
Tempo, A Program Specializer for C

Position Statement at the
Panel Session of the ACM Dynamo 2000 Workshop

Renaud Marlet

January 18, 2000

What it is / does?

Tempo is a partial evaluator for C. It automatically specializes programs with respect to partially known inputs. Spe-
cialization can be compile-time (i.e., source-to-source transformation) as well as run-time (i.e., binary code genera-
tion). Specialized programs are more efficient (and can be smaller) than the original programs.

Tempo has been applied to in various domains such as operating systems and networking, computer graphics,
scientific computation, software engineering and domain specific languages, yielding significant speedups. Tempo is
being developed in the Compose group at IRISA/INRIA Rennes.It is publicly available.

How?

To operate Tempo, the user must provide declarations regarding the binding time of the program arguments, i.e., which
arguments are static (can be known in advance) and which onesare dynamic (will not be known until actual execution
time). A dependency analysis (preceded by an alias analysisto safely treat C pointers) then determines what parts of
the program can be precomputed assuming static arguments are available. This information can be visualized by the
user to assess the amount of specialization in the program.

Then, given actual values for the static arguments, all precomputable fragments of the program is evaluated ;
program fragments that may depend on dynamic arguments (called code templates) are left untouched. Putting these
precomputed values and code fragments together results in aspecialized program.

For compile-time specialization, the dynamic code fragments consist of source code, and precomputed values are
turned into their C source form. The result is the source codeof the specialized program.

For run-time specialization, the dynamic code fragments are first precompiled into binary code templates using a
standard C compiler. A dedicated specializer is then generated by Tempo. Running this specializer on actual values
for the static arguments assembles the binary code fragments and the values being precomputed, generating a binary
code that can be executed on the fly.

Why you think yours is the best approach?

The key advantages of Tempo regard features and engineering.

Automation and safety. Specialization with Tempo is automatic and non-intrusive.The user does not have to manu-
ally annotate each function to specialize, which is error-prone and makes program maintenance more difficult.
The user only has to specify in Tempo configuration files: the binding time of the parameters of the special-
ization entry point (the root function), and the behavior (regarding binding time and side-effects) of external
functions, if any. All specialization actions are then determined automatically from this initial specification.

1



Two manual operations are required though: slicing the partof the original program that the user wants to
specialize, and installing specialized functions into theoriginal program.

Precision. The program analyses in Tempo are accurate: they are inter-procedural and sensitive to flow, context,
return, use, and structure fields.

Predictability. Tempo provides a visual representation of the program analysis results. This ensure some predictabil-
ity of the transformation process: the user can assess the amount of specialization in the program.

Low breakeven point. Generating code at run time with Tempo is very fast although not optimal: code generation
mainly consists in assembling precompiled binary templates. (There are little inter-template optimizations.) The
resulting breakeven point (number of time the specialized code has to be used for specialization to be worth it)
is typically between 3 and 50.

Easy engineering. Building a run-time specializer using Tempo’s approach requires little effort: it re-uses without
any change an existing, efficient, well tested, native compiler.

Regrets, if any

The precision of the analyses cannot be parameterized. (An option for doing analyses with structure field polyvariance
is being worked on though.)

Tempo works on an abstract syntax tree. It includes agoto elimination phase to make sure that allgotos are
rewritten intowhile loops. In some (fortunately, rare) cases, this transformation can shift static statements under
dynamic control, which turns them dynamic. It thus reduces specialization opportunities. On the other hand, working
on an AST is easier than dealing with a graph of basic blocks.

Tempo is a raw specialization engine. For large projects, support is needed for slicing programs (what part of the
code the user wants to specialize) and installing specialized functions (when and where should a specialized function
be made and run, in place of the original code). But this is more a “future work” than actual regrets.

As Tempo is just a prototype, clumsiness had sometimes to be “allowed” in the implementation. (In 5 years, more
than twenty people somehow participated in the developmentof Tempo, most of which were students.)

2


