
A Declarative Approach for Designing and Developing

Adaptive Components

Philippe Boinot� Renaud Marlet� Gilles Muller� and Charles Consel
�pboinot�marlet�muller�consel��irisa�fr

Compose Group� IRISA�INRIA�

March ��� ����

Abstract

An adaptive component is a component that is able to adapt its behavior to di�erent
execution contexts� Building an adaptive application is di�cult because of component de�
pendencies and the lack of language support� As a result� code that implements adaptation
is often tangled� hindering maintenance and evolution�

To overcome this problem� we propose a declarative approach to program adaptation�
This approach makes the speci�c issues of adaptation explicit� The programmer can focus
on the basic features of the application� and separately provide clear and concise adaptation
information� Concretely� we propose adaptation classes� which enrich Java classes with adap�
tive behaviors� A dedicated compiler automatically generates Java code that implements the
adaptive features� Moreover� these adaptation declarations can be checked for consistency to
provide additional safety guarantees�

As a working example throughout this paper� we use an adaptive sound encoder in an
audio�conferencing application� We show the problems associated with a traditional imple�
mentation using design patterns� and how these problems are elegantly solved using adaptation
classes�

� Introduction

A complex system is typically made up from separate components sharing common resources�
The behavior of these components and the quality of service that they each provide is interde�
pendent� So� the system must adapt when the available resources are limited� For this reason�
adaptation technologies� such as feedback control mechanisms� are used to implement systems
that dynamically react to resource variations� As an example� consider distributed multime�
dia applications that share network resources� These applications must adapt their behavior
according to the network bandwidth to improve performance and to guarantee Quality of
Service ��� �� 	�
���

Building adaptive software is di�cult� code that implements adaptation is often tangled
due to the resource and component dependencies� Furthermore� there is no convenient support
in programming languages to easily associate given execution contexts with corresponding
behaviors� Current adaptation mechanisms are ad hoc� which impedes maintenance and
extensibility�

In this paper� we present a declarative approach for the design and development of adap�
tive components in an object�oriented language like Java� This approach makes explicit two
speci�c issues� adaptation conditions and adaptation actions� Adaptation conditions express
when adaptation should occur� depending on the program state and the execution context�
Adaptation actions determine appropriate component behaviors� We declare both conditions

�Contact author� Charles Consel� Address� Campus Universitaire de Beaulieu� ����� Rennes Cedex� France�
Phone� �	��
��������� fax� �	��
��������

�

N
et

W
or

k

Packet
Multicast

Bandwidth

Rtp Send
Packet

Rtcp
Packet

information
RedundancySample

Sound Encoder

RtcpController

Figure �� Audio�conference application� Send part

and corresponding actions in a concise and precise way using adaptation classes� which enrich
existing Java classes with adaptive behavior�

These adaptation declarations are processed by a dedicated adaptation class compiler�
This compiler generates Java code that implements the adaptive features declared in the
adaptation classes� In particular� it automatically instruments the code with introspection
mechanisms that capture state changes� These state changes trigger behavior switches ac�
cording to the adaptation declarations� seamlessly integrating adaptation into programs�

Using the adaptation class approach� the programmer can focus on the basic features of
the application� and separately provide adaptation information� The separation of concerns
and the conciseness of adaptation classes improve development� maintenance and extensibil�
ity� Safety is also improved as the adaptation class compiler performs consistency checking�
In addition� as opposed to manual� ad hoc approaches that are inevitably error�prone� the
compiler systematically instruments the code whenever introspection is needed� Finally� there
is no price performance price to pay compared to a manual approach� because the compiler
generates e�cient introspection and context switching mechanisms�

The rest of this paper is organized as follows� Section presents a working example of
an adaptive program in the multimedia domain� Section � introduces some terms and issues
related to adaptation� Section � then describes two ways of designing an adaptive component�
an ad hoc manner and using adaptation classes� In Section �� we present the problems that
arise when extending the adaptive component and how we handle them� Section 	 then gives
an overview of adaptation classes and provides an informal semantics� Section � surveys
related work� and Section � presents our concluding remarks and future work�

� Working example� an adaptive sound encoder

Adaptation is crucial for multimedia �	�� Consider a live audio application for audio�con�
ferencing� The quality of the audio depends primarily on the number of lost packets and
the delay variations between successive packets� Furthermore� the average end�to�end delay
must be small to allow interactions between participants� Therefore� the application must
adapt to the available network bandwidth to respect the temporal constraints� and provide
performance guarantees regarding loss rate or maximum delay ���
��� Bandwidth control
mechanisms can adjust to network congestion by adapting the size of the packets to the load
of the network �
�
���

Figure
 illustrates the general structure of the sending part of the adaptive audio�
conference application freephone ��� Before transmitting sound samples to the subscribers
of the audio�conference� speci�c treatments reduce the amount of information sent over the
network� First� the sound is compressed in the SoundEncoder component� To increase the tol�
erance to packet loss redundant information is added which is used to reconstruct lost packets
�the RedundancyInformation component�� The RtpSend component broadcasts the packet�
The protocol used by audio�conferencing applications such as freephone is RTP �Real�time
Transport Protocol� ���
��� which provides feedback on the transmitted data as RTCP �Real�
time Transport Control Protocol� control frames� The RtcpController component receives
these frames and computes feedback information to approximate the network bandwidth avail�
able� This estimate is used by the SoundEncoder and RedundancyInformation components
to adapt the compression rate and the amount of redundancy information�

To vary the compression rate� we can choose among di�erent encoding algorithms ��� as

�

shown in Table
� Choosing among these algorithms makes it possible to vary an � kHz sound
speech sample from ��	 kbits�s to �� kbits�s� ADPCM �
�
�� is a di�erential encoder which
can be parameterized from
	 kbits�s to �� kbits�s with a precision parameter �between and
	�� LPC ��� and GSM ���
	� are �xed low bit�rate encoders� Using these encoding algorithms�
the application is able to adequately react to bandwidth variations�

Encoding bit rates �kbits�s�
ADPCM��� 	

ADPCM��� ��

GSM ����
LPC ��

Table �� Bit rates of the encoding algorithms

� Adaptation basics

An adaptive component is a component that is able to adapt its behavior to di�erent ex�
ecution contexts� Adaptation can be static or dynamic� Static adaptation corresponds to
con�guration� i�e�� performing adaptation before execution depending on �xed parameters�
Dynamic adaptations are run�time changes depending on the execution context�

There are two ways to implement dynamic adaptation� adaptation on change and adap�
tation on action� Adaptation on change installs new behaviors each time that the execution
context changes� When adaptive functionality is used� the execution context does not need to
be checked� installed behaviors are blindly performed� On the contrary� adaptation on action
inspects the execution context each time that an adaptive functionality is called� to determine
which behavior should be performed�

The choice of which strategy is best �on change or on action� depends on both the frequency
of change in the execution context and the number of calls of adaptive actions� In the
following� we focus on adaptation on change� This strategy is usually the most appropriate for
multimedia components because the same set of actions are often repeatedly called� whereas
context changes require updating behaviors only when given thresholds are reached� Given
that the rate change of the execution contexts is often lower than the frequency of action
calls� adaptation on change requires less run�time management compared to adaptation on
action�

Adaptation on change can be decomposed into three stages�

Introspection� Collecting information about the execution context� This introspection can
be implemented by inserting guards that monitor given program states and notify the
adaptation controller �the second stage� in case of changes� In our working example�
the introspection stage is implemented by the RtcpController component which sends
a noti�cation to the SoundEncoder and RedundancyInformation components when the
bandwidth changes�

Control� Adaptation conditions are expressed over the guarded program states� These pred�
icates� often represented by threshold tests� determine which behavior is the most ap�
propriate� In the example� the SoundEncoder component implements this control mech�
anism� Each time the RtcpController signals a bandwidth change� the SoundEncoder

evaluates adaptation conditions based on the new bandwidth value� to choose the ap�
propriate encoding algorithm�

Installation� Depending on the adaptation conditions� new behaviors are installed� replacing
previous ones� In our example� the SoundEncoder installs one of the di�erent encoding
algorithms� balancing quality and packet sizes�

In this paper� we focus on the RtcpController and SoundEncoder components� and their
relationship� We show that the traditional implementation of a simple adaptive system raises
several problems in terms of construction and evolution�

�

� Building an adaptive component

In this section� we study the implementation of the SoundEncoder component for a wireless
network� Typically� a wireless network is characterized by low bandwidth� for which reason
we use the two low bit�rate encoders� LPC and GSM�

The choice between these two algorithms depends on the available network bandwidth�
For this reason� we need to create a relation between the RtcpController component� which
estimates the network bandwidth� and the SoundEncoder component� which selects the ap�
propriate encoding algorithm�

We build this adaptive component in two ways� �rst� we use an ad hoc technique based
on design patterns and study its advantages and disadvantages� Then� we present the design
of the same component using our declarative approach and examine its bene�ts�

��� Making an adaptive component �by hand�

Because adaptation is di�cult to apprehend in a complex system� implementing an adaptive
component requires a structured approach� A natural way to organize component implemen�
tation in an object�oriented language is to use design patterns ���� Design patterns capture
common structures that arise when designing and implementing programs� providing a good
framework for conveying program design expertise� Over the last few years� they have become
a standard tool in the design of object�oriented programs�

A selection of well�known design patterns can be used to express the three stages of our
adaptive SoundEncoder� To build this adaptive component� we rely on�

� a subscription mechanism to the network observer �RtcpController� that can notify all
the subscribers of guarded state changes �Introspection and Control stages�

� a mechanism to modify a behavior �Installation stage�

We use three design patterns to implement these features� Observer� Strategy and Facade�
The Observer pattern allows the noti�cation of a set of subscribers any of states change� The
Strategy pattern describes the implementation of an object that can dynamically change its
behavior� The Facade pattern provides an interface to encapsulate a set of objects� The
composition of these design patterns is shown in Figure �

Introspection� The RtcpController must notify the SoundEncoder when the network
bandwidth changes� To model this dependency� we use the Observer pattern� This pattern
allows a set of objects� the observers� to be automatically noti�ed when a state changes
in an observed object� the subject� In our example� the Observer pattern describes how to
establish the relation between the RtcpController �the subject� and the EncoderStrategy

�an observer�� Implementation details are presented in the appendix�

Control� When the bandwidth value changes� the appropriate conditions must be checked
to determine which encoding algorithm is the most appropriate� To model this dependency�
we could use a mediator pattern� In practice� this level of indirection is not needed here� It
is easier to just extend the observer so that it noti�es the subscribers only when an update is
required� specifying explicitly which algorithm must be installed�

Installation� Update requests specify which encoding algorithm is to be used as the cur�
rent behavior� To model this� we use the Strategy pattern� which allows dynamic changes in
object behavior by letting complementary behaviors vary independently from the clients who
use it� It is implemented by de�ning classes that encapsulate the di�erent algorithms� These
algorithms are implemented with Gsm and Lpc classes which provide an encode method that
transforms sampled sound into compressed packets� The EncoderStrategy class de�nes the
interface to the adaptive behavior �see the appendix for details��

Last� we have to provide an appropriate interface for the sound encoder component� To
this end� we use the Facade pattern� A Facade de�nes a higher�level interface that makes the
subsystem easier to use� We encapsulate the classes implementing the Observer and Strategy
functionality to create the SoundEncoder component� using the Facade design pattern to
provide a uni�ed interface�

	

Observer

update(Subject s)

Subject

private Set observerSet;

addObserver(Observer o)

delObserver(Observer o)
notify()

Encoder

Gsm Lpc

Packet encode(Sample data) Packet encode(Sample data)

Packet encode(Sample data)

Observer

Strategy

Packet encode(Sample data)

Packet encode(Sample data)

change(String newStrategy)

private float bandwidth;

AdaptEncoder(Subject s)

EncoderStrategy

EncoderObserver

EncoderObserver(Subject s,Strategy e)

Facade

SoundEncoder

CurrentEncoder

CurrentEncoder->encode(Sample data)

refFeedBack(RtcpPackets packet)

RtcpController

Figure �� UML diagram of the cooperation between Encoder and RtcpController

Usage� At instantiation time� the SoundEncoder component is connected to the RtcpController
component in order to be informed of network bandwidth changes� When the bandwidth
changes� the updatemethod of the EncoderObserver object is invoked by the RtcpController�
The EncoderObserver object queries the transmitter for its new state with the get bandwidth

method� Given the bandwidth� the EncoderObserver object then determines the best encod�
ing strategy given this bandwidth� It invokes the change method of the EncoderStrategy

object to switch the encoding algorithm�
The SoundEncoder must create an instance of each behavior� which can be done either

lazily �when needed� or strictly �at instantiation time�� Strict creation initially consumes more
resources than lazy creation� but ensures responsiveness after initialization has completed�
which makes it preferable for our component� Thus� the system �rst creates all adaptive
behaviors� after which the SoundEncoder component is synchronized with the RtcpController
component by invoking the update method� in order to acquire the actual bandwidth�

Assessment� Design patterns describe solutions to speci�c problems in object�oriented
software design� For example� the structure of the Strategy pattern provides di�erent im�
plementations of the same behavior o�ering a way to support a variety of algorithms and
facilitating future extensions� The use of design patterns isolates di�erent functionality �cre�
ational� structural and behavioral� and splits up behaviors �Strategy� Mediator� Observer�����
However� in the case of adaptation� using design patterns has some drawbacks�

The design of the adaptive SoundEncoder component is complex �see Figure and the code
in the appendix�� The use of the Strategy and Observer design patterns for the SoundEncoder
component introduces communication overhead and increases the number of classes� In our
example� it is necessary to declare � classes bound together by � references� In addition�
the object interaction protocol is computationally expensive� It requires indirections for
each call of the encode method and � calls for each modi�cation of the bandwidth �eld ��
if the current encoder has to be changed�� Furthermore� the decomposition into di�erent
subcomponents makes code modi�cation di�cult� The dependencies between objects requires
propagation of all modi�cations to all the classes in order to keep the code coherent� as will

adaptclass SoundEncoder adapts Encoder �

RtcpController rtpControl�

SoundEncoder �RtcpController �rtpControl� � rtpControl	�rtpControl� �

when �rtpControl�bandwidth
 ����� Lpc���

when �rtpControl�bandwidth 	 ����� Gsm���

�

Figure �� Declaration of adaptive behaviors on Encoder class

be apparent in Section ��

��� Declaration of an adaptive encoder

To simplify the design and development of adaptive components� we propose to declare adap�
tive behaviors and automatically generate code from these declarations� The principle of
our approach is to separate the adaptation declaration from the basic implementation of the
main program� We use adaption classes to declare which encoding algorithm to use depend�
ing on the bandwidth computed by the RtcpController component� The adaptation class
compiler evaluates the declarations� creates the SoundEncoder component� and modi�es the
RtcpController to plug in the introspection mechanism�

We reuse the Encoder class hierarchy and the RtcpController class as presented in Sec�
tion ��
� The Encoder class de�nes an abstraction of a sound encoder and an interface to the
encoding method� This abstract class is re�ned by concrete sub�classes �Gsm and Lpc� which
each implement an encoding algorithm� The RtcpController class is the network interface for
receiving control packets� These are our starting point for designing the adaptive component�

We de�ne an adaptation class SoundEncoder �shown in Figure �� to adapt the abstract
class Encoder� The �elds and the interface of the Encoder class are used as information to
de�ne when and how to substitute behaviors� The adaptation class introduces a reference
rtpControl to an RtcpController object to access the value of the current bandwidth� It
de�nes a constructor to initialize this reference� linking the adaptive component with the
RtcpController object� Two adaptation conditions �when statements� are introduced� which
express condtions over the value of the bandwidth �eld of the rtpControl object� If this value
is less than
��� kbits�s� then the current behavior is de�ned by the class Lpc� otherwise it is
de�ned by the class Gsm� To access the value of the private bandwidth �eld� the adaptation
class compiler introduces an accessor method into the RtcpController class�

The adaptation class compiler can use the information de�ned in adaptation classes to
generate the implementation of the adaptation mechanisms� We know at compile time which
observers are needed and we have a precise description of the information required to switch
behaviors� Thus� we can generate an implementation speci�c to the adaptation needs�

� We can simplify the connection mechanism by replacing the management of the set of
observers by a reference to each observer�

� It is possible to make observer�speci�c update protocols� since we know exactly what
information is needed about each change� The subject can send observers detailed
information as an argument to the update method� This optimization reduces the cost
of each state change�

� One of the indirections otherwise needed for calling the encode method can be elimi�
nated� The compiler automatically produces a complete component with all necessary
mechanisms� It is not necessary to use a design pattern like Facade to provide a concise
interface�

The compilation of this adaptation class modi�es the RtcpController class creates the
SoundEncoder class as shown in the appendix� The RtcpController class is modi�ed by
adding a subscription mechanism and analyzing the code to insert guards to detect mod�
i�cations of the bandwidth �eld� These modi�cations do not a�ect the behavior of the
RtcpController� they are transparent for any other objects that may use RtcpController�
The resulting SoundEncoder class is composed of references to adaptive behaviors and methods
for implementing adaptive mechanisms�

�

Usage� We insert the generated SoundEncoder component into the program� The use
of this class is similar to the use of the SoundEncoder component de�ned by hand in the
Section ��
� First� we create an rtcpSession object to receive and handle RTCP control
frames� Second� we create an instance of the SoundEncoder and pass it a reference to the
rtcpSession object� Then� the soundEncoder object connects to the rtcpSession object in
order to be noti�ed of each modi�cation to its state� and it initializes all possible behaviors
de�ned in the adaptation class �strict creation�� To synchronize with the initial rtcpSession
bandwidth� the soundEncoder object calls the acUpdate method and determines an initial
behavior�

When the value of the bandwidth �eld is modi�ed� the rtcpSession object noti�es the
soundEncoder object by calling the update method with the bandwidth value� The sound�

Encoder object re�computes its adaptation state and applies the appropriate encoding algo�
rithm� as speci�ed in the adaptation class �cf� Figure ���

Assessment� Our approach separates adaptation aspects from the code� First� it reduces
the complexity of the adaptive SoundEncoder component design� The implementation only
needs the Encoder and RtcpController classes and one adaptation class� our approach sepa�
rates adaptation mechanisms from the code� Second� performance is improved� The generated
code requires one indirection for each call of the encode method� and one call for each mod�
i�cation of the bandwidth �eld �or two if it is necessary to change the current behavior��
Last� evolution is easier� The evolution of an adaptive component is done by rede�ning the
adaptation classes� The compiler automatically propagates all modi�cations into the code
�such evolution is explored in the next section��

� Evolution of an adaptive component

In the previous section� we de�ned an adaptive component with the ability to change be�
havior depending on network bandwidth variations� Suppose that this component needs to
be used in another environment� namely for audio�conferencing on the web� The available
bandwidth is higher than for a wireless network� so we can raise the audio quality by increas�
ing the bandwidth adaptation domain of our audio�conferencing application� This section
presents the repercussions of this extension of the SoundEncoder component� namely adding
a new encoding algorithm� Adpcm� which extends the adaptive encoder up to �� kbits�s �cf�
Figure
��

The addition of a new encoding algorithm in the Encoder hierarchy must be propagated
to all components that are using these classes� Conceptually� the modi�cations are minor�
We just have to extend the adaptation domain of the Gsm behavior and add new adaptation
conditions to the object Adpcm�

� when the bandwidth is between
	 and �� kbits�s� use Adpcm����

� when bandwidth is greater than �� kbits�s� use Adpcm����

In the rest of this section� we show how this extension can be implemented� �rst using the ad
hoc method� and then our declarative approach�

Ad hoc extension� To add these behaviors into the adaptive component de�ned in Sec�
tion ��
� we need to modify the EncoderStrategy and EncoderObserver classes in order to
propagate state modi�cations to all the components as illustrated in Figure �� First� we must
add references to the new behaviors �
� and modify the EncoderStrategy constructor to cre�
ate and initialize them ��� Second� we have to add the assignments to the CurrentEncoder

variable in the change method ���� Last� we extend the control mechanism in the update

method ���� This example illustrates that a simple change like the addition of new behaviors
in an adaptive component is a non�trivial task� It implies modi�cations throughout the entire
program�

Extension by declaration� With adaptation classes� the generation of an adaptive com�
ponent is automatic� The addition of a new algorithm in the SoundEncoder components re�
quires only the modi�cation of the SoundEncoder adaptation class as shown in Figure � and
a re�compilation�

�

 ...
}

 void update(Subject s) {

 }

class EncoderObserver extends Observer {

4

 EncoderStrategy strategy;

 if (bandwidth<13.3) strategy.change("Lpc");
 else if (bandwidth<16) strategy.change("Gsm");
 else if (bandwidth<48) strategy.change("Adpcm2");
 else strategy.change("Adpcm6");

 float bandwidth=((RtpSession) s).getBandwidth();

 }
 ...

 }
}

class EncoderStrategy {

 public EncoderStrategy() {

 Encoder currentEncoder,
 gsmEncoder,
 lpcEncoder,
 adpcm2Encoder,
 adpcm6Encoder;

 if (newStrategy=="Gsm") { currentEncoder=gsmEncoder; }

 else currentEncoder=adpcm6Encoder;
 else if (newStrategy=="Adpcm2") { currentEncoder=adpcm2Encoder; }
 else if (newStrategy=="Lpc") { currentEncoder=lpcEncoder; }

 public void change(String newStrategy) {

1

3

2
 gsmEncoder=new Gsm();
 lpcEncoder=new Lpc();
 adpcm2Encoder= new Adpcm(2);
 adpcm6Encoder= new Adpcm(6);

...

...

Figure 	� Evolution of SoundEncoder component

adaptclass SoundEncoder adapts Encoder {

 when (13.3 <= rtpControl.bandwidth && rtpControl.bandwidth < 16) Gsm;()
 when (16 <= rtpControl.bandwidth && rtpControl.bandwidth < 48) Adpcm(2);

}

 when (rtpControl.bandwidth < 13.3) Lpc();
1

 when (48 <= rtpControl.bandwidth) Adpcm(6);

 SoundEncoder (RtcpController _rtpControl) { rtpControl=_rtpControl; }
 RtcpController rtpControl;

Figure � Adding a new adaptive behavior

adaptclass ExtendedSoundEncoder extends SoundEncoder �

when ���
	 rtpControl�bandwidth �� rtpControl�bandwidth
 ��� Adpcm����

when ���
	 rtpControl�bandwidth� Adpcm����

�

Figure �� Inheritance extension of the adaptation class SoundEncoder

AcDecl ��� adaptclass Identi�er �adapts � extends� Identi�er AcBody

AcBody ��� � �FieldDeclaration�� �ConstructorDeclaration�� �AcCond�� �

AcCond ��� �when AcPred�� AcBehavior�

AcBehavior ��� Identi�er ��ArgumentList���
AcPred ��� LinearExpression

Figure �� Adaptation classes syntax

Alternatively� adaptation class inheritance �explained in detail in the next section� could
be used� Figure 	 shows the ExtendedSoundEncoder adaptation class which is a sub�class
of SoundEncoder� that inherits all of the SoundEncoder de�nitions� It de�nes two levels of
predicate evaluation�

� if the bandwidth is greater than
	� then the ExtendedSoundEncoder behaviors are
applied�

� otherwise� it relies on the conditions de�ned in SoundEncoder to �nd an appropriate
behavior�

This use of adaptation class inheritance necessitates the modi�cation of the program using
the encoder� the newly generated ExtendedSoundEncoder class must be substituted for the
SoundEncoder class�

� Adaptation classes

The evolution of an adaptive component is problematic since its dependencies are scattered
throughout the program code� Our declarative approach exposes all adaptation capabilities�
and new code can easily be generated by recompiling the modi�ed declarations� This section
de�nes the syntax of adaptation classes and explains the semantics of the language�

The syntax of the adaptation class language is given in Figure �� The de�nition of non�
terminals Identi�er� FieldDeclaration� ArgumentList and ConstructorDeclaration are given in
the Java syntax �
��� The de�nition of non�terminal LinearExpression is similar to a Java
expression� but slightly is constrained as explained later� Adaptation classes are similar to
Java classes in their use and syntax� An adaptation class declares adaptation over an abstract
Java class� It has a name �both used to build the resulting Java class and to de�ne the inher�
itance relation�� the name of the adapted abstract Java class� and a set of members� These
members include �elds� constructor declarations� and adaptation conditions which describe
the conditions under which adaptive behaviors are applied�

��� Adaptation class members

All adaptation declarations are described by the AcCond rule� This rule can be divided into
two parts� the condition part �when AcPred�� and the action part� AcBehavior�

Introspection and condition stages� Adaptation conditions express when adaptation
should occur� by expressing a condition over the state of the adapted object or its execution
context� Conditions are declared with the statement when AcPred� where the predicate AcPred
may reference class �elds� An adaptation is applicable when the predicate evaluates to true�
In our example �cf� Figure ��� the adaptation condition consists of testing the bandwidth value
of an RtcpController object� For this object to be known by SoundEncoder� we declared the
reference rtpControl in the adaptation class�

�

The compiler gathers the variables used in the predicates and systematically inserts guards
to watch these variables and to notify the adapted component in case of changes �introspec�
tion stage�� To ensure that all changes to these variables are captured� it is necessary to
protect them from being directly written by external objects� The variables must be written
through an accessor method which is automatically inserted by the compiler� Consequently�
the adaptation context may only contain private �elds� such as the bandwidth �eld in the
RtcpController class�

An incorrect declaration of predicates can cause errors or inconsistencies� if two predicates
overlap� the choice of a behavior becomes nondeterministic� An adaptation class must respect
completeness and uniqueness� Completeness guarantees that for every possible situation�
there exists an adaptation action� Uniqueness guarantees that for each situation� there is
only one adaptation action which is applicable� To enforce these two properties we use the
logic language CLP ��� �

�� With this language� we can solve linear arithmetic constraints
and perform computations over real numbers �non linear constraints are not allowed�� As
a consequence� when a condition is expressed as a set of linear constraints� it is possible to
verify completeness and uniqueness�

Declaration of actions� An action is the substitution of one behavior �i�e�� object� by
another one� Each adaptive behavior is represented by an object� To enable substitution
of objects� they must have a similar interface and must inherit from the same abstract Java
class� In our example� all encoding algorithms inherit from the Encoder class� and they all
implement a version of the encode method�

For the program to run� it is necessary to instantiate all classes which represent an adaptive
behavior� The creation and the initialization of these objects are declared by their construc�
tors� For example� in Figure �� the instantiation of the Adpcm encoder was declared with a
prediction value of 	 �for an available bandwidth superior to �� kbits��

��� Adaptation Classes

Adaptation actions are encapsulated in an adaptation class� which represents the unity of
adaptation of our approach� An adaptation class is applied to a Java class or extends some
other adaptation class by inheritance�

Class structure changes� An adaptation class declares adaptive aspects of an existing
Java class� The adaptation class compiler takes as input a Java program and a set of adap�
tation classes which controls how adaptation features are added to the program code� An
adaptation class is applied to an abstract Java class� this abstract class corresponds to a set
of behaviors in the form of sub�classes� each sub�class implements a concrete behavior� The
adaptation class compiler creates a sub�class of the abstract super class which can switch
between concrete behaviors depending on an execution context� Furthermore� the compiler
inserts guards throughout the program code to notify the adaptive object of any context
modi�cation�

Figure 	�a shows a diagram of the classes used in Section �� to build the adaptive
SoundEncoder component� The Encoder class is the abstract class to be adapted� the Gsm and
Lpc classes de�ne concrete encoding algorithms� and� the RtcpController class contains the
execution context to be monitored� Figure 	�b shows the result of compilation� The compiler
creates the SoundEncoder class as a sub�class of the Encoder class� and references are created
to access the concrete behaviors and to notify of any state changes in the RtcpController�

Method mapping� Each abstract method de�ned in the abstract super class �Encoder�
is implemented in the adaptive class �SoundEncoder� as a wrapper to a concrete method� This
mapping is trivial since the methods have the same parameters�

State mapping� It may be necessary to share a variable between all adaptive behaviors�
In our framework� we share a variable when it is de�ned in the abstract Java class or any
of its super classes� The sharing of these variables is implemented by copying shared state
when a behavior is switched� using the acCopyEnv method which is added by the adaptation
class compiler �see the appendix for details�� As an example of shared variable� assume that

��

Lpc Gsm

Encoder
RtcpController

Figure
� �a� before compilation

Lpc Gsm Sound Encoder

Encoder

RtcpController

Figure �� �b� after compilation

one wants to count each call of the encode method of each encoder instance� one could add
a variable counter to the class Encoder� This variable would be incremented each time an
encode method is called� But when the encoding algorithm changes to adapt to the network
bandwidth� if the compiler did not handle shared variables� one would have to copy the value
of the variable from the current behavior to the new one�

Inheritance relation� Rather than directly adapting an existing Java class� an adap�
tation class can extend another adaptation class by inheritance� The inheritance relation is
similar to that of an object�oriented language� enabling the de�nition of a hierarchy of in�
creasingly re�ned adaptation classes� The use of inheritance in adaptation classes allows us
to de�ne a partial order between adaptive behaviors� which again makes it possible to de�ne
a decision tree on the adaptation conditions for selecting which behavior to use� Thus� we
can add new behaviors in an incremental way� as was illustrated in Figure 	�

When an adaptation class is extended� our compiler generates a sub�class which extends
the adaptive Java class� This new sub�class overloads the condition adaptation� As an ex�
ample� recall how the SoundEncoder adaptation class was extended with the declaration of
an adaptation sub�class ExtendedSoundEncoder in Section �� This declaration caused the
compiler to create a sub�class ExtendedSoundEncoder of the class SoundEncoder�

� Related work

Predicate classes� Predicate classes ��� are a syntactic and semantic extension of the Cecil
language� They allow the applicability of a method to be declared via a predicate expression�
which is a logical formula over class tests �i�e�� test that an object is a particular class or one
of its subclasses� and boolean�valued expressions� Compared with our approach� predicate
classes are intrusive� Declaration must be included directly in the code� and each method call
requires the evaluation of its associate predicate� which is an on change adaptation and thus
not appropriate in all cases �multimedia for example��

Specialization classes� Specialization classes �
�� are an extension of the Java language�
They declare adaptation program by specialization on the methods of a class� The conditions
of adaptation depend on predicates parameterized by object �elds� Using these declarations� a
program specializer produces specialized methods� and the specialization class compiler mod�
i�es the existing classes to integrate a customized execution support the specialized methods�
Our approach treats a more general form of adaptation since behavior can be substituted as
opposed to only adding more speci�c behavior� Adaptation classes do not automatically pro�
duce a specialized behavior� but adaptation classes could be used with specialization classes
to provide adaptive components with specialized actions�

Aspect�Oriented Programming� Kiczales et al �
�� describe many programming prob�
lems for which neither procedural nor object�oriented programming techniques are su�cient
to clearly capture some important features in program implementation� This forces the imple�
mentation of these features to be scattered throughout the code� resulting in �tangled� code
that is excessively di�cult to develop and maintain� These features are refered to as Aspects�
Kiczales et al present a new programming technique called Aspect�Oriented Programming�
which makes it possible to clearly express programs involving such aspects� including appro�
priate isolation� composition and re�use of the aspect code� A speci�c compiler� a weaver�

��

injects the declared aspect in the program code� Our approach is a special case of Aspect�
Oriented Programming which expresses adaptation concerns� Using adaptation classes� we
enrich the capacity of an object to dynamically change its behavior depending on an execution
context�

� Conclusion

In this paper� we have shown that for designing adaptive components� ad hoc techniques can
be complex and introduce communication overhead� Decomposition into di�erent subcompo�
nents makes code modi�cation di�cult because implementation of the adaptation is tangled
due to resource and component dependencies�

To overcome this software engineering challenge� we have developed a declarative ap�
proach for the design and implementation of adaptive components� This approach separates
adaptation declarations from the program code� A compiler generates Java code that fully
implements adaptation in the program and automatically instruments the code with an in�
trospection mechanism that captures state changes� With adaptive declaration� the compiler
generates optimized mechanisms for introspection and context switching mechanisms� Adap�
tation classes are integrated with the object oriented paradigm in the sense that they extend
existing classes with adaptive behavior� and declare adaptation without disturbing the source
program�

We are currently studying how to extend the expressiveness of adaptation classes to use
them for static adaptation� i�e�� adaptation before execution� By providing constraints on the
values guarded by an adaptation class� the compiler can evaluate adaptation conditions and
generate speci�c code which only includes the needed behavior� As a result� static and dy�
namic adaptation classes o�er an abstraction to de�ne the adaptation time with respect to the
context usage of adaptive components� For example� if we wanted to use the SoundEncoder
component with a network protocol which can guarantee a speci�c bandwidth �for example
ATM�� we would not need dynamic adaptation� The adaptation class compiler could gener�
ate a speci�c SoundEncoder component without any dynamic adaptation mechanisms� Static
adaptation can eliminate dead code and further simplify the adaptation mechanisms� improv�
ing overall performance� Taking this idea even further� adaptation classes can be mixed with
specialization classes� allowing each behavior to be specialized to given static constraints�

As for applications� we are studying the Java SWING library ��� to re�design the pluggable
look�and�feel mechanism to allow the user to choose between a dynamically pluggable look�
and�feel or a statically �xed look�and�feel� We believe that statically con�guring this feature
can improve the performance of applications written using this library�

Acknowledgments

We would like to thank the members of the Compose group for their helpful comments and
feedback� Special thanks to Jacques Noy�e and Ulrik Pagh Schultz for useful discussions on
adaptation classes and helpful comments on this paper�

References

�
� J�C� Bolot� T� Turletti� and I� Wakeman� Scalable feedback control for multicast video
distribution in the internet� In ACM�SIGCOMM���� volume �� pages ���	�� oct
����

�� J�C� Bolot and A� Vega�Garca� Control mechanisms for packet audio in the internet� In
IEEE Infocom���� San Fransisco� CA� April
��	�

��� I� Busse� B� De�ner� and H� Schulzrinne� Dynamic QoS control of multimedia applications
based on RTP� Computer Communications� jan
��	�

��� Crispin Cowan� Shanwei Cen� Jonathan Walpole� and Calton Pu� Adaptive methods
for distributed video presentation� In Computing Surveys Symposium on Multimedia�
volume ���� pages �������� December
����

��� J� Degener and C� Bormann� GSM 	��
	 lossy speech compression� http���kbs�cs�tu�
berlin�de� jutta�toast�html�

��

�	� C� Diot� C� Huitema� and T� Turletti� Multimedia application should be adaptive� In
HPCS���� Mystic �CN� pages ���� aug
����

��� M� Ernst� C� Kaplan� and C� Chambers� Predicate dispatching� A uni�ed theory of
dispatch� In ECOOP���� the
�th European Conference on Object�Oriented Programming�

����

��� J� Andrew Fingerhut� LPC�
	 speech coder software� Washington University�
http���www�arl�wustl�edu��jaf�lpc��

��� E� Gamma� R� Helm� R� Johnson� and J� Vlissides� Design Patterns� Elements of Reusable
Object�Oriented Software� Addison Wesley professional computing series�
����

�
�� James Gosling� Bill Joy� and Guy Steele� The Java Language Speci�cation� ISBN�
��
	���
� Addison�Wesley� September
��	�

�

� J� Ja�ar� S� Michaylov� P� Stuckey� and R� H� C� Yap� The CLP�R� language and system�
ACM Transactions on Programming Languages� �

�������	��
���

�
� J� Jansen� ADPCM Implementation� ftp���ftp�cwi�nl�pub�audio�adpcm�shar�

�
�� K� Je�ay� D� L� Stone� T� Talley� and F� D� Smith� Adaptive� best�e�ort� delivery of audio
and video data across packet�switched networks� In Proc� �rd WorkShop on Network and
Operating System Support for Digital Audio and Video� San Diego� CA� nov
���

�
�� Gregor Kiczales� John Lamping� Anurag Mendhekar� Chris Maeda� Cristina Videira
Lopes� Jean�Marc Loingtier� and John Irwin� Aspect�oriented programming� In Springer�
Verlag� editor� European Conference on Object�Oriented Programming �ECOOP� volume
LNCS
�
� Finland� June
����

�
�� H� Schulzrinne� S� Casner� R� Frederick� and V� Jacobson� Rtp� A transport protocol for
real�time applications� RFC
���� jan
��	�

�
	� J� Scourias� Overview of the Global System for Mobile Communications�
http���ccnga�uwaterloo�ca� jscouria�GSM�gsmreport�html�

�
�� M� H� Sherif� D� O� Bowker� Bertocci G�� B� A� Orford� and G� A� Mariano� Overview
and performance of CCITT�ANSI embedded adpcm algorithms� IEEE Transaction on
Communications� �
�
�� feb
����

�
�� T� Turletti and J�C� Bolot� Issues with multicast video distribution in heterogeneous
packet networks� In �th International Workshop on PACKET VIDEO� Portland� Oregon�
Sept
����

�
�� E�N� Volanschi� C� Consel� G� Muller� and C� Cowan� Declarative specialization of object�
oriented programs� In OOPSLA��� Conference Proceedings� pages �	����� Atlanta�
USA� October
���� ACM Press�

��� Walrath� Campione Kathy� and Mary� The JFC Swing Tutorial� A Guide to Constructing
GUIs� Number ISBN� ��
���
�� July
����

��

A Implementation details

This appendix provides implementation details about the ad hoc SoundEncoder component
and the automatically generated SoundEncoder component�

A�� Ad hoc SoundEncoder implementation

The ad hoc SoundEncoder implementation source code is shown in Figure
��

Implementation of the Observer design pattern

The Observer pattern describes how to establish the relationships between the Observer
EncoderStrategy and the subject RtcpController �cf� Figure �� The set of observers
�ObserverSet� is modi�ed by a subscription mechanism �methods addObserver and delObserver��
When the subject state changes� it invokes the notify method� This method propagates the
noti�cation to all observers and invokes the update method� This method is invoked for each
observer with the reference to the subject as an argument� Thus� observers can know the
identity of the subject� and obtain information about the observed object�

Implementation of the Strategy design pattern

We have implemented the Strategy pattern in the de�nitions of the classes Encoder� Gsm�
Lpc and EncoderStrategy �cf� Figure �� The abstract class Encoder uni�es the concept of
encoder and encapsulates the behavior associated with each strategy of encoding� This class
provides a method Packet encode�Sample data�� This method transforms sampled sound
into a package of bytes of compressed sound� Each sub�class Gsm and Lpc implements a speci�c
encoding strategy� The class EncoderStrategy de�nes the interface of the adaptive object
and manages a reference CurrentEncoder to an object Encoder� Each request is redirected
towards an object sub�class of the Encoder class� when the encode method is invoked� the
call is redirected towards the encoding method of the current algorithm�

A�� Automatic generation of the adaptive component SoundEn�

coder

The compilation of the adaptation class modi�es the class RtcpController as shown in Fig�
ure

� and creates the class SoundEncoder which is shown in Figure
�

The modi�cations to the RtcpController class consists in the addition of a subscription
mechanism �insertion of a reference to SoundEncoder �
� and of a method acAttachSoundEncoder
����� and of analyzing the code to insert guards that detect modi�cations to the bandwidth �eld
��� It should be noted that these modi�cations do not a�ect the behavior of RtcpController�
It is transparent for other objects that may use RtcpController�

The SoundEncoder class is composed of a �eld rtpControl �which has a reference to
the RtcpController object�� a number of Encoder variables required for adaptive behavior
�acEncoder� acLpc and acGsm�� and a number of methods implementing adaptive behavior
�acCopyEnv� acUpdate� SoundEncoder and encode�� The acCopyEnv method is used to copy
shared variables between two behaviors �see Section 	�
 for details�� The goal of the acUpdate
method is to notify SoundEncoder when the network bandwidth changes and to pass the
bandwidth as an argument�

The SoundEncoder constructor has the same interface as de�ned in the adaptation class�
The adaptation class compiler inserts in it some code to initialize the adaptive component
�creation of all required adaptive behaviors� connection with the subject RtpController� and
setting a current behavior��

�	

class SoundEncoder �
EncoderStrategy strategy�
EncoderObserver observer�
public void encode�int�� sample� �

strategy�encode�sample��
�
public SoundEncoder �Subject subject� �

strategy�new EncoderStrategy���
observer�new EncoderObserver�subject	strategy��
observer�update�subject��

�
�
abstract class Encoder �

public abstract void encode�int�� sample��
�
class Gsm extends Encoder �

public void encode�int �� sample� � ��� �
�
class Lpc extends Encoder �

public void encode�int�� sample� � ��� �
�
class EncoderStrategy �

Encoder currentEncoder	
gsmEncoder	
lpcEncoder�

public void change�String newStrategy� �
if �newStrategy��
Gsm
�

currentEncoder�gsmEncoder�
else if �newStrategy��
Lpc
�

currentEncoder�lpcEncoder�
�
public void encode�int�� sample� �

currentEncoder�encode�sample��
�
public EncoderStrategy�� �

gsmEncoder�new Gsm���
lpcEncoder�new Lpc���

�
�

class Subject �
private Set observerSet�
public void addObserver�Observer o� � ��� �
public void deleteObserver�Observer o� � ��� �
public void onotify�� � ��� �
Subject�� � ��� �

�

class RtpSession extends Subject �
private float bandwidth�
public float getBandwidth�� � return bandwidth� �
public void recFeedBack�float value� �
bandwidth�value�
notify���

�
�
abstract class Observer �

abstract void update�Subject s��
�
class EncoderObserver extends Observer �

EncoderStrategy strategy�
void update�Subject s� �
float bandwidth���RtpSession� s��getBandwidth���
if �bandwidth���� strategy�change�
Lpc
��
else strategy�change�
Gsm
��

�
EncoderObserver�Subject subject	

EncoderStrategy �strategy� �
subject�addObserver�this��
strategy��strategy�

�
�

Figure ��� Design patterns implementation

�

 }
 public void acAttachSoundEncoder(SoundEncoder _soundEncoder) { soundEncoder=_soundEncoder; }
}

3

 private float bandwidth;
 public float getBandwidth() { return bandwidth; }
 public void recFeedBack(RtcpPackets packet) {
 ...
 bandwidth=...; 2

 soundEncoder.acUpdate(bandwidth);
 acOldbandwidth=bandwidth;
 }

 if (acOldbandwidth!=bandwidth) {

 private SoundEncoder soundEncoder;

1

 private float acOldbandwidth;

class RtcpController {

Figure ��� Modi�cations of the RtcpController class

class SoundEncoder extends Encoder �

private RtcpController rtpControl�

private Encoder acEncoder� �� Current Encoder ��

acLpc�

acGsm�

private void acCopyEnv�Encoder src� Encoder dest� �����

public void acUpdate �float bandwidth� �

if �bandwidth
����� � acCopyEnv�acEncoder�acLpc��

acEncoder	acLpc� �

else if �bandwidth	����� � acCopyEnv�acEncoder�acLpc��

acEncoder	acGsm� �

else throw AdaptiveError�

�

public SoundEncoder�RtcpController �rtpControl� �

rtpControl	�rtpControl�

�� strict creation of adaptation behaviors ��

acGsm	new Gsm���

acLpc	new Lpc���

rtpControl�acAttachSoundEncoder�this��

�� compute the adaptation state ��

acUpdate�rtpControl�getBandwidth����

�

public void encode�int�� sample� � acEncoder�encode�sample�� �

�

Figure ��� Result of compiling of adaptation classes

��

