Reconnaissance d'objets et vision artificielle 2023

Weakly-supervised and self-supervised visual recognition

Ivan Laptev

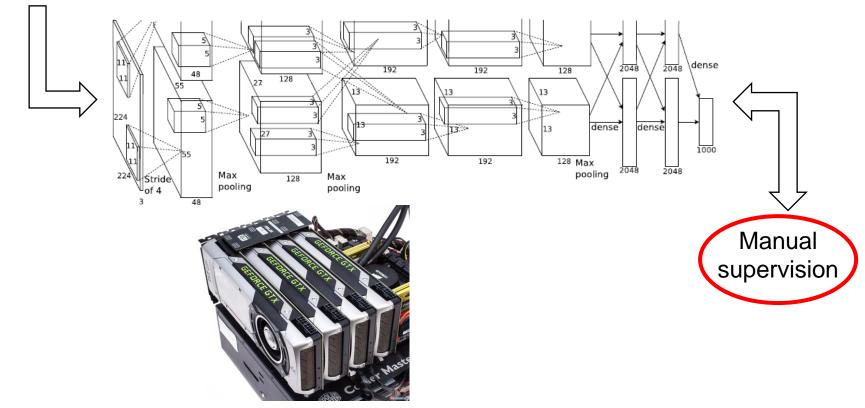
Ivan.Laptev@mbzuai.ac.ae https://www.di.ens.fr/~laptev Visiting professor, MBZUAI, United Arab Emirates External member, Willow Team, Inria, DI ENS, Paris

Announcements

- Final Project Topics are out
- Final Project proposals are due Dec 5
 - Submit 1-page PDF project proposal
 - Add "Topic A" ... "Topic X" to the title
 - Check you can claim Google Credits (wait for email)
 - Whenever possible, aim to reproduce published results using comparable experimental settings.
 - Use standard experimental settings so your results can be compared to others
 - Start working on the project, your will get feedback on your project proposal

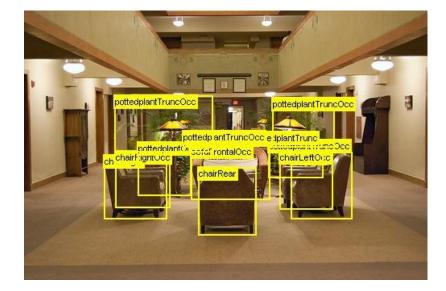
Ingredients of modern vision methods

AlexNet [Krizhevsky et al. 2012] ~60M parameters



Problems with manual supervision

• Expensive

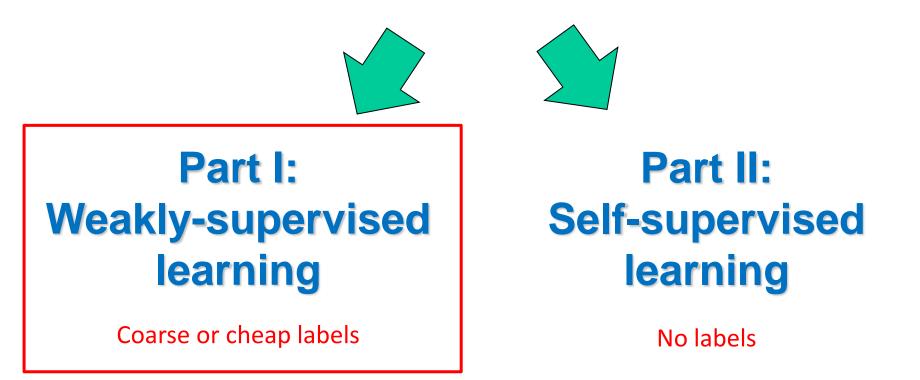


• Ambiguous

Table? Dining table? Desk? ...

This lecture:

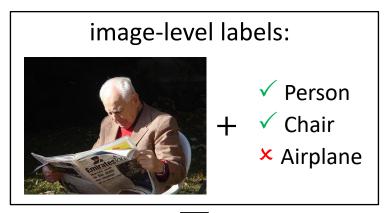
How to avoid manual supervision?



Preview:

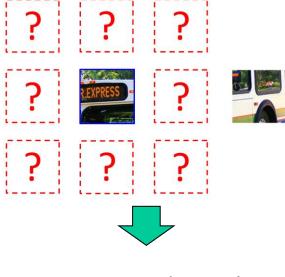
Weakly-supervised learning

Coarse or cheap labels



Self-supervised learning

No labels



Pre-trained visual representation

Can we train object detection without bounding box annotations?

Image-level labels: Bicycle, Person

Motivation: image-level labels are plentiful

"Beautiful red leaves in a back street of Freiburg"

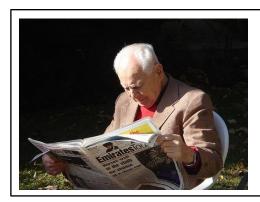
[Kuznetsova et al., ACL 2013] http://www.cs.stonybrook.edu/~pkuznetsova/imgcaption/captions1K.html

Motivation: image-level labels are plentiful

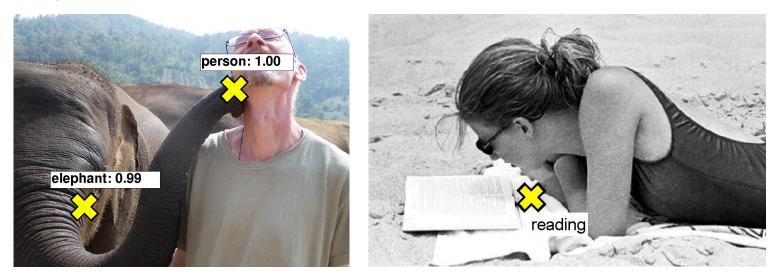
"Public bikes in Warsaw during night"

https://www.flickr.com/photos/jacek_kadaj/8776008002/in/photostream/

Training input



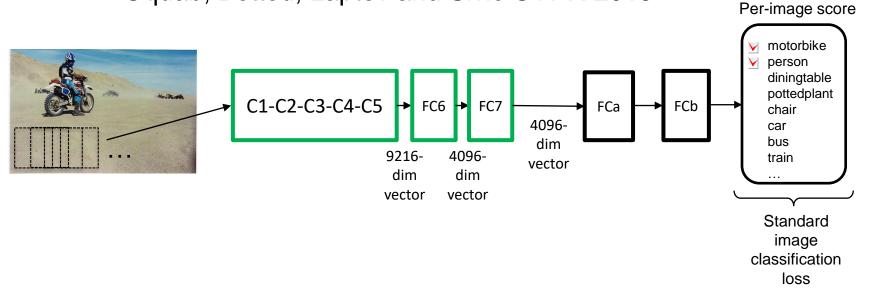
Test output



More details in http://www.di.ens.fr/willow/research/weakcnn/

Approach: search over object's location at the *training time*

Oquab, Bottou, Laptev and Sivic CVPR 2015



See also [Papandreou et al. '15, Sermanet et al. '14, Chaftield et al.'14]

Approach: search over object's location at the *training time*

Oquab, Bottou, Laptev and Sivic CVPR 2015

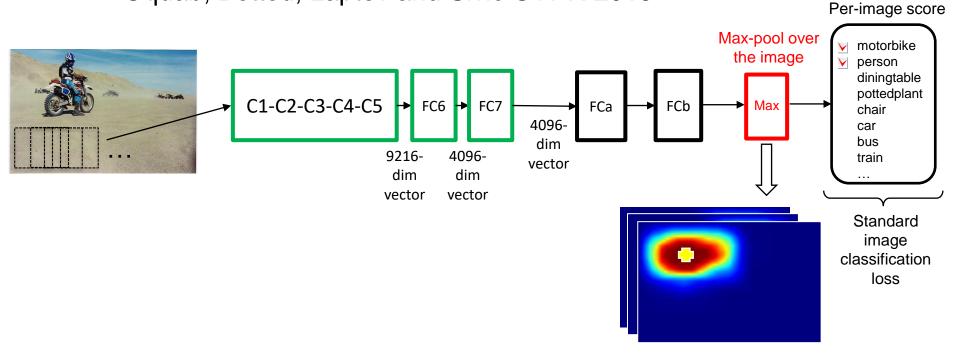
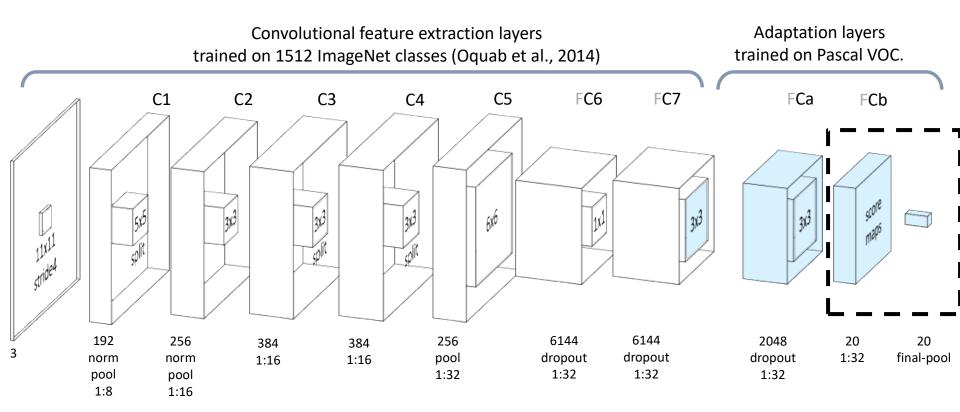
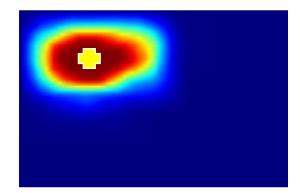


Image-level global max-pool per-class aggregation

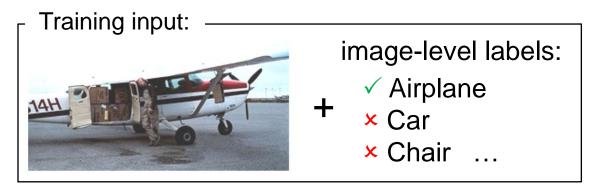
See also [Papandreou et al. '15, Sermanet et al. '14, Chaftield et al.'14]

Image-level aggregation using global max-pool

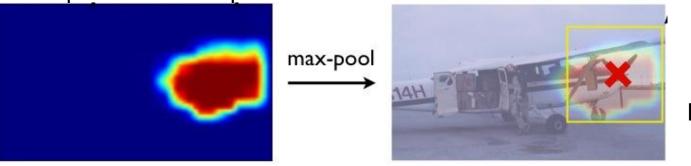




Training with global max-pooling

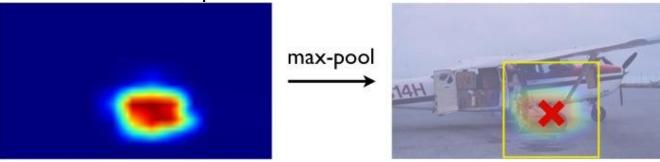


Airplane score map



Correct label: increase score Learn discriminative object parts

Car score map

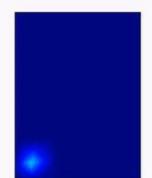


Incorrect label: decrease score

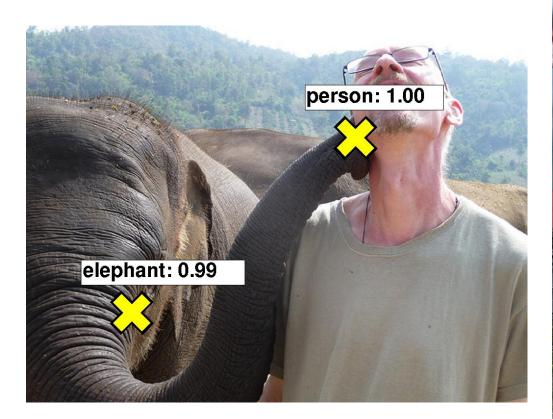
Suppress Hard Negatives

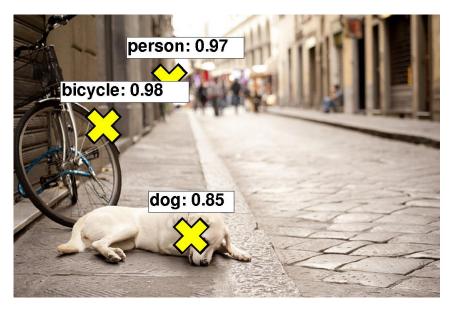
Training Motorbikes

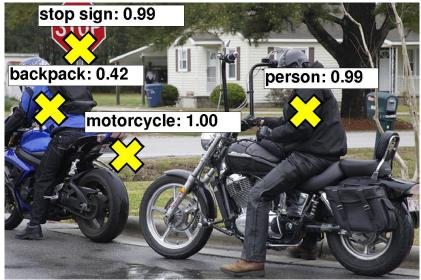
Evolution of localization score maps over training epochs

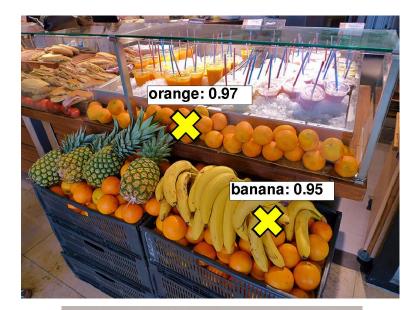


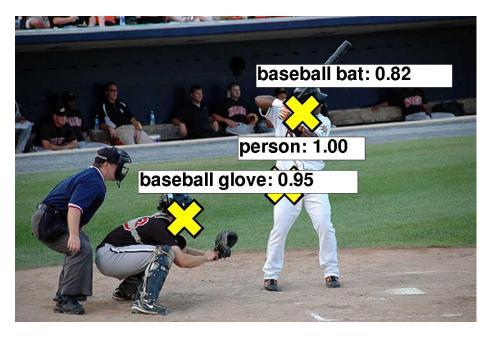
motorbike - training iteration 0030

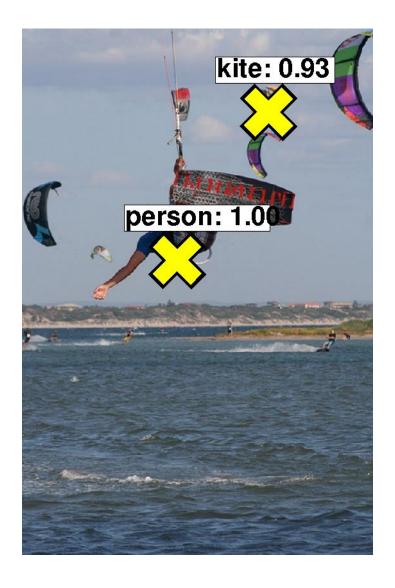


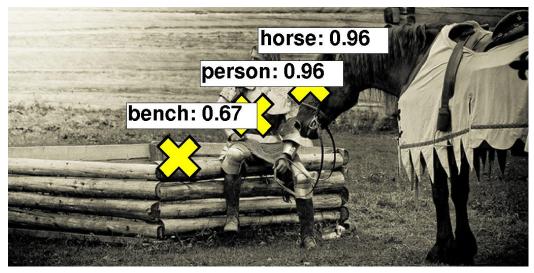


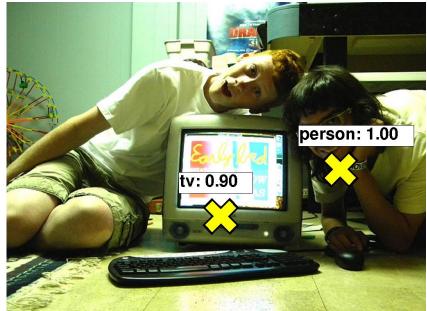


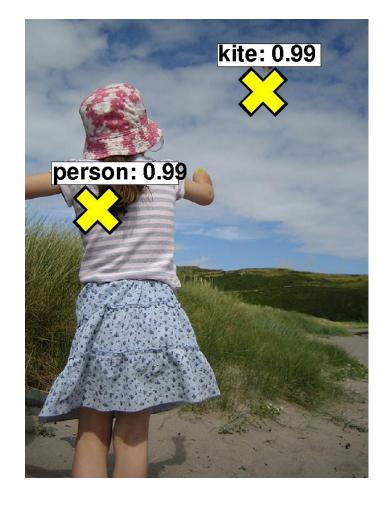


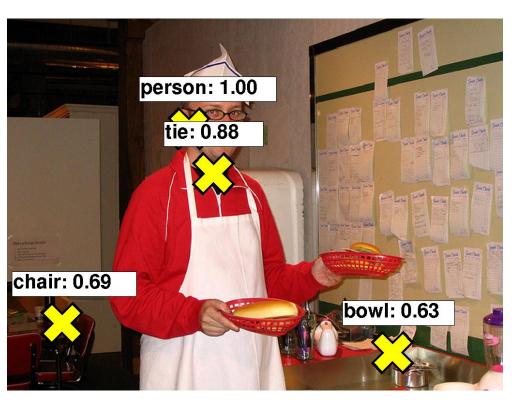


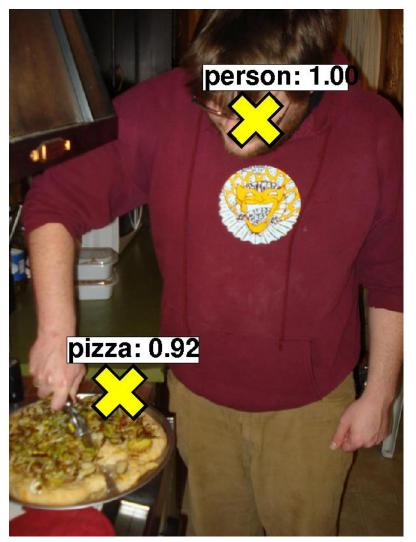




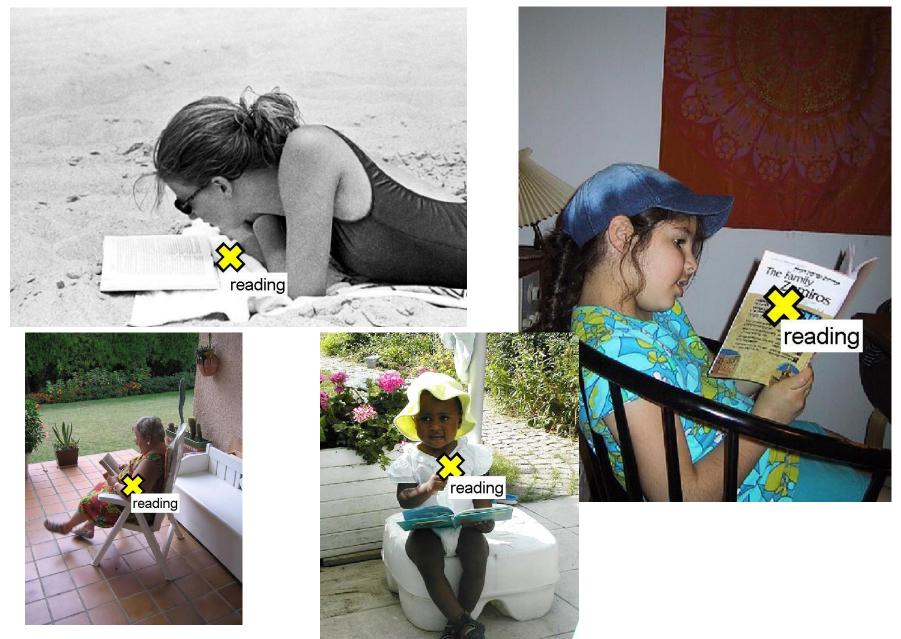


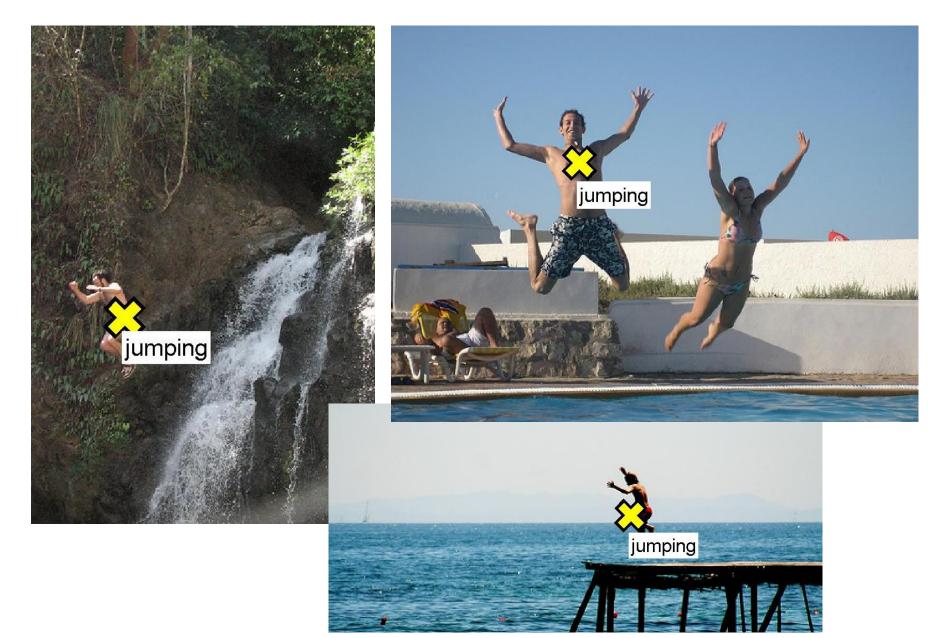






Results for weakly-supervised action recognition in Pascal VOC'12 dataset

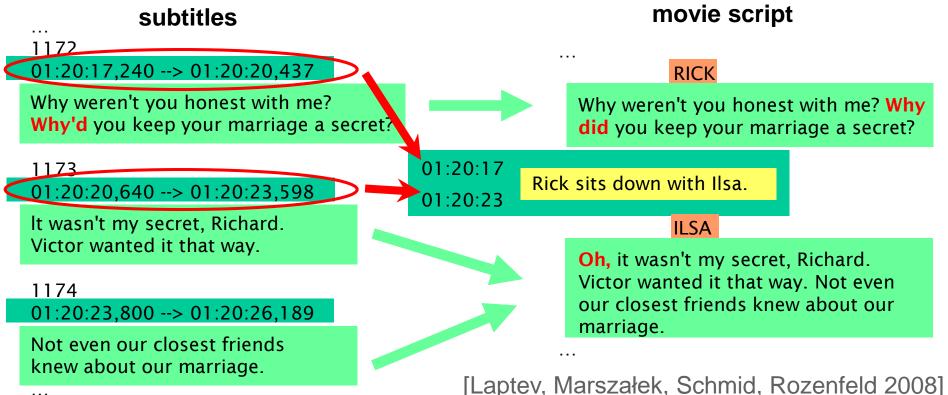




Weakly-supervised learning of actions *in video* from scripts and narrations

Script-based video annotation

- Scripts available for >500 movies (no time synchronization) www.dailyscript.com, www.movie-page.com, www.weeklyscript.com ...
- Subtitles (with time info.) are available for the most of movies
- Can transfer time to scripts by text alignment

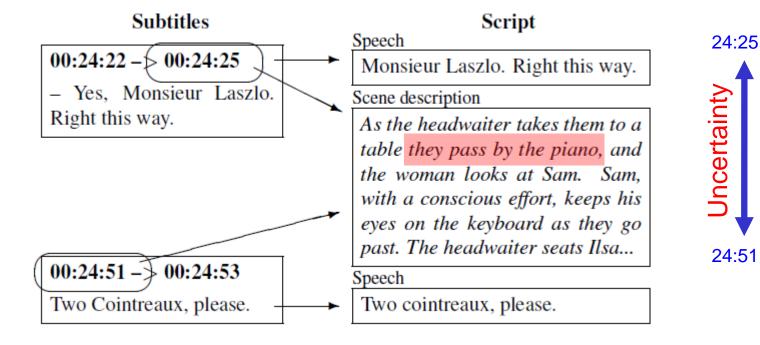


Scripts as weak supervision

Challenges:

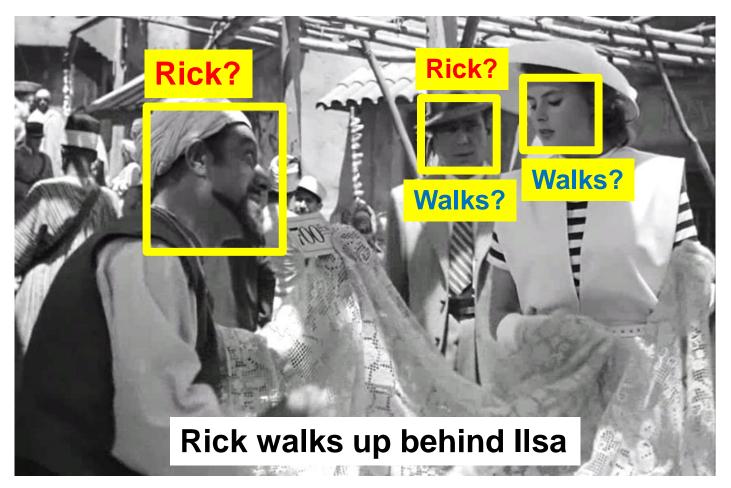
- Imprecise temporal localization
- No explicit spatial localization
- NLP problems, scripts ≠ training labels
 - "... Will gets out of the Chevrolet. ..." "... Erin exits her new truck..."

```
vs. Get-out-car
```



Joint Learning of Actors and Actions

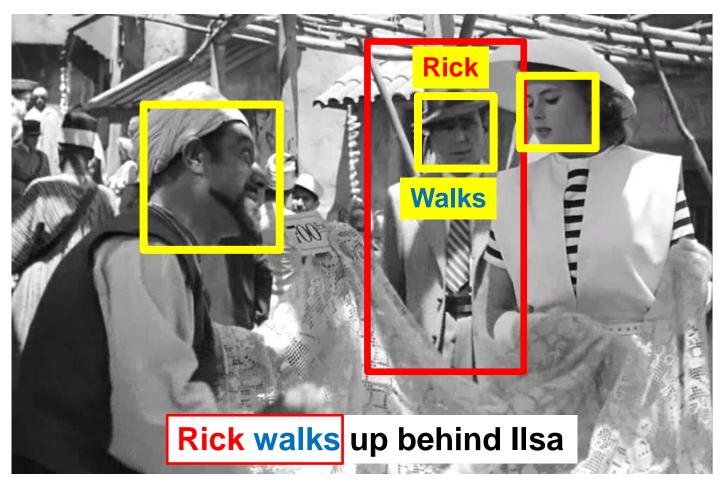
[Bojanowski et al. ICCV 2013]



[Bojanowski, Bach, Laptev, Ponce, Schmid, Sivic, 2013]

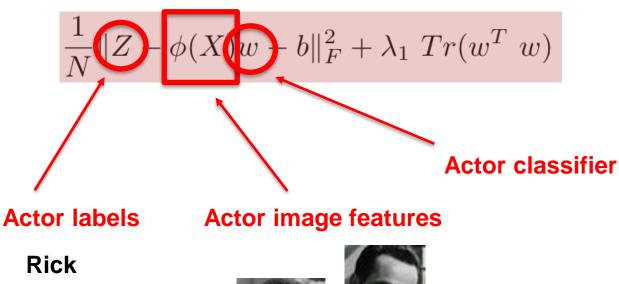
Joint Learning of Actors and Actions

[Bojanowski et al. ICCV 2013]



[Bojanowski, Bach, Laptev, Ponce, Schmid, Sivic, 2013]

Formulation: Cost function



llsa Sam

Formulation: Cost function

$$\frac{1}{N} \left\| \mathbf{Z} - \phi(X)w - b \right\|_F^2 + \lambda_1 \ Tr(w^T \ w)$$

$\overline{z_{11}}$		$egin{array}{c} z_{1p} \ dots \end{array}$		$\left. \begin{array}{c} z_{1P} \\ \vdots \end{array} \right $	
$egin{array}{c} z_{n_1 1} \ z_{n_2 1} \ z_{n_3 1} \end{array}$	· · · · · · ·	$\begin{array}{c} z_{n_1p} \\ z_{n_2p} \\ z_{n_3p} \end{array}$	· · · · · · ·	$\begin{array}{c} z_{n_1P} \\ z_{n_2P} \\ z_{n_3P} \end{array}$	
\vdots z_{N1}		\vdots z_{Np}		\vdots z_{NP}	

Weak supervision from scripts:

Person p appears at least once in clip N :

 $\sum_{n \in \mathcal{N}_i} z_{np} \ge 1$

p = Rick

Formulation: Cost function

$$\frac{1}{N} \|Z - \phi(X)w - b\|_F^2 + \lambda_1 \ Tr(w^T \ w)$$

$$+\frac{1}{N} \int \psi(X)v - c\|_F^2 + \lambda_2 Tr(v^T v)$$

Weak supervision from scripts:

Action a appears at least once in clip N :

$$\sum_{n \in \mathcal{N}_i} t_{na} \ge 1$$

$\int t_{11}$		t_{1a}		t_{1A}
:		÷		÷
$t_{n_1 1}$	• • •	t_{n_1a}		t_{n_1A}
t_{n_21}	• • •	t_{n_2a}		t_{n_2A}
t_{n_31}	• • •	t_{n_3a}	• • •	t_{n_3A}
:		÷		÷
$\lfloor t_{N1}$		t_{Na}		t_{NA}

a = Walk

Formulation: Cost function

$$\frac{1}{N} \|Z - \phi(X)w - b\|_F^2 + \lambda_1 \ Tr(w^T \ w)$$

+
$$\frac{1}{N} ||T - \psi(X)v - c||_F^2 + \lambda_2 Tr(v^T v)$$

Weak supervision from scripts:

 $\min_{Z,T,w,b,v,c}$

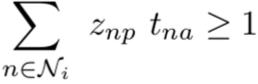
Person p appears in clip N :

 $\sum_{n \in \mathcal{N}_i} z_{np} \ge 1$

Action a appears in clip N :

$$\sum_{n \in \mathcal{N}_i} t_{na} \ge 1$$

Person p and Action a appear in clip N :



Scaling to many movies: Faces

Jane 1

Jane 2 Jane 3 Figure 1: American Beauty

Ricky 2

Ricky 1

Ricky 3

Carolyn 1

Carolyn 2 Carolyn 3

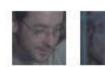
Melvin 3

Carol 1

Carol 2 Carol 3 Simon 1 Figure 2: As Good As It Gets

Frank 1

Frank 3

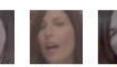


Craig 1

Craig 3

Maxine 1

Mary 1



Maxine 2 Maxine 3 Lotte 1 Figure 3: Being John Malkovich

Lotte 3

Frank 2

Malkovich 1 Malkovich 2 Malkovich 3

Edward 1

Edward 3

Will 3 Figure 4: Big Fish

Lotte 2

Jenny 2

Jenny 3

Frank 1

Frank 2

Craig 2

Edward 2

Mary 2 Mary 3 Figure 5: Bring Out the Dead

Larry 1

Larry 2

Larry 3

Walls 1 Walls 2

Sandra 1

Sandra 2

Sandra 3

Scaling to many movies: Faces

Figure 9: Charade

Dyle 2

Adam 3

Banky 3

Peter 2 Peter 1

Peter 3

Reggie 3

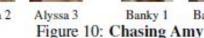
Holden 1

Holden 2

Holden 3

Dyle 1

Alyssa 2



Banky 2

Hooper 1

Hooper 2

Dante 1

James 1

Charlie 1

Dante 2

Dante 3

Randal 1

Randal 3 Figure 11: Clerks

Customer 1 Customer 2 Customer 3

Jay 1

Jay 2

Jay 3

James 2

James 3

Vaughan 1 Vaughan 2 Vaughan 3 Figure 12: Crash

Neil 3

Helen 2

Catherine 1 Catherine 2 Catherine 3

Charlie 2 Charlie 3

Neil 1

Neil 2

Figure 13: Dead Poets Society

Helen 1

Knox 1

Keating 1 Keating 2 Keating 3

Knox 2

Scaling to many movies: Faces

Marge 1

Marge 3

Da 1

Marla 1

Figure 17: Fargo

Carl 2

Carl 3

Grimsrud 1 Grimsrud 2 Grimsrud 3

Marge 2

Duke 1 Duke 2

Duke 3

Gonzo 2 Gonzo 3 Gonzo 1 Figure 18: Fear and Loathing in Las Vegas



Clerk 2

Clerk 1

Clerk 3

Jack 1

Jack 3

Tyler 3 Tyler 2 Figure 19: Fight Club

Marla 3

Bob 1 Bob 2 Bob 3

Jack 2

Bobby 1

Bobby 2 Bobby 3

Rayette 1

Tyler 1

Rayette 2

Catherine 1 Catherine 2 Catherine 3 Figure 20: Five Easy Pieces

Tita 1 Tita 2 Tita 3

Forrest 1

Forrest 2 Forrest 3

Jenny 2

Jenny 3 Figure 21: Forrest Gump

Lt. dan 1

Mrs. gump 1 Mrs. gump 2 Mrs. gump 3

Rayette 3

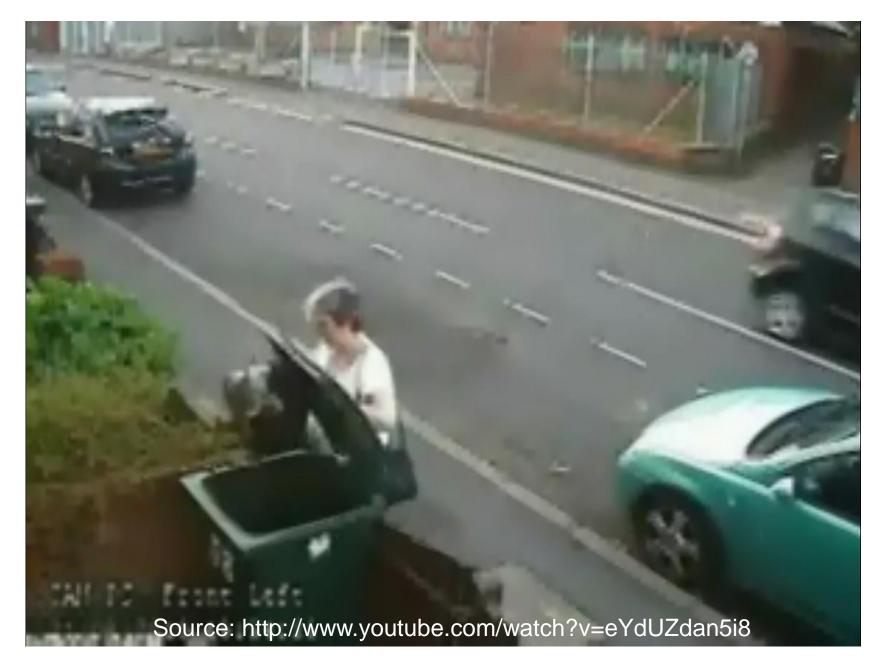
Marla 2

How to define actions?

• Is action vocabulary well-defined?

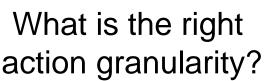
Examples of "Open" action:

• What granularity of action vocabulary shall we consider?



Current solution: learn person-throws-cat-into-trash-bin classifier

What are action classes?



open

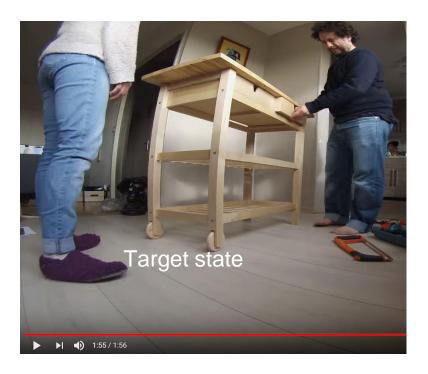
action granularity?

person-throws-cat-into-trash-bin

Define actions by goals

Instructional videos

- · Narrated videos: people describe what they do
- Large variety of actions, objects, scenes and tasks
- Goal-driven sequences of actions



Learning from narrated instruction videos

J.-B. Alayrac, P. Bojanowski, N. Agrawal, J. Sivic, I. Laptev and S. Lacoste-Julien

CVPR 2016

What are instructional videos?

Don't jack your car without loosening the nuts!

[Alyarac et al., CVPR 2016]

How do we formalize the problem?

truction videos

Outputs: • sequence of main steps

- visual and linguistic representations of the steps
- temporal localization of each step

Assumptions and overview of the approach

Assumptions:

Assumption 1: Each task is composed of an ordered sequence of steps.

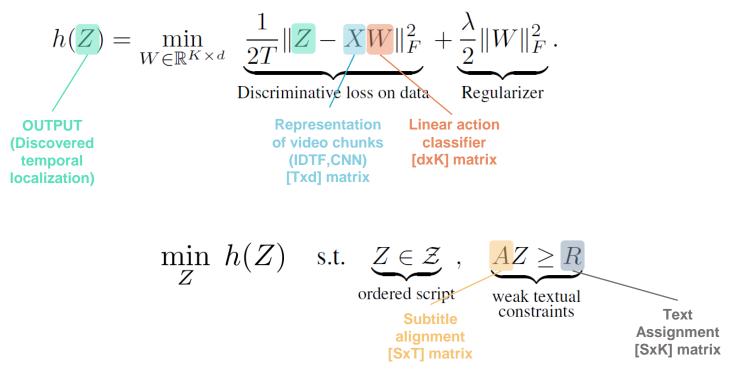
Assumption 2: People do what they say roughly when they say it Approach: two linked clustering stages

1) Text clustering using multiple sequence alignment

2) Video clustering under text constraints

Video clustering with text constraints

Video clustering



Qualitative results

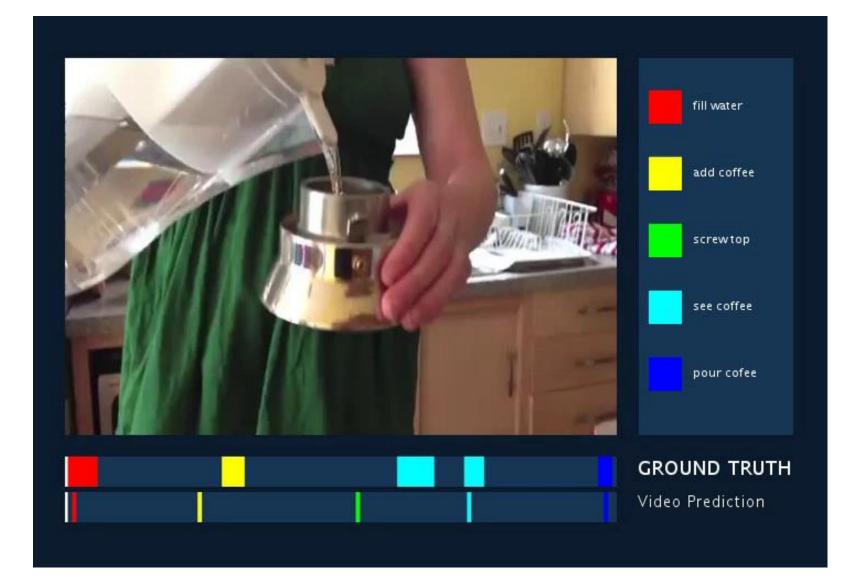
``loosen nuts"

``jack car"

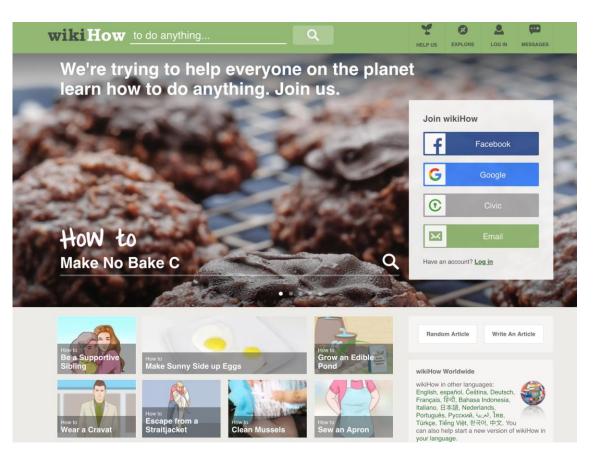
``remove wheel"

Changing a tire K = 5

Qualitative results



Going WikiHow scale



Step 1: Scrap ~130K tasks from WikiHow

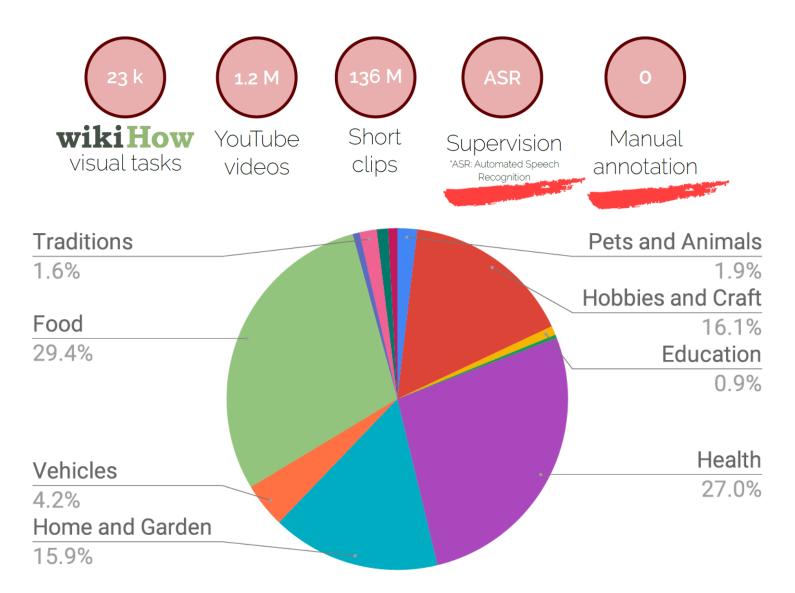
Examples of scrapped tasks

- How to De Healthy
- How to Cook Quinoa in a Rice Cooker
- How to Sew an Apron
- How to Break a Chain
- How to April Fool your Girlfriend

•

Step 2: Filter out non-visual tasks

HowTo100M dataset



HowTo100M dataset

23 k wikiHow visual tasks	1.2 M YouTube videos	Short clips	Sup TASR: AU	ASR Cervision Itomated Speech ecognition	Manua	
Dataset	Clips	Captions	Videos	Duration	Source	Year
Charades	10k	16k	10,000	82h	Home	2016
MSR-VTT	10k	200k	7,180	40h	Youtube	2016
YouCook2	14k	14k	2,000	176h	Youtube	2018
EPIC-KITCHENS	40k	40k	432	55h	Home	2018
DiDeMo	27k	41k	10,464	87h	Flickr	2017
M-VAD	49k	56k	92	84h	Movies	2015
MPII-MD	69k	68k	94	41h	Movies	2015
ANet Captions	100k	100k	20,000	849h	Youtube	2017
TGIF	102k	126k	102,068	103h	Tumblr	2016
LSMDC	128k	128k	200	150h	Movies	2017
How?	185k	185k	13 168	298h	Youtube	2018
HowTo100M	136M	136M	1.221M	134,472h	Youtube	2019

x1000 times larger!

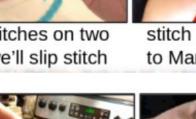
HowTo100M dataset: Examples

two stitches on two and we'll slip stitch

two stitches on two and we'll slip stitch

by skipping the first three stitches

stitch and just going to Mariel all the way



garlic no Camino the garlic powder

a little black pepper and some sea salt

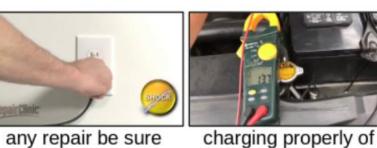
mark this so that I know when I cut

running length they have a consistent

this is an inch and a

half from the edge

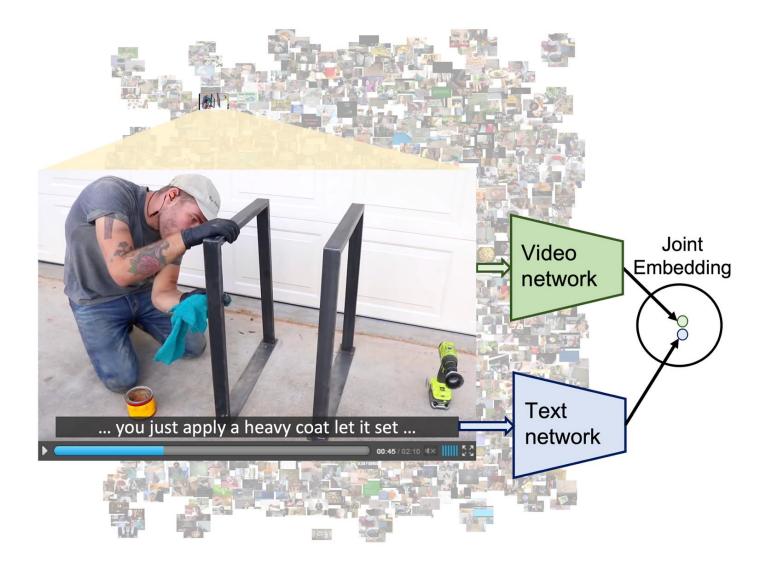
of wood clamp together chisel out



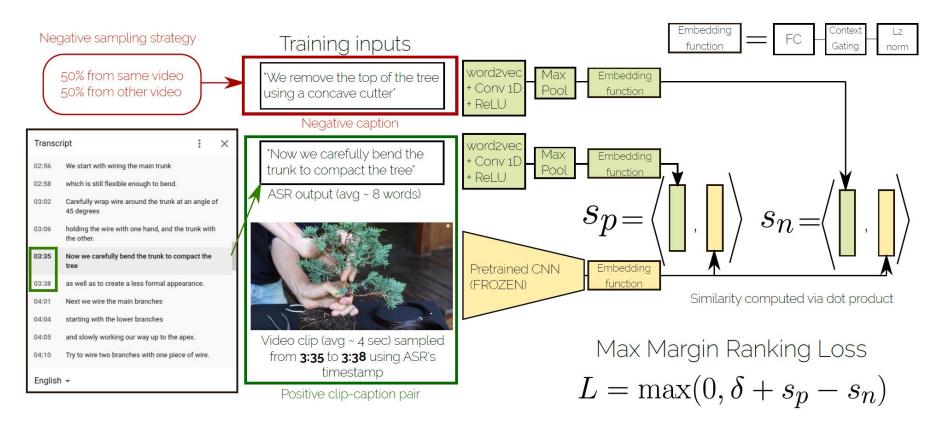
any repair be sure you've unplugged

our reading

Joint embedding model



Joint embedding model



Online search demo: https://www.di.ens.fr/willow/research/howto100m/

Q Hold wine glass

Online search demo: https://www.di.ens.fr/willow/research/howto100m/

Results: Instructional videos

YouCook2: Video retrieval

Method	Trainset	R@1	R@5	R@10	Median R
Random	None	0.03	0.15	0.3	1675
HGLMM FV CCA [21]	YouCook2	4.6	14.3	21.6	75
Ours	YouCook2	4.2	13.7	21.5	65
Ours	HowTo100M	6.1	17.3	24.8	46
Ours	PT: HowTo100M FT: YouCook2	8.2	24.5	35.3	24

Weakly-supervised training on HowTo100M outperforms fully-supervised training on YouCook2 and CrossTask datasets

Fine-tuning gives further improvements

CrossTask: Action localizat	fake imchi Rice	ickle ucumber	fake Banana se Cream	irill teak	ack Up ar	fake ello Shots	hange ire	fake emonade	dd Oil Car	1ake atte	uild helves	1ake aco Salad	fake rench Toast	fake ish Coffee	Iake trawberry Cake	1ake ancakes	fake feringue	1ake ish Curry	verage	
Fully-supervised upper-bound [68]	≥⊻ 19.1	25.3	38.0	37.5	25.7	28.2	54.3	25.8	₹ £ 18.3	31.2	47.7	≥⊨ 12.0	≥ ⊞ 39.5	23.4	≥∽ 30.9	≥≏ 41.1	22 53.4	≥≞ 17.3	<	
Alayrac <i>et al.</i> [2] Zhukov <i>et al.</i> [68] Ours trained on HowTo100M only	15.6 13.3 33.5		23.4	23.1	16.9	16.5	30.7	21.6	4.6	19.5		10.0		13.8	29.5	37.6	23.2 43.0 41.9	13.3	13.3 22.4 33.6	

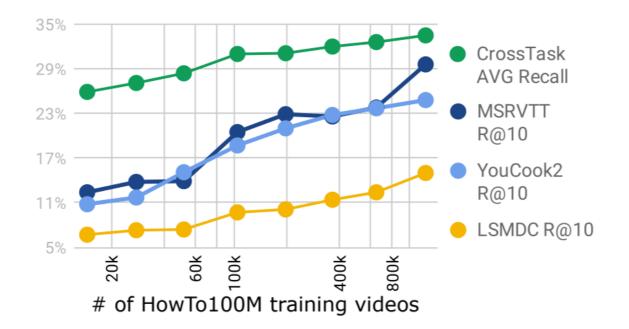
Results: YouTube videos

Method Trainset R@1 R@5 R@10 Median R Random 0.5 1.0 500 None 0.1 MSR-VTT C+LSTM+SA+FC7 [47] 4.2 12.9 19.9 55 VSE-LSTM [20] MSR-VTT 3.8 12.7 17.1 66 SNUVL [58] MSR-VTT 3.5 15.9 23.8 44 Kaufman et al. [18] MSR-VTT 16.6 24.141 4.7 CT-SAN [59] 16.6 22.3 35 MSR-VTT 4.4 MSR-VTT 10.2 31.2 43.2 JSFusion [57] 13 35.0 48.0 12 Ours MSR-VTT 12.1 Ours HowTo100M 21.2 29.6 38 7.5 PT: HowTo100M 40.2 14.9 Ours 52.8 9 FT: MSR-VTT

MSR-VTT: Video retrieval

Pre-training on HowTo100M + finetuning outperforms fully-supervised training on MSR-VTT

Results: Impact of scale



Open challenges

 HowTo100M contains ~50% label noise due to video-text misalignment, non-visual explanations, etc.

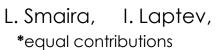
... want to be that extra right when you finish a question ...

... by our electronic devices and in the same cases in your plants ...

 \ldots on my old moto Guzzi or had before I sold it \ldots

 Our method relies on pre-trained video features, no end-to-end learning of visual representations despite massive (but noisy) data.

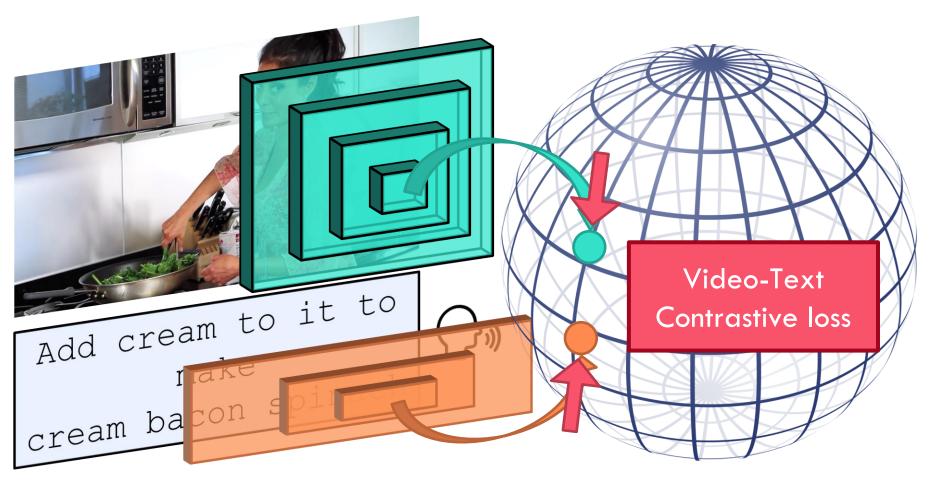
End-to-End Learning of Visual Representations from Uncurated Instructional Videos



J. Sivic, A. Zisserman

CVPR 2020

Training task



[Miech, Alayrac, Laptev, Smaira, Sivic and Zisserman, CVPR 2020]

Time

fresh herbs maybe some oregano

[Miech, Alayrac, Laptev, Smaira, Sivic and Zisserman, CVPR 2020]

spinachs what's
 the name

Time

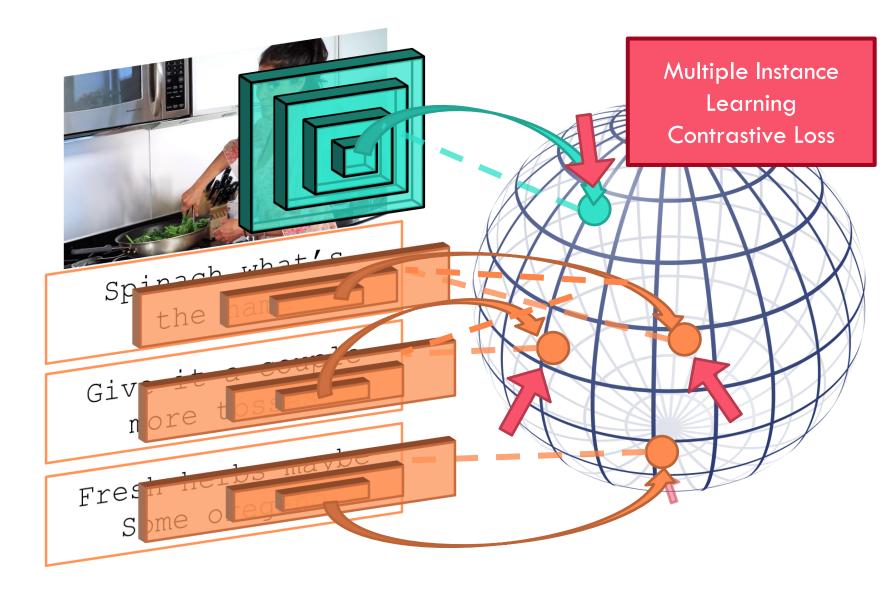
keep it simple you
just want to add

fresh herbs maybe some oregano

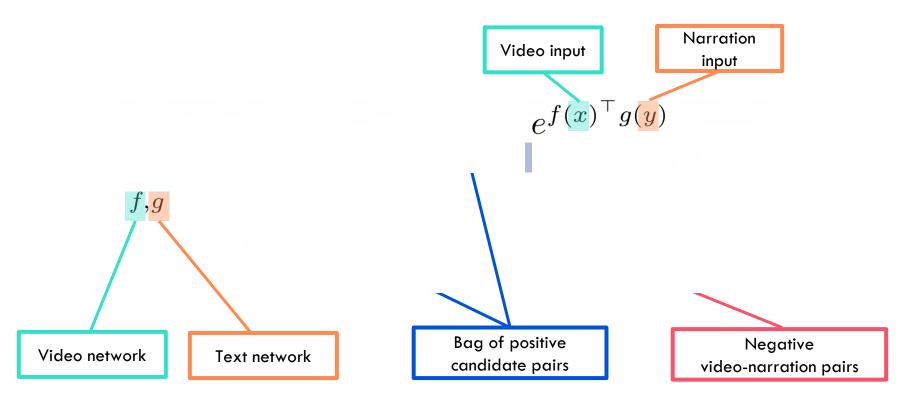
you can add cilantro basil they give

give it a couple more tosses

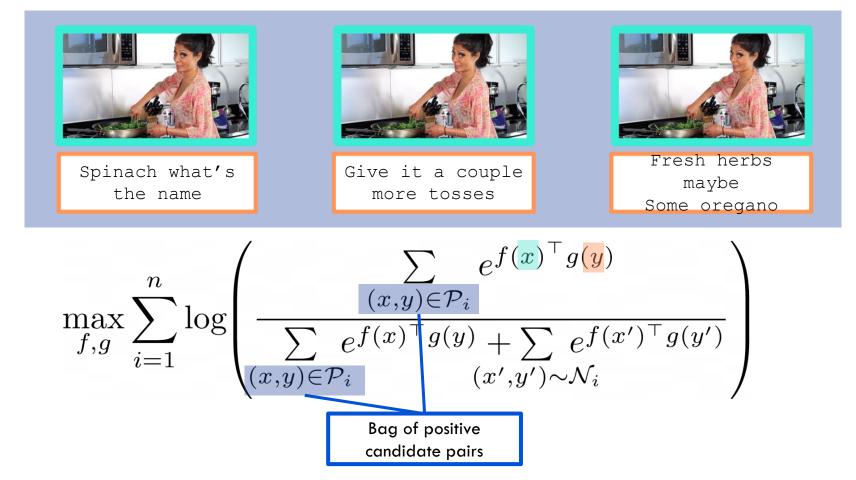
[Miech, Alayrac, Laptev, Smaira, Sivic and Zisserman, CVPR 2020]



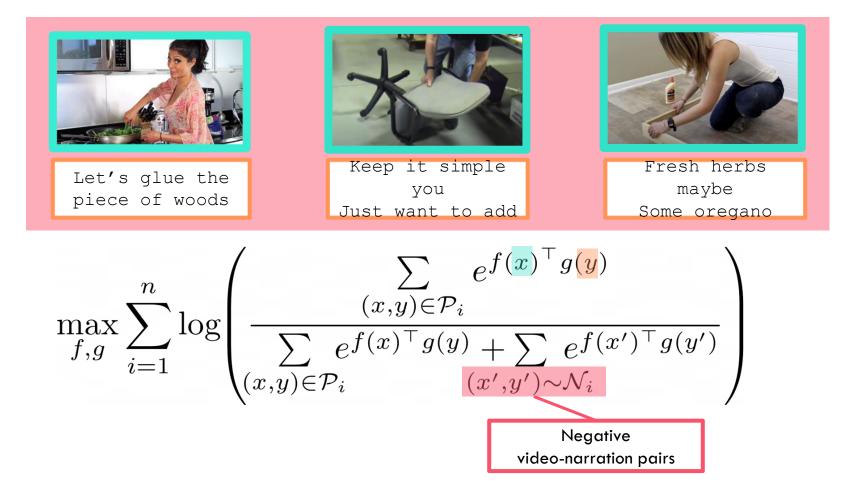
Our formulation: **MIL-NCE**



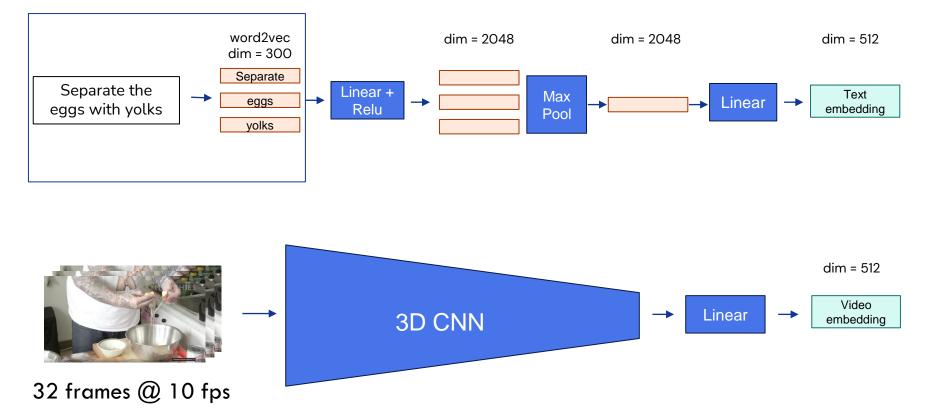
Our formulation: **MIL-NCE**



Our formulation: MIL-NCE



Video-Text model architecture



The downstream tasks

Action recogniti on

HMDB-51

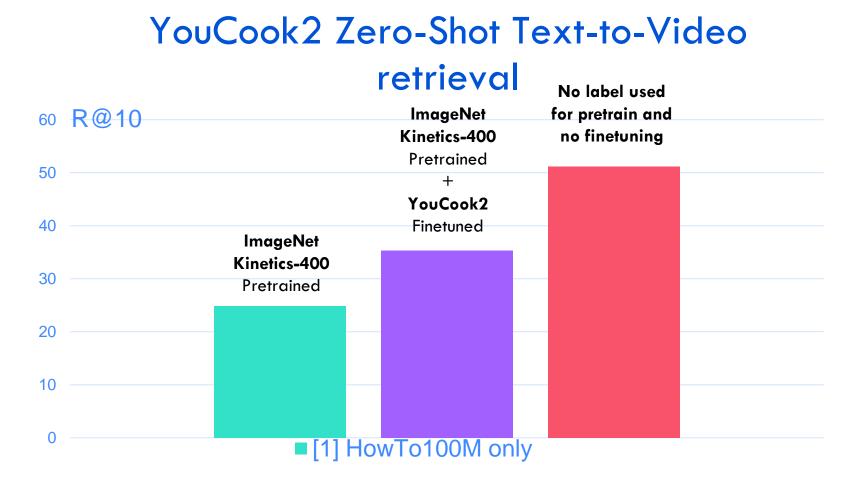
UCF-101 Text-to-Video retrieval

MSR-VTT

YouCook2

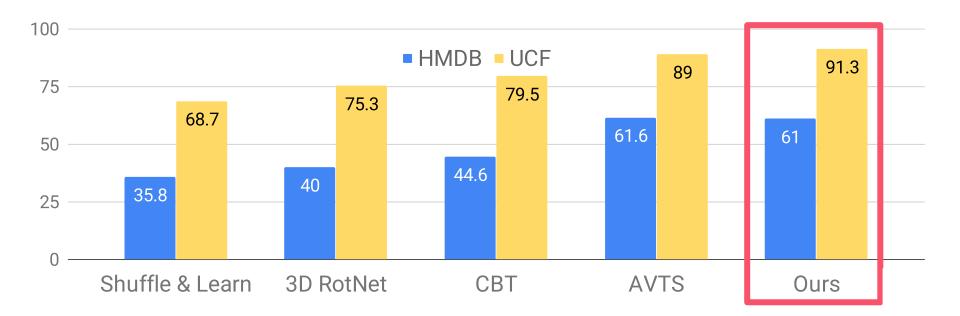
YouTube 8M Segments

CrossTask

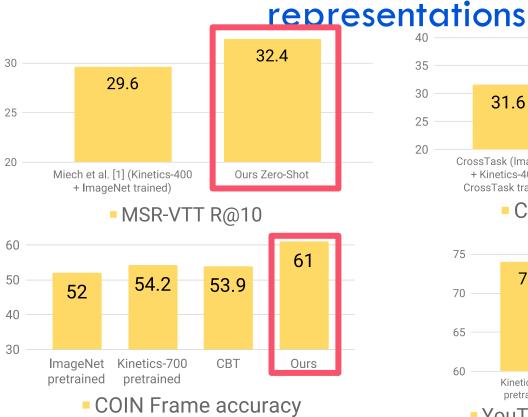


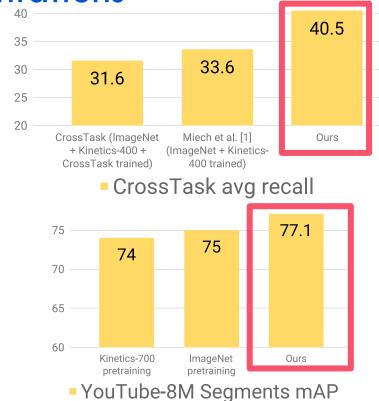
[1] A. Miech, D. Zhukov, J.-B. Alayrac, M. Tapaswi, I. Laptev, J. Sivic, HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips, in ICCV, 2019.

Action recognition: comparison to self-supervised video representations



Comparison to fully-supervised

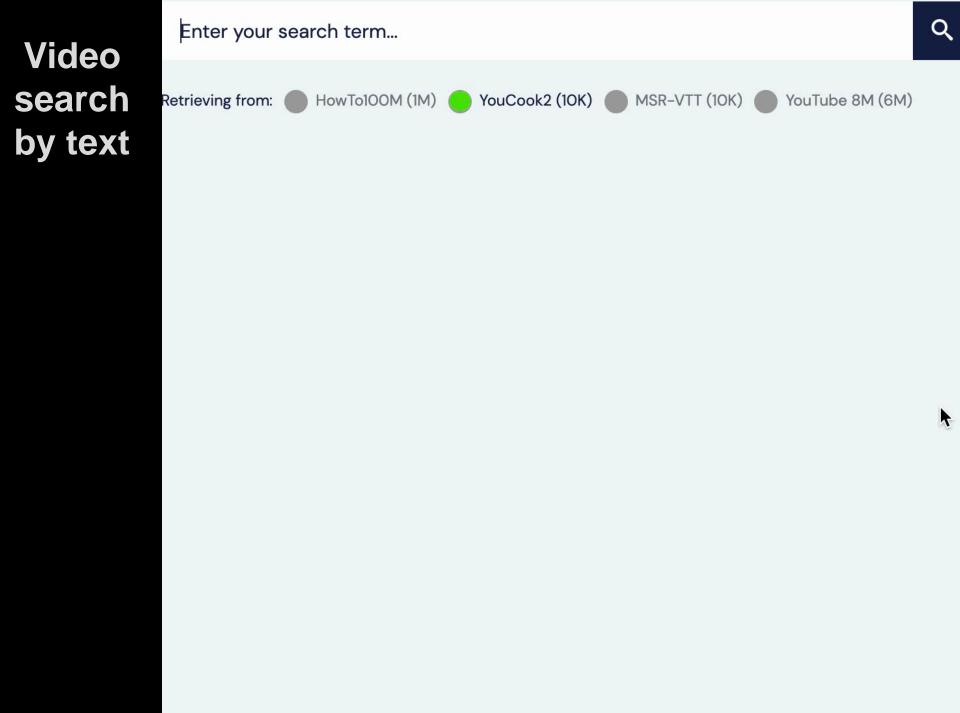




[1] A. Miech, D. Zhukov, J.-B. Alayrac, M. Tapaswi, I. Laptev, J. Sivic, HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips, in ICCV, 2019.

Pretrained Text-Video models and code publicly available

https://www.di.ens.fr/willow/research/mil-nce/



Recent work on learning from images and text

OpenAI CLIP:

Radford et al., <u>Learning transferable visual models from natural language</u> <u>supervision</u>. arXiv:2103.00020. 2021 Feb 26.

Microsoft:

Yuan et al., <u>Florence: A New Foundation Model for Computer Vision</u>. arXiv preprint arXiv:2111.11432. 2021 Nov 22.

Google:

Jia et al., <u>Scaling up visual and vision-language representation learning with</u> noisy text supervision. arXiv preprint arXiv:2102.05918. 2021 Feb 11.

Pham et al., <u>Combined Scaling for Zero-shot Transfer Learning</u>. arXiv preprint arXiv:2111.10050. 2021 Nov 19.

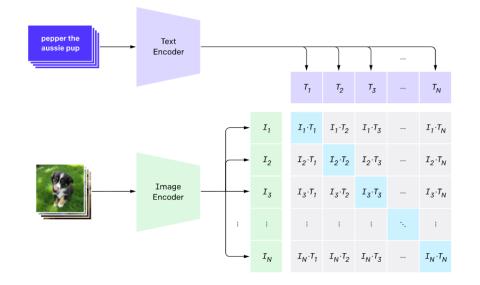
Recent work on learning from images and text

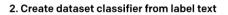
OpenAI CLIP:

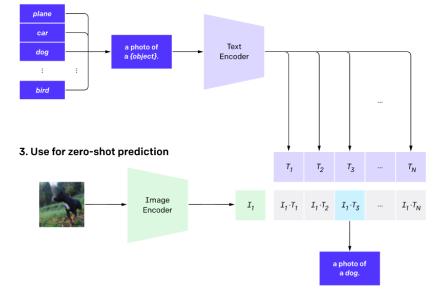
1. Contrastive pre-training

Radford et al., <u>Learning transferable visual models from natural language</u> <u>supervision</u>. arXiv:2103.00020. 2021 Feb 26.

Training on 400M pairs of images and text







Recent work on learning from images and text

Pham et al., <u>Combined Scaling for Zero-shot Transfer Learning</u>. arXiv preprint arXiv:2111.10050. 2021 Nov 19.

	ALIGN [37]	CLIP [64]	BASIC (ours)
ImageNet	76.4	76.2	85.7 (+9.3)
ImageNet-A	75.8	77.2	85.6 (+8.4)
ImageNet-R	92.2	88.9	95.7 (+3.5)
ImageNet-V2	70.1	70.1	80.6 (+10.5)
ImageNet-Sketch	64.8	60.2	76.1 (+11.3)
ObjectNet	72.2	72.3	78.9 (+6.6)
Average	74.5	74.2	83.7 (+9.2)

Table 1: Highlights of our key results. Shown are the top-1 accuracy of our method, BASIC, and other state-of-the-art zero-shot transfer methods – CLIP and ALIGN – on ImageNet and other robustness test sets. None of these models has seen any ImageNet training example. On average, BASIC surpasses these methods by the significant 9.2 percentage points.

Adapting Large Language Models

- Paired Vision-Language data on the Internet is
 - (a) Noisy and
 - (b) Relatively scarce compared to Language-only data
- Large Language Models (LLMs) already encode much of the commonsense knowledge that could be useful for vision tasks.

(Some) recent work adopting LLMs for vision tasks:

- Brown et al., Language models are few-shot learners. In Proc NeurIPS 2020.
- Alayrac et al., <u>Flamingo: a visual language model for few-shot</u> <u>learning</u>. *In Proc NeurIPS 2022*.
- Li et al., <u>Blip-2: Bootstrapping language-image pre-training with</u> <u>frozen image encoders and large language models</u>. *In Proc ICML* 2023.
- Liu et al., <u>Visual Instruction Tuning</u>. In Proc NeurIPS 2023
- •

Alayrac et al., NeurIPS 2022

Architecture

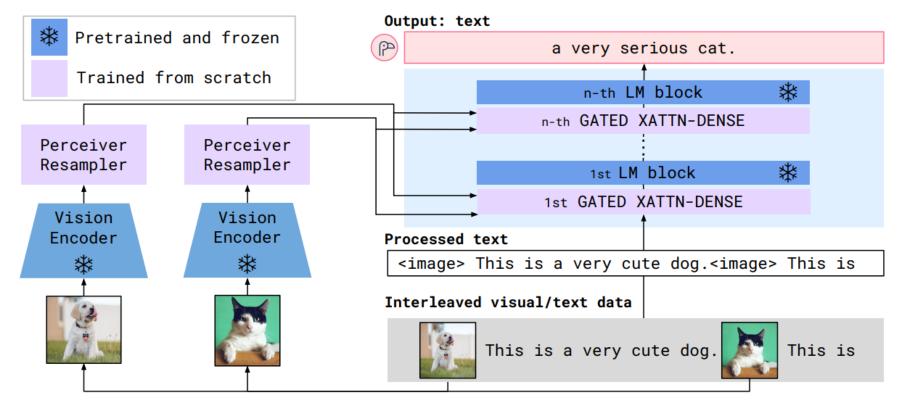
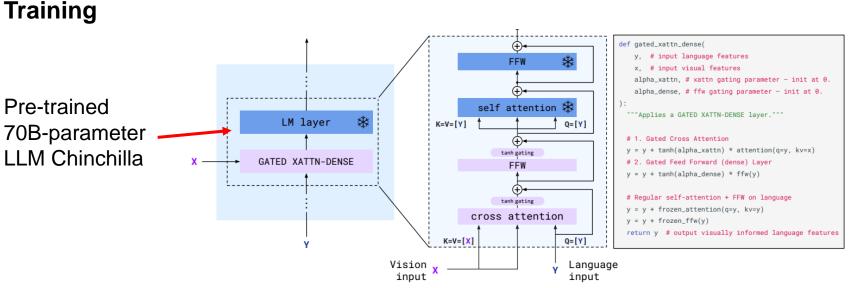


Figure 3: **Flamingo architecture overview.** Flamingo is a family of visual language models (VLMs) that take as input visual data interleaved with text and produce free-form text as output.

Alayrac et al., NeurIPS 2022



Vision-Language training data:

- MultiModal MassiveWeb (M3W) dataset obtained from 43M webpages
- ALIGN dataset with 1.8B images paired with alt-text.
- VTP (Video & Text Pairs) with 27M short videos paired with sentence descriptions

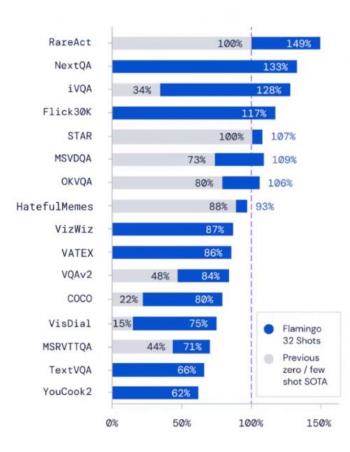
Training objective:

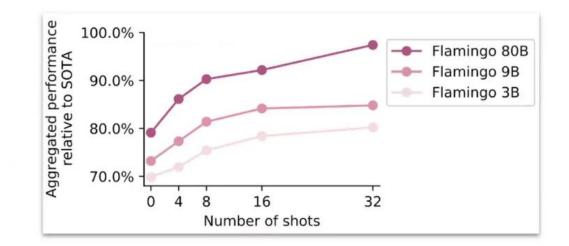
Text prediction givenvisual input

Alayrac et al., NeurIPS 2022

Results

Performance relative to SOTA





Alayrac et al., NeurIPS 2022

Alayrac et al., NeurIPS 2022

Input Prompt)	P Completion	
	This is a chinchilla. They are mainly found in Chile.		This is a shiba. They are very popular in Japan.	This is	$ \longrightarrow$	a flamingo. They are found in the Caribbean and South America.
	What is the title of this painting? Answer: The Hallucinogenic Toreador.		Where is this painting displayed? Answer: Louvres Museum, Paris.	What is the name of the city where this was painted? Answer:	$ \longrightarrow$	Arles.

Alayrac et al., NeurIPS 2022

Input Prompt	(P Completion
This is a chinchilla. They are mainly found in Chile. This is a shiba. They are very popular in Japan. This is a shiba.	\rightarrow	a flamingo. They are found in the Caribbean and South America.
What is the title of this painting? Answer: The Hallucinogenic Toreador.Where is this painting displayed? Answer: Louvres Museum, Paris.Where is this painting 	\rightarrow	Arles.
Output: "Underground" UNDERGROUND Output: "Underground" Output: "Congress" Output: Output: "Congress" Output:	\rightarrow	"Soulomes"

Alayrac et al., NeurIPS 2022

Input Prompt					P Completion		
	This is a chinchilla. They are mainly found in Chile.		This is a shiba. They are very popular in Japan.	The second secon	This is	\rightarrow	a flamingo. They are found in the Caribbean and South America.
	What is the title of this painting? Answer: The Hallucinogenic Toreador.		Where is this painting displayed? Answer: Louvres Museum, Paris.		What is the name of the city where this was painted? Answer:	$ \longrightarrow$	Arles.
UNDERGROUND	Output: "Underground"	CONGRESS AVE	Output: "Congress"	SOULOMES	Output:	\rightarrow	"Soulomes"
2+1	2+1=3	5+6	5+6=11	3×6		$ \rightarrow$	3x6=18

Alayrac et al., NeurIPS 2022

