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Abstract

We describe a protocol to study text-to-video retrieval
training with unlabeled videos, where we assume (i) no ac-
cess to labels for any videos, i.e., no access to the set of
ground-truth captions, but (ii) access to labeled images in
the form of text. Using image expert models is a realistic
scenario given that annotating images is cheaper therefore
scalable, in contrast to expensive video labeling schemes.
Recently, zero-shot image experts such as CLIP have estab-
lished a new strong baseline for video understanding tasks.
In this paper, we make use of this progress and instantiate
the image experts from two types of models: a text-to-image
retrieval model to provide an initial backbone, and image
captioning models to provide supervision signal into unla-
beled videos. We show that automatically labeling video
frames with image captioning allows text-to-video retrieval
training, which adapts the features to the target domain at
no manual annotation cost, consequently outperforming the
strong zero-shot CLIP baseline. We extract captions from
multiple video frames and use a scoring mechanism to fil-
ter out the captions that best match the visual content. We
conduct ablations to provide insights and demonstrate the
effectiveness of this simple framework by outperforming the
CLIP zero-shot baseline on text-to-video retrieval on two
standard datasets, namely MSR-VTT and MSVD. Code and
models will be made publicly available.

1. Introduction
The research on automatic video understanding has wit-

nessed a number of paradigm shifts recently. Follow-
ing the rise of neural networks, the initial question was
how to design an architecture to input spatio-temporal sig-
nals [18, 23]. Given the limited video training data, the fo-
cus then shifted to borrowing parameter initialization from
image classification pretraining [3]. In an attempt to pro-
vide video pretraining, one line of work has put expensive
efforts into annotating video classification datasets [11]. On
the other hand, the research community is moving away

Figure 1. Framework: Instead of using the ground-truth video
caption, we extract image captions to automatically label unla-
beled video frames, which we filter to obtain high-quality captions.
During the training process, we randomly select one of these cap-
tions to pair with each video and train for text-to-video retrieval.

from closed-vocabulary recognition training as the progress
in language modeling inspired advances in retrieval of vi-
sual data given open-vocabulary textual input, bridging the
gap between symbolic action categories and describing ac-
tions as text [10]. The latest shift was due to the huge
scale of labeled image data, resulting in impressive zero-
shot capability of image-text retrieval models on video ac-
tion recognition tasks [19]. Now, the performance of the
CLIP-initialized [19] image features (simply averaged over
video frames) surpasses most previous works on a large
number of video understanding tasks [16, 27]. This makes
researchers question and rethink where to put their efforts
to improve video modeling. In this study, we focus on en-
hancing the zero-shot text-to-video retrieval performance of
CLIP by making a realistic assumption that we have ac-
cess to image experts, more specifically an image caption-
ing model.

Fully-supervised methods for video retrieval are limited
due to the high cost of video annotation. Even training
with the web-scale video-text pairs [1] do not outperform
CLIP image-text pretraining [4], despite the rich descrip-
tions typed manually by humans with the motivation to sell
their videos on stock websites. On the other hand, meth-
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ods learning from unlabeled videos often assume no access
to any labels, even for images, with a particular focus on
self-supervised training to use the structure of the data it-
self as the training signal [7, 8, 30]. In this paper, we ask
the question whether an external off-the-shelf image expert
can provide the supervision signal. We explore the usability
of recently released robust image captioners, namely Clip-
Cap [17] and BLIP [13], which benefit from training with
large-scale image-text pairs. For example, ClipCap uses
both CLIP visual pretraining and GPT-2 language model
pretraining [20]. When applied on video frames, we ob-
serve that, while noisy, the output texts contain high-quality
descriptions, which motivates this exploration.

While the idea of using automatic image captions is ap-
pealing, incorporating such noisy labels for training intro-
duces additional challenges. To address this issue, we first
employ a filtering approach where we select the captions
that better describe the frame by computing the CLIPScore
metric [9]. Measuring such cross-modal similarity between
the visual frame and the output text is similar in spirit to
the filtering step in [13]. Furthermore, we ensemble multi-
ple image captioners to obtain a larger pool of labels. We
experimentally validate the benefit of these steps in our ab-
lations.

In this work, we test whether off-the-shelf image cap-
tioning models can serve as an automatic labeling strategy
for video retrieval tasks. We propose a simple framework
to answer this question. Our baseline, as well as our weight
initialization, is CLIP [19]. We finetune this model such that
video frame embeddings and the automatic captions map
to the cross-modal joint space after a contrastive retrieval
training. We demonstrate through experiments that our ap-
proach to pseudo-label unlabeled video frames with image
captioning is a simple, yet effective strategy that boosts the
performance over baselines.

Our contributions are three-fold: 1) We propose a new
simple approach to train video retrieval models using au-
tomatic frame captions, which constitute free labels for su-
pervision (see Figure 1). To the best of our knowledge, off-
the-shelf captioning has not been used for such objective
by prior work. 2) We outperform the zero-shot state-of-the-
art CLIP model on three text-to-video retrieval benchmarks.
3) We provide ablations about the design choices on how to
select high-quality captions. The code and models will be
publicly available1.

2. Training with automatic captions

In this section, we first describe how we obtain auto-
matic captions for labeling videos, video retrieval training,
and finally give implementation details for our experimental
setup.

1http://imagine.enpc.fr/˜ventural/multicaps

The overview of our method is illustrated in Figure 2.
In summary, we start by constructing a set of labels for
each video, by applying image captioning models on video
frames. Given these noisy frame-level captions (from mul-
tiple image captioners), we select the high-quality ones by
sorting them according to their CLIPScore [9]. We adopt
a contrastive video-text retrieval training using one of the
selected captions.
Selecting high-quality captions. Given an unlabeled train-
ing video v consisting of F frames, we select M frames
from the video (M ≤ F ) and extract captions using I im-
age captioners to form an initial set of labels C = {Ci}Ii=1,
where Ci = {ci1, ci2, . . . , ciM}. We then obtain I textual
descriptions per frame, resulting in a total of M × I labels
per video.

While we investigate several variants of label formation
from captions in our experiments, our final strategy is the
following. We select a subset of the initial labels, mainly
to eliminate noisy captions that do not well represent the
corresponding video frame. To this end, we employ CLIP-
Score [9] as a way to measure cross-modal similarity be-
tween a caption and its corresponding frame. For each cap-
tioner, we keep the top-K captions (K < M ) with the high-
est CLIPScores, which gives us a remaining L = K × I la-
bels per video. We refer to this subset as C′. Note that some
captions are repetitive across frames due to visual similarity
within a video; we therefore conjecture that such a subset
selection does not cause a significant loss in information.
Contrastive video retrieval objective. In this work, we
employ a relatively standard vision-language cross-modal
training, where the goal is to find a joint space between
videos and automatic captions. Given a video v, we com-
pute visual embeddings V̄ = {v̄n}Nn=1 on N video frames
(N ≤ F ) using a visual encoder fv : v̄n → Rd. Simi-
larly, we compute textual embeddings with the text encoder
ft from the corresponding set of labels C′ to obtain positive
text representations C̄ = {c̄l}Ll=1, where c̄l ∈ Rd (with the
same embedding dimension as v̄n). To obtain a single video
embedding, we perform temporal pooling over video frame
representations. During training, we randomly sample one
positive label c̄l from the set of candidate labels C̄ and we
feed it to the text encoder to obtain the positive text repre-
sentation. Finally, the pooled video embedding is compared
against the text embedding with cosine similarity ϕ.

From a batch of B visual-texts pair samples,
{(V̄1, C̄1), (V̄2, C̄2), ..., (V̄B , C̄B)}, we train with a
symmetric contrastive loss using InfoNCE [24], i.e.,
treating all other samples in the batch as negatives:

Lv2c = − 1

B

∑
b∈B

log
exp(ϕ(Vb, c̄b,l))∑
j∈B exp(ϕ(Vb, c̄j,l))

(1)

Lc2v = − 1

B

∑
b∈B

log
exp(ϕ(Vb, c̄b,l))∑

j∈B exp(ϕ(Vj , c̄b,l))
(2)
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Figure 2. Caption selection: To select the best captions for a given video, we first extract image captions from both ClipCap [17] and
BLIP [13] models for M number of frames. We then compute the CLIPScore [2] (gray box), and finally select Top K = 2 captions for
each captioner: c1 and c2 for ClipCap (highlighted in green), and c3 and c4 for BLIP (highlighted in blue).

L = Lc2v + Lv2c, (3)

The final loss is the sum of video-to-captions (Lv2c) and
captions-to-video (Lc2v) retrieval loss terms. Next, we de-
tail the optimization procedure.
Implementation details. We instantiate two image cap-
tioners (I = 2) from ClipCap [17] and BLIP [13] mod-
els. ClipCap model is pretrained on the 3M images of the
Google Conceptual Captions image-text dataset [22], us-
ing a MLP mapping between CLIP [19] image backbone
and GPT-2 [20] text generation models. BLIP jointly trains
for retrieval and captioning using 129M images (including a
subset of LAION [21]) using a bootstrapping approach. We
use the publicly available model, which is further finetuned
on the COCO dataset [14]. Given one captioner, we extract
M = 10 captions per video from equally spaced frames.
We empirically set the number of high-quality captions to
top K = 2 per captioner (i.e., L = K × I = 4).

We minimize the loss function in Eq. 3 using Adam [12]
optimizer and a learning rate schedule with a cosine de-
cay [15] as described in [16]. For both datasets, we train
on 4 NVIDIA GeForce GTX 1080 for 10 epochs, with ini-
tial learning rate 10−4 and mini-batch size B = 16.

The weights of our dual encoder model are initialized
from CLIP [19] pretraining both for the image (fv) and the
text (ft) encoders. The image encoder architecture follows
ViT-B/16 [6] in all experiments. The text encoder architec-
ture follows GPT-2 [20]. Both encoders are Transformer-
based [25].

We resize the frames to 224 × 224 resolution before in-
putting to the model. We use N = 10 random frame sam-
pling during training based on segments as in [1, 26] (note
that these do not necessarily match the M = 10 captions).
At test time, we compute the visual embeddings on the cen-
ter spatial crop over 10 equally spaced frames.

3. Experiments
We start with Section 3.1 by describing the datasets and

evaluation metrics used to report the results of our experi-
ments. We then present our ablations in Section 3.2, quan-

MSR-VTT MSVD
R@1 R@5 R@1 R@5

CLIP baseline [19] 32.80 55.73 39.39 64.55

Ours w/ OFA [28] 33.60 59.15 41.06 67.42
Ours w/ ClipCap [17] 34.71 59.76 40.61 68.94
Ours w/ BLIP [13] 35.81 60.56 41.11 69.09

Table 1. Captioning models: Training with automatic captions
obtained with OFA [28], ClipCap [17], and BLIP [13] all improve
over the zero-shot CLIP baseline [19] on all three text-to-video
retrieval benchmarks. BLIP captions result in best performances.

tifying the effects of the the captioning model and caption
selection.

3.1. Datasets and evaluation metrics

We conduct experiments on two established benchmarks
for text-to-video retrieval, namely MSR-VTT [29] and
MSVD [5] datasets.

As previously explained, even though these datasets con-
tain ground-truth captions, we do not use them during train-
ing. We report the standard evaluation protocols: text-to-
video (T2V) recall at rank 1 and 5 for all experiments. Re-
call at rank k (R@k) quantifies the number of times the cor-
rect video is among the top k results. Higher recall means
better performance.

3.2. Ablation study

This work constitutes an exploratory study to test
whether captions can provide training signal for unlabeled
videos. The answer is yes; however, there are certain design
choices we make. Here, we provide ablations to measure
the sensitivity to these decisions. More specifically, we in-
vestigate the effects of the captioning model, the quality of
the captions provided to the model, and combining captions
from different captioners.
(i) Captioning models. The first design choice is on the
image captioning model to use. In Table 1, we present
a comparative study experimenting with three recent cap-
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Captioner Caption MSR-VTT MSVD
selection R@1 R@5 R@1 R@5

ClipCap

Rand(10) 31.79 55.23 39.75 68.48
Middle 1 34.10 56.94 38.89 66.97
Top 1 34.31 57.95 40.45 68.64
Rand(Top 2) 34.71 59.76 40.61 68.94
Rand(Top 3) 33.10 58.95 40.45 68.38

BLIP

Rand(10) 34.61 60.46 40.45 68.74
Middle 1 33.20 57.75 40.10 69.85
Top 1 34.91 60.26 41.82 68.33
Rand(Top 2) 35.81 60.56 41.11 69.09
Rand(Top 3) 35.61 59.46 40.91 68.18

Table 2. Caption selection: For both captioners, we compare
training with a random caption at each epoch, training with only
the middle frame caption, and training with different number of
Top K captions (best CLIPScore [9]). Using CLIPScore filtering
improves over using all the 10 captions or only using the middle
one on both datasets. Selecting the Top 2 captions results in over-
all best performance.

tioning models: OFA [28], ClipCap [17] and BLIP [13].
More specifically, we use the best available model check-
points: OFA-huge trained with 20M publicly available
image-text pairs, ClipCap trained with Conceptual Cap-
tions, and BLIP-Large trained with 129M images, finetuned
on COCO. Best results are obtained with BLIP, potentially
due to the large amount of pretraining compared to the other
two models. The results also demonstrate the effectiveness
of using captions to improve over the strong CLIP base-
line [19], where we average video frame embeddings using
the frozen CLIP. In this experiment, we randomly select one
caption out of the two best captions during training. We next
assess the influence of this selection.
(ii) Caption selection. Automatically generated captions
vary in quality. We select the captions with high image-text
compatibility to eliminate potential noise in our training.
The above image captioning models do not output a confi-
dence score; therefore, we use CLIPScore [9] between the
generated caption and the corresponding input video frame
as a caption quality measure.

In Table 2, we evaluate whether such filtering is benefi-
cial. In this experimental setup, we train with one caption
as the video label. We experiment with five different vari-
ants per captioner: (a) randomly selecting one of the 10 ex-
tracted captions at each epoch, (b) using only the caption
corresponding to the middle frame (i.e., same label in all
epochs), (c) using only the best caption (i.e., top 1 based
on the CLIPscore metric), (d) randomly selecting one of the
2 best captions at every epoch, (e) randomly selecting one
of the 3 best captions at every epoch. The results support
the idea that CLIPScore is an effective filtering method to
keep the highest quality captions. On both datasets, and
on both captioners (ClipCap and BLIP), using the best cap-

MSR-VTT MSVD
R@1 R@5 R@1 R@5

C 34.71 59.76 40.61 68.94
B 35.81 60.56 41.11 69.09

C+B 36.52 61.47 41.72 70.00
Table 3. Combining two captioners: We observe slight improve-
ments when using captions from both ClipCap (C) and BLIP (B)
over using them individually.

tion(s) improves over using all the captions or the middle
one. There exists a trade-off between the number of cap-
tions and their quality. With more captions per video we
avoid overfitting as this may serve as data augmentation.
On the other hand, the variance among the caption qualities
starts to increase. We empirically find that taking the best
two captions constitutes a good compromise, yielding the
best performance overall.

(iii) Combining captioners. One way to increase the
amount of captions per video without decreasing the qual-
ity of the captions is to use the best K captions from each
captioner to form the label set. In Table 3, we test this hy-
pothesis by taking two captioners ClipCap and BLIP, to then
ensemble their labels. The results are slightly better than the
performance of individual captioners. One can potentially
further extend to more captioners I > 2.

Note that we could also select the top K from all the cap-
tions combined from both captioners. This would be equiv-
alent to taking the best 2 captions out of the 20 (10 per cap-
tioner). However, this leads to poorer results, perhaps due
to the different CLIPScore distributions (slight preference
for ClipCap potentially because of the CLIP backbone), and
tendency to output repetitive captions across frames for a
given captioner.

4. Conclusion
We showed a simple yet effective framework to utilize an

image captioning model as a source of supervision for text-
to-video retrieval datasets. We demonstrated significant im-
provements over the strong zero-shot CLIP baseline with a
comprehensive set of experiments. Our method comes with
limitations. First, we note that image captioning does not
necessarily capture the dynamic content of videos. Simi-
larly, our temporal pooling approach remains simple, ignor-
ing the order of frames. Future work will explore upgrading
the image captioning model with a video captioning model
or using multiple captions during training.
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