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Déblais et Remblais

« Le prix du transport d’'une molécule étant, proportionnel a la somme des
produits des molécules multipliees par I'espace parcouru, il s’ensuit qu’il n’est
pas indifféerent que telle molécule du déblai soit transportée dans tel ou tel
autre endroit du remblai, mais qu’il y a une certaine distribution a faire des
molécules du premier dans le second, d’apres laquelle la somme de ces

produits sera la moindre possible, et le prix du transport total sera un
minimum.

[..]

C’est la solution de cette question que je me propose de donner ici ».

Gaspard Monge, 1776



Intro

Measure v on X : source distribution
Measure p on Y : target distribution

T : transport map s.t T(v) = u

Find T that minimizes a certain cost c m /T—\
X




Intro

v : source distribution
M : target distribution

T : transport map s.t T(v) = u

Find T that minimizes a certain cost c
Discrete case :

v and | are sets of Dirac < point clouds

c is the euclidean distance between a
point and its target.



Intro - Problem Formulation

Monge

inf{ /X o(z, T(z)) du(z)

T, () = V}



Intro - Problem Formulation

Monge

inf{ /X o(z, T(z)) du(z)

T, () = V}

Problem !

If v is a dirac and p is not, there exist no T such that the condition is satisfied !



Intro - Problem Formulation

Monge

inf{ /X o(z, T(z)) du(z)

Kantorovitch

nt [ e dr(en)|v e D) |

I'(u, v) denotes the collection of all probability measures on X x Y with marginals pon Xand von Y

T, () = V}


https://en.wikipedia.org/wiki/Conditional_probability

Discrete case : point clouds

max
XGRYI xXn

subject to

n

D2 AiXi;

i=1j=1

n
ZXij:L i=1,2,...,n
i=1

n
Y X;=1, j=12...n.
j=1

Xij S {O, 1}

Aij = -dist(vi,



Relaxation : same solution

Formulation :

Proof :

1. 2n equality constraint are in fact 2n -1 equality constraint

2. Optimum -> n?2 saturated constraints -> 2n - 1 non zero values

3. Pigeonhole principle : there exists a line with at most 1 non zero value
4. By constraints : it's 1. Remove the line and column and recurse


https://en.wikipedia.org/wiki/Pigeonhole_principle

Use Cases 1

- Compare two pointclouds : PointSetGen [Fan2016], Atlasnet [Groueix2018],

O O
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Use Cases 1

- Compare two pointclouds : PointSetGen [Fan2016], Atlasnet [Groueix2018],

Dimensions : 3-6 (hormals...)

Number of points : 1000 - 10000

Alternatives : Chamfer Distance




Use Cases 2

- Reorder a predicted vectors when you want to enforce invariance to
permutations. (primitive discovery).

Supervised Fitting of Geometric Primitives to 3D Point Clouds. [Li2018]

#SA




Use Cases 3: Give a Monte Carlo estimate of the continuous case
(MNIST)

Training set

n
max Y Ay X

i=1j=1

—P subject to ZXU =1, i=12,..., n
—> i=1

Random
noise

n
doXy=1, j=12,....n
j=1

Xij S {O, 1}

Generator




Solver - duality - Hungarian algo (Harold Kuhn 1955)

Complexity : O(n*3) [Edmonds and Karp]

Example : credit
http://www.math.harvard.edu/archive/20 spring 05/handouts/assignment overhe

ads.pdf

Proof : https://theory.epfl.ch/courses/topicstcs/Lecture52015.pdf page 6

Code : https://qist.github.com/KartikTalwar/3158534



https://en.wikipedia.org/wiki/Jack_Edmonds
https://en.wikipedia.org/wiki/Richard_Karp
http://www.math.harvard.edu/archive/20_spring_05/handouts/assignment_overheads.pdf
http://www.math.harvard.edu/archive/20_spring_05/handouts/assignment_overheads.pdf
https://theory.epfl.ch/courses/topicstcs/Lecture52015.pdf
https://gist.github.com/KartikTalwar/3158534

The Hungarian Method: The following algorithm applies the above
theorem to a given n X n cost matrix to find an optimal assignment.

Step 1. Subtract the smallest entry in each row from all the entries of its

Trow.

Step 2. Subtract the smallest entry in each column from all the entries
of its column.

Step 3. Draw lines through appropriate rows and columns so that all the
zero entries of the cost matrix are covered and the minimum number of

such lines is used.

Step 4. Test for Optimality: (i) If the minimum number of covering lines
is n, an optimal assignment of zeros is possible and we are finished. (ii) If
the minimum number of covering lines is less than n, an optimal
assignment of zeros is not yet possible. In that case, proceed to Step 5.

Step 5. Determine the smallest entry not covered by any line. Subtract
this entry from each uncovered row, and then add it to each covered
column. Return to Step 3.

13




Example 1: You work as a sales manager for a toy
manufacturer, and you currently have three salespeople on
the road meeting buyers. Your salespeople are in Austin, TX;
Boston, MA; and Chicago, IL. You want them to fly to three
other cities: Denver, CO; Edmonton, Alberta; and Fargo,
ND. The table below shows the cost of airplane tickets in

dollars between these cities.

From \ To | Denver | Edmonton | Fargo
Austin 250 400 350
Boston 400 600 350

Chicago 200 400 250

Where should you send each of your salespeople in order to

minimize airfare?

14




Step 1. Subtract 250 from Row 1, 350 from Row 2, and
200 from Row 3.

250 400 350 0 150 100
400 600 350 ~ |50 250 O
200 400 250 0 200 50

Step 2. Subtract 0 from Column 1, 150 from Column 2,

and 0 from Column 3.

0 150 100 0 0 100
50 250 0 | ~ |50 100 O
0 200 50 0 50 50




Step 3. Cover all the zeros of the matrix with the

minimum number of horizontal or vertical lines.

Step 4. Since the minimal number of lines is 3, an
optimal assignment of zeros is possible and we are
finished.

16




Since the total cost for this assignment is 0, it must be

an optimal assignment.

0 [o] 100
50 100 [0]
0] 50 50

Here is the same assignment made to the original cost

matrix.

250  |[400| 350
400 600 | 350
2001 400 250

17




Example 2: A construction company has four large
bulldozers located at four different garages. The bulldozers

are to be moved to four different construction sites. The

distances in miles between the bulldozers and the

construction sites are given below.

Bulldozer \ Site | A | B | C | D
1 90 | 75 | 75| &0
2 35 | 8 | 55| 65
3 1251 95 | 90 | 105
4 45 | 110 | 95 | 115

How should the bulldozers be moved to the construction sites

in order to minimize the total distance traveled?

18




Step 1. Subtract 75 from Row 1, 35 from Row 2, 90
from Row 3, and 45 from Row 4.

90 75 75 80 (15 0 0 5
35 85 55 65 0 50 20 30
195 95 90 105| |35 5 0 15
|45 110 95 115 |0 65 50 70,

Step 2. Subtract 0 from Column 1, 0 from Colum 2, 0

19




from Column 3, and 5 from Column 4.

15
0
35
0

0 0 5
50 20 30
5 0 15
65 50 70]

(15 0 0 0
0 50 20 25
3% 5 0 10

0 65 50 65

20




Step 3. Cover all the zeros of the matrix with the

minimum number of horizontal or vertical lines.

15— o]

50 25
5 5 10
0 65 B0 65

Step 4. Since the minimal number of lines is less than 4,

we have to proceed to Step 5.

21




Step 5. Note that 5 is the smallest entry not covered by

any line. Subtract 5 from each uncovered row.

(15 0 0 o] [15 0 0 0]
0 50 20 25 ~5 45 15 20
35 5 0 10| |30 0 -5 5
[0 65 50 65] -5 60 45 60]

Now add 5 to each covered column.

(15 0 0 o] [20 0 5 0
~5 45 15 20 0 45 20 20
50 0 -5 5| |35 0 0 5
|5 60 45 60] |0 60 50 60

22




Now return to Step 3.

Step 3. Cover all the zeros of the matrix with the

minimum number of horizontal or vertical lines.

—5—6-
45 20 20
60 50 60

Step 4. Since the minimal number of lines is less than 4,

we have to return to Step 5.

23




Step 5. Note that 20 is the smallest entry not covered

by a line. Subtract 20 from each uncovered row.

20 0 5 0] [20 0 5 0]
0 45 20 20 —20 25 0 0
3 0 0 5| |3 0 0 5
0 60 50 60] |[—20 40 30 40

Then add 20 to each covered column.

(20 0 5 0| [40 0 5 0]
—20 25 0 0 0 25 0 0
3 0 0 5| |55 0 0 5
|20 40 30 40| |0 40 30 40]

24




Now return to Step 3.

Step 3. Cover all the zeros of the matrix with the

minimum number of horizontal or vertical lines.

A0 0 I al
T \vJ J U
[l 0 0 -4
[UU U \v) J

Step 4. Since the minimal number of lines is 4, an

optimal assignment of zeros is possible and we are
finished.




Since the total cost for this assignment is 0, it must be
an optimal assignment.
Here is the same assignment made to the original cost

matrix.

26




90 75 75 |80
35 8 55| 65
125 195] 90 105
45| 110 95 115

So we should send Bulldozer 1 to Site D, Bulldozer 2 to
Site C, Bulldozer 3 to Site B, and Bulldozer 4 to Site A.

27




Approximation : Auction algorithm

https://web.eecs.umich.edu/~pettie/matching/Bertsekas-a-new-algorithm-assignm
ent-problem-Mathematical-Programming-1981.pdf [Bertsekas1981]

Among the (numerous) variants of the Hungarian algorithm, this one is nice because it can be
nicely parallelized

Parallel version
https://stanford.edu/~rezab/classes/cme323/S16/projects reports/jin.pdf

Pytorch Code : (Thanks Stanford!)

https://qithub.com/fxia22/pointGAN/tree/master/emd



https://web.eecs.umich.edu/~pettie/matching/Bertsekas-a-new-algorithm-assignment-problem-Mathematical-Programming-1981.pdf
https://web.eecs.umich.edu/~pettie/matching/Bertsekas-a-new-algorithm-assignment-problem-Mathematical-Programming-1981.pdf
https://stanford.edu/~rezab/classes/cme323/S16/projects_reports/jin.pdf
https://github.com/fxia22/pointGAN/tree/master/emd

Approximation : Auction algorithm

1. Start with a set U of all bidders. U denotes the set of all unassigned bidders. We also
maintain a set of prices which are initialized to all 0, and any structure that stores the current

tentative (partial) assignment.

2. Pick any bidder i from U. Search for the item j that gives her the highest net payoff 4;; — p;,
and also an item k that gives her the second highest net payoff.

3. The price p; of item j is updated to be p; < p; + (A,-j — pj) — (A;x — pr). This update
simply says that p; is raised to the level at which bidder i is different (in terms of net payoff)
bewteen item j and item &, i.e., the updated prices satisfy 4;; — p; = Aikx — p«k-

4. Now assign item j to bidder i. If item j was previously assigned to another bidder s, then

remove that assignment and add s to U'.
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Approximation : Slice Wassertein distance

Generative Modeling using the Sliced Wasserstein Distance
[Deshpande2018]

Key idea : project high dimensional data in 1D to get a fast approximation

(nlog(n)) of EMD
z; € D CIR T; T

Go(z;) Go(z;)
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Figure 5. MNIST samples after 40k training iterations for differ-

ent generator configurations.
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CIFAR-10 (32x32) LSUN Bedrooms (64x64) CelebA (64x64)
(a) G: DCGAN, D: DCGAN (with layernorm)

R o

(b) G: DCGAN, D: DCGAN with 64 filters in each layer (with layernorm)

’

(¢) G: DCGAN, D: DCGAN with 2x filters (with layernorm)

.7}

(d) G: DCGAN with extra Conv2D layers. D: DCGAN (with layernorm

Evolution of the sliced Wasserstein distance through training

103 103 10

AR A

o B 10 i 0 B 0 [ o D) 10 1%
Tralulug Serasios —+ Tralnlog Berations —+ Tralalag itecations —+

Table 2. The SWG succeeds in training different architectures (a through d) on different datasets with same hyperparameters. Samples
collected after 20 epochs of training with batch size = 64, leamning rate = 0.0001, Adam optimizer



Almost Linear time Regularizations : Sinkhorn

M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport

J. Altschuler, J. Weed, and P. Rigollet. Near-linear time approximation algorithms
for optimal transport via sinkhorn iteration.

n

max ZZA,'J'XU' +)\_1 H(X)

XGRnxn

i=1j=1

n
subject to ZX,-]- =1, i=12,..., n
=it

n
ZX,'J'II, j:1,2,...,l’l.
j=1

Xij S {O, 1}



Wasserstein GAN

Training set

Generator
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Wasserstein GAN

e Goal of a GAN : learning a data distribution by learning a mapping between a random noise and
the actual data space.

e Hard to train :
o The loss is not a good indicator of the samples quality
o Instable

o Subject to mode collapse



Wasserstein GAN

e Goal of a GAN : learning a data distribution by learning a mapping between a random noise and
the actual data space.

e Hard to train :
o The loss is not a good indicator of the samples quality
o Instable

o Subject to mode collapse

Major interrogation : To what extent does the generated distribution approaches the real distribution ?



Wasserstein GAN

e The Total Variation (TV) distance

5(P7‘:Pg) = sup |P,(A) = Pg(A)’ i
AcX

e The Kullback-Leibler (KL) divergence

Poxz)
@)

Kumwa=/m( )me@)

s

What notion of distance
between 2 distributions ?

The Jensen-Shannon (JS) divergence
ISP B,) = KL(P,|[Pn) + KL(P,||Py) ,

where P, is the mixture (P, + P4)/2. This divergence is symmetrical and
always defined because we can choose p = P,,.

The Earth-Mover (EM) distance or Wasserstein-1

W ]Pr’]P = i f ]E x ~ Y 3 ].
( a) vel'Il(IL‘l%-,Pg) (z,y) v[“x y||] (1)



Wasserstein GAN - parallel lines example

Let Z ~ U|0,1]
Let Py be the distribution of (0, Z) € R?

Let go(z) = (0, z) be a family of mappings between the distribution U|0, 1]
and the distribution Py with single parameter 6

W(PO=IP9) . Iela

log 2 it #0,
0 if0 =0,

In this case JS(Py,Py) = {

too  ifO#0,
0 if0=0,

K L(Pg||Pg) = K L(IPo||Pg) = {

1 if0#£0,
0 if0=0.

and §(Py,Pg) = {
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Wasserstein GAN

Theorem

Let P, be a fixed distribution over X'.

Let Z be a random variable over another space Z.
Let g : Z x R — X be a function.

Let Py denote the distribution of gy(Z2).

Then,

1. If g is continuous in 6, so is W (P,, Py).

2. If g is locally Lipschitz and satisties some regularity assumption, then
W (P,,Py) is continous everywhere, and differentiable almost everywhere.

3. Statements 1-2 are false for the Jensen-Shannon divergence JS(P,,Py)
and all the KLs.



Wasserstein GAN

W(P,.,Py) = qﬂeni(l%{,Pg) E(:r,y)v.v'[ |z — y| ] highly intractable



Wasserstein GAN

W(BBs) = ’yeni(%f 53 E(z.9)~y | Iz — yll ] highly intractable

but we can consider Kantorovitch - Rubinstein duality !
https://vincentherrmann.qithub.io/blog/wasserstein/

W(P,,Pg) = ”f8”up< 1 Eznp, [f(Z)] — Exnpy[f(T)]


https://vincentherrmann.github.io/blog/wasserstein/

Wasserstein GAN

W (P,,P,) = 'yeni(lﬂlmf 53 E(e)~ | 12—yl ] highly intractable

but we can consider Kantorovitch - Rubinstein duality !
https://vincentherrmann.qithub.io/blog/wasserstein/

W (P,,Py) = ||fs”upqL Ez~p, [f(2)] — Eznr, [ f(2)]

What about estimating f with a neural net ?


https://vincentherrmann.github.io/blog/wasserstein/

Wasserstein GAN

W(P,,P,) = ’yeni(%i; 53 Ee,y)~| 2 — yll ] highly intractable

but we can consider Kantorovitch - Rubinstein duality !
https://vincentherrmann.qithub.io/blog/wasserstein/

lrgleag\(; Eznp, [fw(T)] = Eonp(z) [ fuw(g6(2)]


https://vincentherrmann.github.io/blog/wasserstein/

Wasserstein GAN

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values a = 0.00005, ¢ = 0.01, m = 64, Ncritic = O-

Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritics the number of iterations of the critic per generator iteration.
Require: : wy, initial critic parameters. 6, initial generator’s parameters.
1: while 6 has not converged do

2 for t =0,..., Neritic do

3 Sample {z()}™  ~ P, a batch from the real data.
4 Sample {2()}™ | ~ p(z) a batch of prior samples.
5: Jw < Vu [% Vi fw(x(i)) - % P fw(QO(Z(i)))]
6: w < w + a - RMSProp(w, g,,)

7 w « clip(w, —c¢,c)

8 end for

9 Sample {z()}™  ~ p(z) a batch of prior samples.

10: go < _vé)% erlzl fw(gg(z(i)))
11: 0 < 6 — a- RMSProp(6, g¢)
12: end while




Wasserstein GAN -results

1.0

T T T

— Density of real
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Figure 2: Optimal discriminator and critic when learning to differentiate two Gaussians.
As we can see, the discriminator of a minimar GAN saturates and results in vanishing

gradients. OQur WGAN critic provides very clean gradients on all parts of the space.
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Figure 6: Algorithms trained with a generator without batch normalization and constant
number of filters at every layer (as opposed to duplicating them every time as in [18]).
Aside from taking out batch mormalization, the number of parameters is therefore reduced
by a bit more than an order of magnitude. Left: WGAN algorithm. Right: standard GAN
formulation. As we can see the standard GAN failed to learn while the WGAN still was

able to produce samples.



Gan Discussion

Why not estimate directly EMD in the primal ?

1. Use the discrete case on batch k -> Reach optimal solution of the primal of
discrete EMD (noisy estimate) on the natural distributions on images
2. Use a discriminator : estimate of the dual of continuous EMD

(2) is better than (1) because of the curse of dimensionality.

(1) Relies on euclidean metric (not great on images) whereas (2) learns it's
metric (based on convolutions in the discriminator) as far as the exploration of
the IPM space is not perfect.
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