Projection Head g(.)

Dense

Relu

Dense

Maximize similarity

z_i

z_j

SimCLR, A Simple Framework for Contrastive Learning of Visual Representations
Chen T, Kornblith S, Norouzi M, Hinton G., ICML 2020
SimCLR: Contrastive Learning of Visual Representations

Preparing similar pairs in a batch

Batch Size $N = 2$

Random Augmentation (T)

Augmented Images $= 2N = 2 \times 2 = 4$

SimCLR, A Simple Framework for Contrastive Learning of Visual Representations
Chen T, Kornblith S, Norouzi M, Hinton G., ICML 2020
SimCLR: Contrastive Learning of Visual Representations

Simulation of Cosine Similarity for Augmented Images

\[s_{i,j} = \frac{z_i^T z_j}{(\tau ||z_i|| ||z_j||)} \]

\(\tau\) = temperature hyperparameter. It can scale the input and widen the range \([-1, 1]\) of cosine similarity

\(||z||\) = vector norm

SimCLR, A Simple Framework for Contrastive Learning of Visual Representations
Chen T, Kornblith S, Norouzi M, Hinton G., ICML 2020
SimCLR: Contrastive Learning of Visual Representations

Softmax = \[
\frac{\text{similarity(e)}}{\text{similarity(e)} + \text{similarity(e)} + \text{similarity(e)}}
\]

SimCLR, A Simple Framework for Contrastive Learning of Visual Representations
Chen T, Kornblith S, Norouzi M, Hinton G., ICML 2020
SimCLR: Contrastive Learning of Visual Representations

NCE: Noise Contrastive Estimator

$$\ell_{i,j} = -\log \frac{\exp(\text{sim}(z_i, z_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\text{sim}(z_i, z_k)/\tau)}$$

$$l(\begin{array}{c} \text{similarity} \end{array}) = -\log \left(\frac{\text{similarity}(\begin{array}{c} e \end{array})}{\text{similarity}(\begin{array}{c} e \end{array}) + \text{similarity}(\begin{array}{c} e \end{array}) + \text{similarity}(\begin{array}{c} e \end{array})} \right)$$

Pair 1 Loss (k=1)

Pair 2 Loss (k=2)

$$L = \left[l(\begin{array}{c} \text{similarity} \end{array}) + l(\begin{array}{c} \text{similarity} \end{array}) \right] + \left[l(\begin{array}{c} \text{similarity} \end{array}) + l(\begin{array}{c} \text{similarity} \end{array}) \right]$$

$$2 \times 2$$

SimCLR, A Simple Framework for Contrastive Learning of Visual Representations
Chen T, Kornblith S, Norouzi M, Hinton G., ICML 2020
SimCLR: Contrastive Learning of Visual Representations

Augmentations

(a) Original (b) Crop and resize (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate \{90^{\circ}, 180^{\circ}, 270^{\circ}\} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering
SimCLR: Contrastive Learning of Visual Representations

Augmentations

Linear evaluation (ImageNet top-1 accuracy) under individual or composition of data augmentations

SimCLR, A Simple Framework for Contrastive Learning of Visual Representations
Chen T, Kornblith S, Norouzi M, Hinton G., ICML 2020
SimCLR: Contrastive Learning of Visual Representations

Evaluation

- Larger batch size
- Longer training
SimCLR: Contrastive Learning of Visual Representations

ImageNet Top-1 accuracy of linear classifiers trained on representations learned with different self-supervised methods (pretrained on ImageNet)

SimCLR, A Simple Framework for Contrastive Learning of Visual Representations

Chen T, Kornblith S, Norouzi M, Hinton G., ICML 2020
Figure 1. **Our MAE architecture.** During pre-training, a large random subset of image patches (e.g., 75%) is masked out. The encoder is applied to the small subset of visible patches. Mask tokens are introduced after the encoder, and the full set of encoded patches and mask tokens is processed by a small decoder that reconstructs the original image in pixels. After pre-training, the decoder is discarded and the encoder is applied to uncorrupted images to produce representations for recognition tasks.
Figure 2. Example results on ImageNet validation images. For each triplet, we show the masked image (left), our MAE reconstruction† (middle), and the ground-truth (right). The masking ratio is 80%, leaving only 39 out of 196 patches. More examples are in the appendix. †As no loss is computed on visible patches, the model output on visible patches is qualitatively worse. One can simply overlay the output with the visible patches to improve visual quality. We intentionally opt not to do this, so we can more comprehensively demonstrate the method’s behavior.
Masked autoencoders are scalable vision learners

Figure 8. **MAE pre-training vs. supervised pre-training**, evaluated by fine-tuning in ImageNet-1K (224 size). We compare with the original ViT results [16] trained in IN1K or JFT300M.

<table>
<thead>
<tr>
<th>method</th>
<th>pre-train data</th>
<th>AP<sub>box</sub></th>
<th>AP<sub>mask</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>supervised</td>
<td>IN1K w/ labels</td>
<td>47.9</td>
<td>42.9</td>
</tr>
<tr>
<td>MoCo v3</td>
<td>IN1K</td>
<td>47.9</td>
<td>42.7</td>
</tr>
<tr>
<td>BEiT</td>
<td>IN1K+DALLE</td>
<td>49.8</td>
<td>44.4</td>
</tr>
<tr>
<td>MAE</td>
<td>IN1K</td>
<td>50.3</td>
<td>44.9</td>
</tr>
</tbody>
</table>

Table 4. **COCO object detection and segmentation** using a ViT Mask R-CNN baseline. All entries are based on our implementation. Self-supervised entries use IN1K data *without* labels. Mask AP follows a similar trend as box AP.
Summary Point

• Self-Supervision:
 – A form of unsupervised learning where the data provides the *supervision*
 – In general, withhold some information about the data, and task the network with predicting it
 – The task defines a proxy loss, and the network is forced to learn what we really care about, e.g. a semantic representation, in order to solve it

• Many self-supervised tasks for images

• Often complementary, and combining improves performance

• Closing gap with strong supervision from ImageNet label training
 – ImageNet image classification, PASCAL VOC detection

• Deeper networks improve performance
Part B
Self-Supervised Learning from Videos
Video

A temporal sequence of frames

What can we use to define a proxy loss?

• Nearby (in time) frames are strongly correlated, further away may not be

• Temporal order of the frames

• Motion of objects (via optical flow)

• …
Outline

Three example tasks:

- Video sequence order
- Video direction
- Video tracking
Temporal structure in videos

Shuffle and Learn: Unsupervised Learning using Temporal Order Verification

Ishan Misra, C. Lawrence Zitnick and Martial Hebert
ECCV 2016
Sequential Verification

• Is this a valid sequence?

Sun and Giles, 2001; Sun et al., 2001; Cleermans 1993; Reber 1989 Arrow of Time - Pickup et al., 2014

Slide credit: Ishan Misra
Temporal Correct order

Original video

Slide credit: Ishan Misra
Temporally Correct order

Original video

Temporally Incorrect order

Slide credit: Ishan Misra
Geometric View

Given a start and an end, can this point lie in between?

Slide credit: Ishan Misra
Dataset: UCF-101 Action Recognition

Apply Eye Makeup Apply Lipstick Blow Dry Hair Brushing Teeth Cutting In Kitchen Hammering
Knitting Mixing Batter Mopping Floor Nun Chucks Pizza Tossing Shaving Beard
Writing On Board Yo Yo Baby Crawling Blowing Candles Body Weight Squats Handstand Pushups

UCF101 - Soomro et al., 2012
~900k tuples from UCF-101 dataset (Soomro et al., 2012)

Slide credit: Ishan Misra
Informative training tuples

Original video

Frame Motion

High motion window

Time

Slide credit: Ishan Misra
Nearest Neighbors of Query Frame (fc7 features)

Query | ImageNet | Shuffle & Learn | Random

Slide credit: Ishan Misra
Finetuning setup

Self-supervised Pre-train

Test -> Finetune

Input Tuple → Concatenation → Classification → Correct/Incorrect Tuple

Action Labels

Slide credit: Ishan Misra
Results: Finetune on Action Recognition

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Initialization</th>
<th>Mean Classification Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCF101</td>
<td>Random</td>
<td>38.6</td>
</tr>
<tr>
<td></td>
<td>Shuffle & Learn</td>
<td>50.2</td>
</tr>
<tr>
<td></td>
<td>ImageNet pre-trained</td>
<td>67.1</td>
</tr>
</tbody>
</table>

Setup from - Simonyan & Zisserman, 2014

Slide credit: Ishan Misra
Human Pose Estimation

- Keypoint estimation using FLIC and MPII Datasets
Human Pose Estimation

- Keypoint estimation using FLIC and MPII Datasets

<table>
<thead>
<tr>
<th>Initialization</th>
<th>FLIC Dataset</th>
<th>MPII Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean PCK</td>
<td>AUC PCK</td>
</tr>
<tr>
<td>Shuffle & Learn</td>
<td>84.9</td>
<td>49.6</td>
</tr>
<tr>
<td>ImageNet pre-train</td>
<td>85.8</td>
<td>51.3</td>
</tr>
</tbody>
</table>

FLIC - Sapp & Taskar, 2013 MPII - Andriluka et al., 2014
Setup from – Toshev et al., 2013
More temporal structure in videos

Self-Supervised Video Representation Learning With Odd-One-Out Networks

Basura Fernando, Hakan Bilen, Efstratios Gavves, and Stephen Gould, ICCV 2017
More temporal structure in videos

Self-Supervised Video Representation Learning With Odd-One-Out Networks

Basura Fernando, Hakan Bilen, Efstratios Gavves, and Stephen Gould, ICCV 2017

<table>
<thead>
<tr>
<th>Initialization</th>
<th>Mean Classification Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>38.6</td>
</tr>
<tr>
<td>Shuffle and Learn</td>
<td>50.2</td>
</tr>
<tr>
<td>Odd-One-Out</td>
<td>60.3</td>
</tr>
<tr>
<td>ImageNet pre-trained</td>
<td>67.1</td>
</tr>
</tbody>
</table>
Summary

• Important to select informative data in training
 – Hard negatives and positives
 – Otherwise, most data is too easy or has no information and the network will not learn
 – Often use heuristics for this, e.g. motion energy

• Consider how the network can possibly solve the task (without cheating)
 – This determines what it must learn, e.g. human keypoints in `shuffle and learn`

• Choose the proxy task to encourage learning the features of interest
Part C
Self-Supervised Learning from Videos with Sound
Audio-Visual Co-supervision

Sound and frames are:

• Semantically consistent
• Synchronized
Audio-Visual Co-supervision

Objective: use vision and sound to learn from each other

• Two types of proxy task:
 1. Predict audio-visual correspondence
 2. Predict audio-visual synchronization
Audio-Visual Co-supervision

Train a network to predict if image and audio clip correspond

“Objects that Sound”, Arandjelović and Zisserman, ICCV 2017 & ECCV 2018
Audio-Visual Correspondence

drum

guitar
Audio-Visual Correspondence

drum

positive

guitar
Audio-Visual Correspondence

drum

positive

guitar
Audio-Visual Correspondence

drum

guitar

negative
Audio-Visual Embedding (AVE-Net)

Distance between audio and visual vectors:

- **Small**: AV from the same place in a video (**Positives**)
- **Large**: AV from different videos (**Negatives**)

Train network from scratch
Background: Audio-Visual

- Andrew Owens ….
 - Owens, A., Jiajun, W., McDermott, J., Freeman, W., Torralba, A.: Ambient sound provides supervision for visual learning. ECCV 2016

- Other MIT work:

- From the past:
 - Kidron, E., Schechner, Y.Y., Elad, M.: Pixels that sound. CVPR 2005
 - De Sa, V.: Learning classification from unlabelled data, NIPS 1994
Dataset

- AudioSet (from YouTube), has labels
 - 200k x 10s clips
 - use musical instruments classes

- Correspondence accuracy on test set: 82% (chance: 50%)
Use audio and visual features

What can be learnt by watching and listening to videos?

• Good representations
 – Visual features
 – Audio features

• Intra- and cross-modal retrieval
 – Aligned audio and visual embeddings

• “What is making the sound?”
 – Learn to localize objects that sound

“Objects that Sound”, Arandjelović and Zisserman, ICCV 2017 & ECCV 2018
Results: Audio features

Sound classification
• ESC-50 dataset
 – Environmental sound classification
 – Use the net to extract features
 – Train linear SVM

“Objects that Sound”, Arandjelović and Zisserman, ICCV 2017 & ECCV 2018
Results: Vision features

ImageNet classification
• Standard evaluation procedure for unsupervised / self-supervised setting
 – Use the net to extract visual features
 – Linear classification on ImageNet

<table>
<thead>
<tr>
<th>Method</th>
<th>Top 1 accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>18.3%</td>
</tr>
<tr>
<td>Pathak et al. [21]</td>
<td>22.3%</td>
</tr>
<tr>
<td>Krähenbühl et al. [14]</td>
<td>24.5%</td>
</tr>
<tr>
<td>Donahue et al. [7]</td>
<td>31.0%</td>
</tr>
<tr>
<td>Doersch et al. [6]</td>
<td>31.7%</td>
</tr>
<tr>
<td>Zhang et al. [34] (init: [14])</td>
<td>32.6%</td>
</tr>
<tr>
<td>Noroozi and Favaro [18]</td>
<td>34.7%</td>
</tr>
<tr>
<td>Ours random</td>
<td>12.9%</td>
</tr>
<tr>
<td>Ours</td>
<td>32.3%</td>
</tr>
</tbody>
</table>

• On par with state-of-the-art self-supervised approaches
• The only method whose features haven’t seen ImageNet images
 – Probably never seen ‘Tibetan terrier’
 – Video frames are quite different from images
Use audio and visual features

What can be learnt by watching and listening to videos?

• Good representations
 – Visual features
 – Audio features

• Intra- and cross-modal retrieval
 – Aligned audio and visual embeddings

• “What is making the sound?”
 – Learn to localize objects that sound

“Objects that Sound”, Arandjelović and Zisserman, ICCV 2017 & ECCV 2018
Query on image, retrieve audio

Search in 200k video clips of AudioSet

“Objects that Sound”, Arandjelović and Zisserman, ICCV 2017 & ECCV 2018
Use audio and visual features

What can be learnt by watching and listening to videos?

• Good representations
 – Visual features
 – Audio features

• Intra- and cross-modal retrieval
 – Aligned audio and visual embeddings

• “What is making the sound?”
 – Learn to localize objects that sound

“Objects that Sound”, Arandjelović and Zisserman, ICCV 2017 & ECCV 2018
Objects that Sound

“Objects that Sound”, Arandjelović and Zisserman, ICCV 2017 & ECCV 2018
Localizing objects with sound

Input: audio and video frame
Output: localization heatmap on frame

What would make this sound?

Note, no video (motion) information is used

“Objects that Sound”, Arandjelović and Zisserman, ICCV 2017 & ECCV 2018
Summary: Audio-Visual Co-supervision

Objective: use vision and sound to learn from each other

- Two types of proxy task:
 1. Predict audio-visual correspondence -> semantics
 2. Predict audio-visual synchronization -> attention

- Lessons are applicable to any two related sequences, e.g. stereo video, RGB/D video streams, visual/infrared cameras …