Tempo, A Program Specializer for C

Position Statement at the
Panel Session of the ACM Dynamo 2000 Workshop

Renaud Marlet

January 18, 2000

What it is/ does?

Tempo is a partial evaluator for C. It automatically spezes programs with respect to partially known inputs. Spe-
cialization can be compile-time (i.e., source-to-souraesformation) as well as run-time (i.e., binary code ganer
tion). Specialized programs are more efficient (and can tadlepthan the original programs.

Tempo has been applied to in various domains such as opeatatems and networking, computer graphics,
scientific computation, software engineering and domagtiie languages, yielding significant speedups. Tempo is
being developed in the Compose group at IRISA/INRIA Rentitas.publicly available.

How?

To operate Tempo, the user must provide declarations rigggitte binding time of the program arguments, i.e., which
arguments are static (can be known in advance) and whichavaetynamic (will not be known until actual execution
time). A dependency analysis (preceded by an alias anatysafely treat C pointers) then determines what parts of
the program can be precomputed assuming static argumenasatable. This information can be visualized by the
user to assess the amount of specialization in the program.

Then, given actual values for the static arguments, all@mgutable fragments of the program is evaluated ;
program fragments that may depend on dynamic argumentsqaade templates) are left untouched. Putting these
precomputed values and code fragments together resultspecialized program.

For compile-time specialization, the dynamic code fragtmeonnsist of source code, and precomputed values are
turned into their C source form. The result is the source afdiee specialized program.

For run-time specialization, the dynamic code fragmergdiast precompiled into binary code templates using a
standard C compiler. A dedicated specializer is then géedtay Tempo. Running this specializer on actual values
for the static arguments assembles the binary code fragraadtthe values being precomputed, generating a binary
code that can be executed on the fly.

Why you think yoursisthe best approach?
The key advantages of Tempo regard features and engineering

Automation and safety. Specialization with Tempo is automatic and non-intrusiMee user does not have to manu-
ally annotate each function to specialize, which is ermamp and makes program maintenance more difficult.
The user only has to specify in Tempo configuration files: timglihg time of the parameters of the special-
ization entry point (the root function), and the behaviag@rding binding time and side-effects) of external
functions, if any. All specialization actions are then det@med automatically from this initial specification.



Two manual operations are required though: slicing the pfathe original program that the user wants to
specialize, and installing specialized functions intodhginal program.

Precision. The program analyses in Tempo are accurate: they are indeegural and sensitive to flow, context,
return, use, and structure fields.

Predictability. Tempo provides a visual representation of the program aizalgsults. This ensure some predictabil-
ity of the transformation process: the user can assess thardrof specialization in the program.

Low breakeven point. Generating code at run time with Tempo is very fast althougthoptimal: code generation
mainly consists in assembling precompiled binary templgfEhere are little inter-template optimizations.) The
resulting breakeven point (number of time the specializetbcas to be used for specialization to be worth it)
is typically between 3 and 50.

Easy engineering. Building a run-time specializer using Tempo’s approachuness little effort: it re-uses without
any change an existing, efficient, well tested, native céenpi

Regrets, if any

The precision of the analyses cannot be parameterized. gdorofor doing analyses with structure field polyvariance
is being worked on though.)

Tempo works on an abstract syntax tree. It includg®to elimination phase to make sure that géit os are
rewritten intowhi | e loops. In some (fortunately, rare) cases, this transfdomatan shift static statements under
dynamic control, which turns them dynamic. It thus redugeslization opportunities. On the other hand, working
on an AST is easier than dealing with a graph of basic blocks.

Tempo is a raw specialization engine. For large projectspsti is needed for slicing programs (what part of the
code the user wants to specialize) and installing speefianctions (when and where should a specialized function
be made and run, in place of the original code). But this isexadffuture work” than actual regrets.

As Tempo is just a prototype, clumsiness had sometimes tallmed” in the implementation. (In 5 years, more
than twenty people somehow participated in the developafergmpo, most of which were students.)



