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Abstract.

Program and data specialization have always been studied separately, although they are both aimed at processing
early computations. Program specialization encodes the result of early computations into a new program; while
data specialization encodes the result of early computations into data structures.

In this paper, we present an extension of the Tempo specializer, which performs both program and data
specialization. We show how these two strategies can be integrated in a single specializer. This new kind of
specializer provides the programmer with complementary strategies which widen the scope of specialization. We
illustrate the benefits and limitations of these strategies and their combination on a variety of programs.
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1. Introduction

Program and data specialization both aim at performing computations which depend on
values that are available early. However, they differ in the way the result of early com-
putations are encoded: on the one hand, program specialization encodes these results in a
residual program, and on the other hand, data specialization encodes these results in data
structures.

More precisely, program specialization performs a computation when it only relies on
early data, and inserts the textual representation of its result in the residual program when
it is useful to calculate the final result with the late values. In essence, it is because a new
program is being constructed that early computations can be encoded in it. Furthermore,
because a new program is being constructed it can be pruned, that is, the residual program
only corresponds to the control flow that could not be resolved given the available data.
As a consequence, program specialization optimizes the control flow since fewer control
decisions need to be taken by the specialized program.

However, because it requires a new program to be constructed, program specialization
can lead to code explosion if the size of the specialization values is large. For example, this
situation can occur when a loop needs to be unrolled and the number of iterations is high.
Not only does code explosion cause code size problems, but it also degrades the execution
time of the specialized program dramatically because of instruction cache misses.

The dual notion to specializing programs is specializing data. Data specialization splits
the execution of a program into two phases. The first phase, called the loader, performs
the early computations and stores their results in a data structure called a cache. Instead
of generating a specialized program which contains the textual representation of values,
data specialization generates a program to perform the second phase: it only consists of



the late computations and is parameterized with respect to the result of early computations,
that is, the cache. This program is named the reader. Because the reader is parameterized
with respect to the cache, it is shared by all specializations. This strategy fundamentally
contrasts with program specialization because it decouples the results of early computations
from the program which exploits them. As a consequence, as the size of the specialization
problem increases, only the cache parameter increases, not the program. In practice,
data specialization can handle problem sizes that are far beyond the reach of program
specialization, and thus opens up new opportunities as demonstrated by Knoblock and Ruf
for graphics applications [6, 11]. However, data specialization, as implemented to date,
does not optimize the control flow: it is limited to performing the early computations which
are expensive enough to be worth caching. In fact, data specialization does not apply to
programs whose bottlenecks are limited to control decisions. A typical example of this
situation is interpreters for low-level languages: the instruction dispatch is the main target
of specialization. For such programs, data specialization can be completely ineffective.

Perhaps the apparent difference in the nature of the opportunities addressed by program
and data specialization has led researchers to study these strategies in isolation. As a
consequence, no attempt has ever been made to integrate both strategies in a specializer;
further, there exist no experimental data to assess the benefits and limitations of these
specialization strategies.

In this paper, we study the relationship between program and data specialization with
respect to their underlying concepts, their implementation techniques, and their applica-
bility. More precisely, we study program and data specialization when they are applied
separately, as well as when they are combined (Section 2). Furthermore, we describe how
a specializer can integrate both program and data specialization: what components are
common to both strategies and what components differ. In practice, we have achieved this
integration by extending a program specializer, named Tempo, with the phases needed to
perform data specialization (Section 3). Finally, we assess the benefits and limitations of
program and data specialization based on experimental data collected by specializing a
variety of programs exposing various features (Section 4).

2. Concepts of Program and Data Specialization

In this section, we present the basic concepts of both program and data specialization.
The limitations of each strategy are identified and illustrated by an example. Finally, the
combination of program and data specialization is introduced.

2.1. Program Specialization

The partial evaluation community has mainly focused on program specialization. That is,
given some inputs of a program, program specialization generates a residual program that
encodes the result of the early computations which depend on the early inputs. Although
program specialization has successfully been used for a variety of applications (e.g., op-
erating systems [14, 15], scientific programs [12, 16], and compiler generation [2, 10]), it
has shown some limitations. One of the most fundamental limitations is code explosion,
which occurs when the size of the specialization problem is large.



Let us illustrate this limitation using the procedure displayed on the left-hand side of
Figure 1. In this example, the input stat is an early data, whereas the inputs dyn and d are
late data. E_stat (respectively E_dyn) stand for an early (respectively late) expression.
Assuming the specialization process unrolls the loop, variable j becomes available and
thus the g procedures (i.e., g1, g2 and g3) can be fully evaluated. Additionally, program
specialization optimizes procedure £ by simplifying its control flow: the loop and one of
the conditionals are eliminated. A possible specialization of procedure f is presented on
the right-hand side of Figure 1.

Beyond some number of iterations however, the unrolling of a loop, and the computations
it enables, do not pay for the code size of the resulting specialized program; this number
depends on behavior of the processor used to execute the specialized program. In fact, the
specialized program can even be slower than the unspecialized program. The larger the
size of the residual loop body, the earlier this phenomenon happens.

For domains like graphics and scientific computing, some applications are beyond the
reach of program specialization because the specialization opportunities rely on very large
data or iteration bounds that would cause code explosion if loops traversing these data
were unrolled. Certainly, code explosion can cause code size problems resulting in an
increase of instruction cache misses and poor performance of the specialized program. In
this situation, data specialization may apply.

void f (int stat,int dyn,int d[]) void £ 100 (int dyn,int d[])
{ {
int j; if (E_dyn) d[0]+=1+dyn;
d[0]+=0*dyn;
for (j=0; j<stat; j++) d[1]=3-dyn;
{ if (E_dyn) d[1l]+=1+dyn;
if (E_stat) d[j]=gl(j)-dyn; d[1]+=10*dyn;
if (E_dyn) d[j]1+=g2(j)+dyn; if (E_dyn) d[2]+=2+dyn;
d[j1+=g3(j)*dyn; d[2]+=20*dyn;
} d[3]=12-dyn;
} if (E_dyn) d[3]+=6+dyn;
}
[xxkkkx main *kxkkx/ [**kkkx*k main *xkkxkx/
extern int w[N][M]; extern int w[N][M];
for (k=0; k<MAX; k++) for (k=0; k<MAX; k++)
f(e,k,wlk]); £ 100(k,w[k]);
(a) Source program (b) Specialized program

Figure 1. Program specialization: early constructs are shown in bold. The procedure f is specialized for
stat=100, causing the loop to be unrolled 100 times.



2.2. Data Specialization

In late eighties, an alternative to program specialization, called data specialization, was
introduced by Barzdins and Bulyonkov [1] and further explored by Malmkjer [13]. Later,
Knoblock and Ruf studied data specialization for a subset of C and applied it to a graphics
application [11]

Data specialization aims at encoding the results of early computations in data structures,
not in the residual program. The execution of a program is divided into two stages. First, a
loader executes the early computations and saves their result in a data structure, the cache.
This stage specializes the cache given the available inputs. Then, a reader performs the
remaining computations using the results shared in the specialized cache.

Let us illustrate this process by an example displayed in Figure 2. On the left-hand
side of this figure, a procedure £ is repeatedly invoked in a loop with a first argument (c)
which does not vary (and is thus considered early); its second argument, the loop index
(k) varies at each iteration. Procedure f is also passed a different vector at each iteration,
which is assumed to be late. Because this procedure is called repeatedly with the same first

struct D_cache {int V1[MAX];
int V2[MAX];};

void f (int stat,int dyn,int d[]) void f_loader (int stat,
{ struct D_cache *C)
int j; {int j;
for (j=0; j<stat; j++){
for (j=0; j<stat; j++) if (E_stat) C->V1[j]=gl(]);
{ C->V2[j]=93(]);
if (E_stat) d[j]=gl(j)-dyn; P
if (E_dyn) d[j]+=g2(j)+dyn;
d[j1+=93(j)*dyn; void f_reader(int stat,int dyn,int d[]
} ,struct D_cache *C)
} {int Jj;

for (j=0; j<stat; j++){
if (E_stat) d[j]=C->V1[j]-dyn;
if (E_dyn) d[jl+=g2(]j)+dyn;
d[j]1+=C->V2[j]*dyn;

}}
[**kk*k*x main *xxxxkxk/ [**kk*kxk*k main *xkkxx/
extern int w[N][M]; extern int w[N][M];

struct D_cache *cache;

f loader(c,cache);

for (k=0; k<MAX; k++) for (k=0; k<MAX; k++)
f(e,k,wlk]); f reader(c,k,w[k],cache);
(a) Source program (b) Specialized program

Figure 2. Data specialization: early constructs are shown in bold and cached expressions are underlined. The
procedure f is specialized for stat being available. The cache is load by £ 1loader and read by £ reader.




argument, data specialization can be used to perform the computations that depend on it.
In this context, many computations can be performed, namely the loop test, E_stat and
the invocation of the gz procedures. Of course, caching an expression is only beneficial if
its execution cost exceeds the cost of a cache reference. Measurements have shown that
caching expressions that are too simple (e.g. a variable occurrence or simple comparisons)
actually cause the resulting program to be slower than the original program. The reason is
that looking up the cache for the value of an early expression requires a memory access,
whereas computing the expression at program execution time may only involve registers.

In our example, let us assume that, like the loop test, the cost of expression E_stat is
not expensive enough to be cached. If, however, the g procedures are assumed to consist
of expensive computations their invocations need to be examined as potential candidate for
caching. Since the first conditional test E_stat is early, it can be put in the loader so that
whenever it evaluates to true the invocation of procedure gl can be cached; similarly, in
the reader, the cache is looked up only if the conditional test evaluates to true. However, the
invocation of procedure g2 cannot be cached according to Knoblock and Ruf’s strategy,
since it is under late control and thus caching its result would amount to performing
speculative evaluation [11]. Finally, the invocation of procedure g3 can be cached since it
is unconditionally executed and its argument is early. The resulting loader and reader for
procedure f are presented on the right-hand side of Figure 2, as well as their invocations.

When performing program specialization, it is always advantageous to simplify early
expressions. However, when performing data specialization, it is not always desirable to
store the results of such expressions in the cache. If the computation performed by calling
the g7 procedures is not expensive enough to amortize the cost of memory references to the
cache, then, only the control flow of procedure £ remains a target for specialization which
data specialization cannot exploit. This is a limitation of data specialization.

2.3. Combining Program and Data Specialization

We have described the benefits and limitations of both program and data specialization.
The main parameters that determine which strategy fits the specialization opportunities are
the cost of the early computations and the size of the specialization problem. Nevertheless,
within a single program (or even a single procedure), some fragments may require program
specialization and others data specialization. As a simple example, consider a procedure
that consists of two singly nested loops. Suppose the body of the first loop can be almost
completely evaluated, and the number of iterations is small, then program specialization
can be applied. On the contrary, assume the body of the second loop is large and cannot be
completely evaluated, it can cause code explosion; this may prevent program specializa-
tion from being applied, but it does not prevent data specialization from exploiting some
specialization opportunities.

Concretely program and data specialization can be combined in a simple way. One ap-
proach consists of doing data specialization first, and then applying the program specializer
on either the loader or the reader, or both. The idea is that code explosion may not be an
issue in one of these components; as a result, program specialization can further optimize
the loader or the reader by simplifying its control flow or performing speculative evaluation.
For example, a reader may contain a loop whose body is small; this situation may thus allow



the loop to be unrolled without causing the residual program to be too large. Applying a
program specializer to both the reader and the loader is possible if the fragments of the
program that may cause code explosion are not unrolled by the specialization phase.

Alternatively, program specialization can be performed prior to data specialization. This
combination requires program specialization to be applied selectively so that only fragments
that do not cause code explosion are specialized. Then, the other fragments offering
specialization opportunities can be processed by data specialization.

These two approaches give an identical result on the reader since they simply consist of
applying data specialization on the fragments of program that may cause code explosion,
and applying program specialization on all of the program without modifying the already
specialized fragments. Suppose we rewrite £ to calculate d[ ] using two singly nested
loops, as shown in Figure 3. The first loop, that initializes the values of d[ ], contains
an early test that can be evaluated by program specialization. The second loop contains
the rest of the calculation and can be optimized by data specialization. The resulting
specialized loader and reader for the procedure £ are presented on the right-hand side of
Figure 3, together with their invocations. The first loop has been program-specialized to

struct D_cache {int V1[100];};

void f (int stat,int dyn,int d[]) void f_loader_100 (struct D_cache *C)

{ {int j;
int j; for (j=0; j<100; j++){
C->V1[j1=93(]j);
for (j=0; j<stat; j++) P}
{

if (E_stat) d[j]=gl(j)-dyn;

}

for (j=0; j<stat; j++)

{
if (E_dyn) d[j]l+=g2(j)+dyn;
d[j1+=g3(j)*dyn;

}

}

*kkkk*k i *kkkk*k
malin

extern int w[N][M];

for (k=0; k<MAX; k++)
f(c,k,wlk]);

(a) Source program

void f _reader_ 100 (int dyn,int d[],
struct D_cache *C)
{int j;
d[1]=3-dyn;
d[3]=12-dyn;

for (3=0; j<100; j++){
if (E_dyn) d[]j]+=92(J)+dyn;
d[j]1+=C->V1[j]*dyn;
o}

[x*kkkx*k main *xkkxkx/
extern int w[N][M];
struct D_cache *cache;

f loader_100(cache);
for (k=0; k<MAX; k++)
f reader 100(k,w[k],cache);

(b) Specialized program

Figure 3. Program and data specialization: early constructs are shown in bold and cached expressions are
underlined. The procedure f is specialized for stat=100, eliminating the first singly nested loop and its
conditional, but without unrolling the second singly nested loop.



initialize d[ ], and the loop and the conditional have been eliminated. The second loop
was not unrolled to prevent code explosion, but the size of the cache with regards to data
specialization alone and the code size with regards to program specialization alone were
decreased.

As will be shown in Section 4, in practice combining both program and data specialization
allows better performance than pure data specialization and prevents the performance gain
from dropping as quickly as in the case of program specialization as the problem size
increases.

3. Integrating Program and Data Specialization

We now present how a program specializer is extended to perform data specialization in
practice. To do so we briefly describe the features of Tempo that are relevant to both data
specialization and the experiments presented in the next section.

3.1. Tempo

Tempo is an off-line program specializer for C programs [3, 4]. As such, specialization
is preceded by a preprocessing phase. This phase computes information that guides the
specialization process. The main analyses of Tempo’s preprocessing phase are an alias
analysis, a side-effect analysis, a binding-time analysis and an action analysis [7, 8]. The
first two analyses are needed because of the imperative nature of the C language, the
binding-time analysis is typical of any off-line specializer. The action analysis is more
unusual: it computes specialization actions (i.e., program transformations) to be performed
by the specialization phase.

The output of the preprocessing phase is a program annotated with specialization actions.
Given specialization values, this annotated program is used by the specialization phase to
produce a residual program.

Tempo has been successfully used for a variety of applications ranging from operating
systems [14, 15, 17, 18] to scientific programs [7, 12, 16] and is publicly available®.

3.2. Extending Tempo with Data Specialization

Tempo includes a binding-time analysis which propagates binding time annotations forward
and backward. A binding-time annotation indicates whether the value of a variable is
available at specialization time. An early expression is annotated with the static binding-
time annotation and a late expression is annotated with the dynamic binding-time annotation.
Thus an expression is considered static (respectively dynamic) when it depends on early
(respectively late) data.

3.2.1. Program specialization

The forward analysis aims at determining the static computations; it propagates binding
times from the definitions to the uses of variables. If the binding time of a use is static,
then the value of this variable is available at specialization time.



The backward analysis performs the same propagation in the opposite direction; when
uses of a variable are both static and dynamic, the corresponding definition is annotated
static&dynamic. This annotation indicates that the definition should both be evaluated at
specialization time for the static uses and introduced in the residual code for the dynamic
uses. This process, introduced by Hornof ez al. [9], allows a binding-time analysis to be ac-
curate; such an analysis is said to be use sensitive . When a definition is static&dynamic and
occurs in a control construct (e.g., while), this control construct becomes static&dynamic
as well. The specialized program is formed as follows: statements and expressions an-
notated static or static&dynamic are evaluated at specialization time; the results of static
expressions are introduced in the residual code; statements and expressions annotated
dynamic or static&dynamic are rebuilt in the residual code.

3.2.2. Data specialization

Program and data specialization share the same forward analysis; it aims at determin-
ing the static computations. After the forward analysis, a new analysis phase focuses
on the computations which can be cached, that is, static terms occurring in a dynamic
(or static&dynamic) context. These terms are called frontier terms. If the cost of the
frontier term is below a given threshold, it must not be cached: it is forced dynamic (or
static&dynamic). The calculation of the threshold is defined as a parameter of the data
specializer in order to select the frontier terms and to limit the cache size, according to the
system architecture.

Furthermore, because data specialization in general does not perform speculative evalu-
ation, static computations that are under dynamic control are made dynamic.

Once these adjustments are done, the backward analysis performs the propagation of uses
in the opposite direction; it identifies the computations needed to calculate the cache and the
computations needed to compute the result of the program using the cache. The result of the
specialization is a program where statements and expressions annotated static are included
in the loader for building the cache. Statements and expressions annotated dynamic are
included in the reader for evaluating the result using the cache. Static&dynamic expressions
are present both in the loader and in the reader.

4. Performance Evaluation

We now compare the performance obtained by applying different specialization strategies
to a set of programs. This set includes several scientific programs and a systems program.

4.1. Overview

Machine and Compiler. The measurements presented in this paper were obtained using
a Sun UltraSPARC 1 Model 170 with 448 megabytes of main memory and 16 kilobytes of
instruction and data cache, running SunOS version 5.5.1. Times were measured using the
Unix system call getrusage and include both “user” and “system” times. Instruction
and data cache misses were measured using the program call per f-monitor, which uses
the on-chip counters on UltraSPARC processors to gather statistics.



Figures 4, 5 and 6 display the speedups, the code size increases, and the data size
increases obtained for different specialization strategies. The speedup is the ratio between
the execution times (without specialization times) of the specialized program and the
original one. In the following, for each benchmark, we give the program invariants used
for specialization and an approximation of the time complexity of the program. Figure
7 displays the increase in instruction and data cache misses. Measurements indicated for
each figures represent the ratio of increase compared to the original program.

The source code is included in the appendices. All the programs were compiled with
gcc at optimization level 02. Higher degrees of optimization did not make a difference
for the programs used in this experiment.

Specialization strategies. We evaluate the performance of three different specialization
methods. The data displayed in Figure 4, 5 and 6 correspond to the behavior of the following
specialization strategies:

e PS: the program is program-specialized.
e DS: the program is data-specialized.

e DS+ PS: the program is data-specialized and program-specialized.

Loops that manipulate the cache (for data specialization) are kept folded to avoid code
explosion. Because the cached computations are sufficiently expensive, the program
produced by the combined strategy performs better than a program in which the loops
are kept folded but where the static computations are not cached.

Source programs. We consider a variety of source programs: a Chebyshev approxima-
tion, a Romberg integration, a cubic spline interpolation, a one-dimensional fast Fourier
transformation (FFT), a Smirnov integration and the Berkeley packet filter (BPF). The first
three programs come from a paper of Robert Gluck [5]. Given the specialization strategies
available, these programs can be classified as follows.

Control intensive: a program that mainly depends on control computations, and where
data computations are inexpensive. In this case, program specialization can improve
performance whereas data specialization does not because there is no expensive calcu-
lations to cache.

Data intensive: a program that is only based on expensive data computations. As a result,
program specialization as well as data specialization can improve the performance of
such program.

Control and data intensive: a program that contains both control computations and ex-
pensive data computations. Such program is a good candidate for program specializa-
tion when applied to small values, and well-suited for data specialization when applied
to large values.

We now analyze in turn the performance of the three specialization strategies on the
benchmark programs.
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4.2. Results

In this section, we characterize different opportunities of specialization to illustrate our
method in the three categories of program.

4.2.1. Control intensive

We analyze two programs where performance is better with program specialization: the
Berkeley packet filter (BPF), which interprets a packet with respect to a program, and the
cubic spline interpolation, which approximates a function using a third degree polynomial
equation.
Characteristics: The BPF interpreter consists exclusively of conditionals whose tests
and branches contain inexpensive expressions. The implementation of the cubic spline
interpolation algorithm consists of small loops whose bodies can be evaluated in part. These
programs mainly depend on control and contain few calculations. Program specialization
simplifies the control flow and eliminates some calculations. Since there is no static
calculation expensive enough to be efficiently cached by data specialization, the data-
specialized program is mostly the same as the original one. For this kind of program, only
program specialization gives significant improvements: it reduces the number of tests and
it produces a small specialized program.

(a) Berkeley packet filter
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Figure 4. Control intensive : program, data and combined specialization
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Applications: The BPF interpreter (Appendix A.6) is specialized with respect to a program
pc, and mainly consists of conditionals. Its time complexity is linear in the size S of the
interpreted program and it does not contain expensive data computations. As the BPF
interpreter does not contain any loops, the size of the specialized program is mostly the
same as the original one. In Figure 4 (a), program specialization yields a good speedup,
whereas data specialization does not improve performance because there are no expensive
data computations to be cached. So data specialization does not modify the original
program. The combination of program and data specialization corresponds exactly to the
residual program produced by program specialization.

The cubic spline interpolation program (Appendix A.5) is specialized with respect to
the number of points (n) and the x-coordinate. It contains three singly nested loops; its
time complexity is O(n). In the first two loops, more than half of the computations of
each body can be completely evaluated or cached by specialization, including floating-point
multiplications and divisions. Nevertheless, no individual computation is expensive enough
to warrant caching, so data specialization does not improve performance significantly. The
unrolled loops do not significantly increase the code because of the linear time complexity
of the program and the small size of each loop body. In the same way, the data size
increases remain linear. So for each number of points n, the speedup resulting from each
specialization strategy is not degraded by these weak increases. In Figure 4 (b), program
specialization produces a good enough speedup, 45% better than data specialization for this
example. Data specialization obtains only a minor speedup because the cached calculations
are not very expensive. For the combination of program and data specialization, we kept as
folded the loop that contains the most expensive cached computations. We obtain a similar
speedup as with program specialization.

4.2.2. Data intensive

‘We now analyze two programs where performances of the specialized versions are similar:
the Chebyshev polynomial, which approximates a continuous function in a known interval,
and the Smirnov integration, which approximates the integral of a function on an interval
using estimations.
Characteristics: These two programs only contain loops and expensive calculations
in doubly nested loops. As for the cubic spline interpolation, more than half of the
computations of each loop body can be completely evaluated or cached by specialization.
In contrast with cubic spline interpolation, the static calculations in Chebyshev and Smirnov
are very expensive and allow data specialization to yield major improvements. For the
combined specialization, data specialization is applied to the innermost loop and program
specialization is applied to the rest of the program. For this kind of programs, program and
data specialization both give significant improvements. However, for the same speedup,
the code size of the program produced by program specialization can typically be a hundred
times larger than the program specialized using data specialization.
Applications: The Chebyshev approximation (Appendix A.3) is specialized with respect
to the degree n of the generated polynomial. This program contains two calls to the
trigonometric function cos: one of them in a singly nested loop and the other call in a
doubly nested loop. Its time complexity is O(n?). Since this program mainly consists
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(c) Chebyshev approximation
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Figure 5. Data intensive : program, data and combined specialization

of data flow computations, program specialization and data specialization obtain similar
speedups (see Figure 5 (¢)).

The Smirnov integration (Appendix A.4) is specialized with respect to the number of
iterations (n, m), and where n = m. The program contains a call to the function fabs
which returns the absolute value of its parameter. This function is contained in a doubly
nested loop and the time complexity of this program is O(mn). As in the case of the
Chebyshev approximation, program and data specialization produce similar speedups (see
Figure 5 (d)).

4.2.3. Control and data intensive

Finally, we analyze two programs where performance improves using program special-
ization when values are small, and data specialization when values are large: the FFT and
the Romberg integration. The FFT converts data from the time domain to a frequency
domain. The Romberg integration approximates the integral of a function on an interval
using estimations.
Characteristics: These two programs contain several loops and expensive data flow
computations in doubly nested loops; however, more than half of the computations of each
loop body cannot be evaluated at specialization time. Beyond some number of iterations,
when program specialization unrolls these loops, the increase of the code size in the
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(e) Fast Fourier transformation
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specialized program degrades performance. For an even larger number of iterations, the
specialization phase of Tempo cannot even produce the specialized program because of
excessive memory consumption. In contrast, data specialization caches only the expensive
calculations, does not unroll loops, and improves performance. When the number of
iterations becomes too large, the result is that the code size of the program produced by
program specialization is a hundred times larger than the specialized program using data
specialization, for a speedup gain of only 20%. The combined specialization delays the
occurrence of code explosion. Data specialization is applied to the innermost loop, which
contains the cache computations, and program specialization is applied to the rest of the
program.

Applications: The FFT (Appendix A.1) is specialized with respect to the number of data
points (np). It contains ten loops with several degrees of nesting. One of these loops,
with complexity O(np?), contains four calls to trigonometric functions, which can be
evaluated by program specialization or cached by data specialization. Due to the elimination
of these expensive library calls, program specialization and data specialization produce
significant speedups (see Figure 6 (e)). However, in the case of program specialization,
loop unrolling degrades performance. In contrast, data specialization produces a more
stable speedup than the speedup due to program specialization regardless of the number
of data points. When np is smaller than 512, data specialization does not obtain a better
result in comparison to program specialization. However, when np is greater than 512,
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program specialization becomes impossible to apply because of the specialization time
and the size of the residual code. In this situation, data specialization still gives better
performance than the unspecialized program. Because this program also contains some
conditionals and small loops, combined specialization, where the loop which manipulates
the more expensive computations to be cached is not unrolled, improves performance more
than data specialization alone.

The Romberg integration (Appendix A.2) is specialized with respect to the number of
iterations (/) used in the approximation. The Romberg integration contains two calls
to the costly function int_pow. It is called twice: once in a singly nested loop and
another time in a doubly nested loop. The time complexity of the Romberg integration is
O(M?). Because both specialization strategies eliminate these expensive library calls, the
speedup is consequently good. As for the FFT, too much loop unrolling causes the speedup
due to program specialization to decrease, whereas combined specialization improves
performance better than data specialization alone (Figure 6 (f)).

4.3. Instruction and data cache

To explain the benefit of the combined specialization, we have analyzed the effect of the
code explosion on the Romberg integration and measured the instruction and data cache
misses.

s Romberg integration
T —e—PS
—4—DS+PS

—o—DS_NO_CACHE + PS
--m--DS

n
n

Speedup

Data cache misses increase

Instruction cache misses increase

Figure 7. Instruction and data cache misses

Figure 7 shows that for the Romberg integration, combining program and data specializa-
tion reduces the instruction cache misses with regards to program specialization, and also
reduces the data cache misses with regards to data specialization. To show that the profit of
speedup is not just due to the loops not being unrolled, we have included the measurement
of the combined specialization without frontier term caching. The figure shows how the
instruction cache misses can dramatically reduce the performance of programs produced
using program specialization. We conclude that a better balance between instruction and
data cache can improve the performance of the specialized program.
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5. Conclusion

We have integrated program and data specialization in a specializer named Tempo. Impor-
tantly, data specialization can re-use most of the phases of an off-line program specializer.
Because Tempo now offers both program and data specialization, we have experimentally
compared both strategies and their combination. This evaluation shows that, on the one
hand, program specialization typically gives better speed-up than data specialization for
small problem sizes. However, as the problem size increases, the residual program produced
by program specialization may become very large and often slower than the unspecialized
program. On the other hand, data specialization can handle large problem sizes without
much performance degradation. This strategy can, however, be ineffective if the program
to be specialized consists mainly of control flow computations. The combination of both
program and data specialization is promising: it can produce a residual program that is
more efficient than with data specialization alone, without dropping in performance as
dramatically as with program specialization, when the problem size increases.

Acknowledgments

We would like to thank the Compose group for stimulating discussions.

A substantial amount of the research reported in this paper builds on work done by the
authors with Scott Thibault on the Berkeley packet filter [17] and Julia Lawall on the fast
Fourier transformation [12].

We wish to thank Olivier Danvy and the anonymous referees for their helpful comments
on previous drafts of this paper.

Notes

1. Tempo, an off-line program specializer for C programs, is publicly available: http://www.irisa.fr/compose/tempo
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Appendix

For each programs, the early inputs used for
specialization in section 4 are shown in bold.
The data computations cached by data spe-
cialization are shown in bold too.

A.1. Fast Fourier transformation

#define PI 3.14159265358979323846

int fft(int np,double x[2],double y[2])
{

double *px, *py;

int i,j,k,m,n;

int i0,i1,1i2,i3;

int is,id;

int nl,n2,n4;

double a,e,a3,xt;

double rl,r2,sl,s2,s3;

double ccl,ssl,cc3,ss3;

px=x-1;
py=y-1;

i=2;

m=1;

while (i<np)

i=i+i;
m=m+1;
i
n=i;
if (n!=np)
{
for (i=np+l; i<=n; i++)
{
* (px+1i)=0.0F;
*(py+i)=0.0F;
}i
printf("\nuse %d point fft",n);
}
n2=n+n;
for (k=1; k<=m-1; k++)
{
n2=n2/2;
nd=n2/4;
e=2.0F*(float)PI/n2;
a=0.0F;
for (j=1; j<=n4; j++)
{
a3=3.0F*a;
ccl=cos(a);
ssl=sin(a);
cc3=cos(a3);
ss3=sin(a3);
a=j*e;
is=j;
id=2*n2;
while (is<n)

for (i0=is; i0<=n-1;i0++)
{

il=i0+n4;

/*

i2=il+n4;

i3=i2+n4;
rl=*(px+i0)-*(px+i2);

* (px+10)=* (px+i0)+* (px+i2);
r2=*(px+il)-*(px+i3);
*(px+il)=*(px+il)+* (px+i3);
sl=*(py+i0)-*(py+i2);
*(py+i0)=*(py+i0)+*(py+i2);
s2=*(py+il)-*(py+i3);
*(py+til)=*(py+il)+*(py+i3);
s3=rl-s2;

rl=rl+s2;

s2=r2-sl;

r2=r2+sl;
*(px+i2)=rl*ccl-s2*ssl;
*(pyt+i2)=-s2*ccl-rl*ssl;

* (px+i3)=s3*cc3+r2*ss3;

* (py+i3)=r2*cc3-s3*ss3;
10=1i0+id;

is=2*id-n2+j;
id=4*id;
}
}

}
--Last stage, length=2 butterfly--*/
is=1;
id=4;
while (is<n)
{
for (i0=is; i0<= n;i0++)
{
il=i0+1;
rl=*(px+i0);
* (px+i0)=rl+*(px+il);
* (px+il)=rl-*(px+il);
rl=*(py+i0);
*(py+i0)=rl+*(py+il);
*(pytil)=rl-*(py+il);
1i0=1i0+id;

is=2*id-1;
id=4*id;

j=1;
nl=n-1;
for (i=1; i<=nl; i++)

if (i<j)

Xt=*(px+j);
*(px+])=*(px+i);
* (px+i)=xt;
xt=*(py+j);
*(py+J)=*(py+i);
* (py+i)=xt;

}

k=n/2;

while (k<j)

{

j=j-k;
k=k/2;
}
j=i+k;

return(n);
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A.2. Romberg integration double c,W,temp;
int i,3;
void romberg(float (*r)[50],float a,

. c=(double) (m*n)*D-1.0;
float b,int M)

for (j=0; j<=n; j++)

{ {
int n,m,1i; u[j]=1.0;
int max; if (c<(double)(m*3j))
float h,s; urj] = 0.0;
—h_a: }
h=b-a; for (i=1; i<=m; i++)
r[01[0]=(£(a)+E(b))*h/2.0; (

for (n=1; n<=M; n++) W=(double)i/ (double) (i+n);

{ _ suif_ tmpO=u;
h=h/2.0; u[0]=u[0]*W;
§=0.0; if (c<(double)(n*i))
max=int_pow(2,n-1); u[0] = 0.0;
for (i=1; i<=max; i++) for (j=1; j<=n; j++)
s=s+f(a+(float) (2.0*i-1)*h);
r(n][0]=r[n-1][0]/2.0+h*s;

j1=Wwru[j]+u[-11+1;
for (m=1; m<=n; m++) ufJj]=wru[jl+u[J-1]+1;

temp=(double) fabs (n*i-m*j);

{ if (c<t
r[n][m]=r(n][m-1] St
+(float) (1.0/ (int_pow(4,m)-1)) } !
*(r(n][m-1]-r(n-1][m-1]); }
} } return 1.0-u[n];
} }
A.3. Chebyshev approximation A.5. Cubic spline interpolation
#define MAX1 100 void csi (int n,float x[100],
#define PI 3.14159265358979323846 float y[100],float z[100])
{
void cheb (float c[MAX1],int n, float h[100],b[100]
float xa,float xb) float u[100],v[100];
{ int i;
int k,3j;
float xm,xp,sm; for (i=0; i<=n-1; i=i+1)
float f[MAX1]; {
h[i]=x[i+1]-x[i];
xp=(xbtxa)/2; b[i]=(6/h[i])*(y[i+1]-y[i]);
xm=(xb-xa)/2; }
for (k=1; k<=n; k++) u[l]=2*(h[0]+h[1]);
f[k]=func (xptxm*cos (PI* (k-0.5)/n)); v[1]=b[1]-b[0];
for (J=0; j<=n-1; Jj++) for (i=2; i<=n-1; i=i+1)
{
sm=0.0; u[i]=2*(h[i]+h[i-1])
for (k=1; k<=n; k++) ~h[i-1]*h[i-1]/u[i-1];
sm=sm+f[k]*cos (PI*j*(k-0.5)/n); v[i]=b[i]-b[i-1]
c[31=(2.0/n)*sm; —h[i-1]*v[i-1]/u[i-1];
}
return; z[n]=0;
} i=n-1;
while (i>=1)
{
z[i]=(v[i]-h[i]*z[i+1])
/ufi];
A.4. Smirnov integration s i=i-1;
z[0]1=0;
double smirnov (int m,int n, }

double D,double *u)
{



A.6. Berkeley packet filter

*—
*
*
*
*
*

*/

Copyright (c¢) 1990, 1991, 1992,

1993, 1994, 1995, 1996

The Regents of the University

of California.

All rights reserved.

/*The instruction encondings.*/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

BPF_LD 0x00
BPF_LDX 0x01
BPF_ST 0x02
BPF_STX 0x03
BPF_ALU 0x04
BPF_JMP 0x05
BPF_RET 0x06
BPF_MISC 0x07
BPF_W 0x00
BPF_H 0x08
BPF_B 0x10
BPF_IMM 0x00
BPF_ABS 0x20
BPF_IND 0x40
BPF_MEM 0x60
BPF_LEN 0x80
BPF_MSH 0xa0
BPF_ADD 0x00
BPF_SUB 0x10
BPF_MUL 0x20
BPF_DIV 0x30
BPF_OR 0x40
BPF_AND 0x50
BPF_LSH 0x60
BPF_RSH 0x70
BPF_NEG 0x80
BPF_JA 0x00
BPF_JEQ 0x10
BPF_JGT 0x20
BPF_JGE 0x30
BPF_JSET 0x40
BPF_K 0x00
BPF_X 0x08
BPF_A 0x10
BPF_TAX 0x00
BPF_TXA 0x80

/* Number of scratch memory words

* (for
#define

BPF_LD|BPF_MEM and BPF_ST).*/
BPF_MEMWORDS 16

struct bpf_insn { u_short code;

u_char jt;
u_char jf;
int k; };

u_int bpf(pc,p,wirelen,buflen)
struct bpf_insn *pc;
u_char *p;
u_int wirelen,buflen;

u_int A,X;
int k,mem[BPF_MEMWORDS];
u_char returned=FALSE;

if (pc==0)
/*No filter means accept all.*/
return (u_int)-1;

A=0;

X=0;
--pC;
while (!returned) {
++pc;
switch (pc->code) {
case BPF_RET|BPF_K:
returned=TRUE;
return (u_int)pc->k;
break;
case BPF_RET|BPF_A:
returned=TRUE;
return (u_int)A;
break;
case BPF_LD|BPF_W|BPF_ABS:
k=pc->k;
if (k+sizeof(int32)>buflen)
returned=TRUE;
return 0;
}
A=EXTRACT_LONG(&p[k]);
break;
case BPF_LD|BPF_H|BPF_ABS:
k=pc->k;
if (k+sizeof(short)>buflen)
returned=TRUE;

return 0;
}
A=EXTRACT_SHORT (&p[k]);
break;
case BPF_LD|BPF_B|BPF_ABS:
k=pc->k;

if (k>=buflen) {
returned=TRUE;
return 0;
}
A=p[k];
break;
case BPF_LD|BPF_W|BPF_LEN:
=wirelen;
break;
case BPF_LDX
X=wirelen;

BPF_W|BPF_LEN:

break;
case BPF_LD|BPF_W|BPF_IND:
k=X+pc->k;

if (k+sizeof(int32)>buflen)
returned=TRUE;
return 0;

}
A=EXTRACT LONG(&p[k]);

break;
case BPF_LD|BPF_H|BPF_IND:
k=X+pc->k;

if (k+sizeof(short)>buflen)
returned=TRUE;

return 0;
}
A=EXTRACT_ SHORT(&p[k]);
break;
case BPF_LD|BPF_B|BPF_IND:
k=X+pc->k;

if (k>=buflen) {
returned=TRUE;
return 0;
}
A=p[k];
break;
case BPF_LDX|BPF_MSH|BPF_B:
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k=pc->k; case BPF_ALU|BPF_AND|BPF_X:

if (k>=buflen) { A&=X;
returned=TRUE; break;
return 0; case BPF_ALU|BPF_OR|BPF_X:
} Al=X;
X=(p[pc->k]&0xf)<<2; break;
break; case BPF_ALU|BPF_LSH|BPF_X:
case BPF_LD|BPF_IMM: A<<=X;
A=pc->k; break;
break; case BPF_ALU|BPF_RSH|BPF_X:
case BPF_LDX|BPF_IMM: A>>=X;
X=pc->k; break;
break; case BPF_ALU|BPF_ADD|BPF_K:
case BPF_LD|BPF_MEM: A+=pc->k;
=mem[pc->k]; break;
break; case BPF_ALU|BPF_SUB|BPF_K:
case BPF_LDX|BPF_MEM: A-=pc->k;
X=mem[pc->k]; break;
break; case BPF_ALU|BPF_MUL|BPF_K:
case BPF_ST: A*=pc->k;
mem[pc->k]=A; break;
break; case BPF_ALU|BPF_DIV|BPF_K:
case BPF_STX: A/=pc->k;
mem[pc->k]=X; break;
break; case BPF_ALU|BPF_AND|BPF_K:
case BPF_JMP |BPF_JA: A&=pc->k;
pct+=pc->k; break;
break; case BPF_ALU|BPF_OR|BPF_K:
case BPF_JMP|BPF_JGT |BPF_K: A|=pc->k;
pc+=(A>pc->k)?pc->jt:pc->jf; break;
break; case BPF_ALU|BPF_LSH|BPF_K:
case BPF_JMP|BPF_JGE|BPF_K: A<<=pc->k;
pc+=(A>=pc->k)?pc->jt:pc->jf; break;
break; case BPF_ALU|BPF_RSH|BPF_K:
case BPF_JMP|BPF_JEQ|BPF_K: A>>=pc->k;
pc+=(A==pc->k)?pc->jt:pc->jf; break;
break; case BPF_ALU|BPF_NEG:
case BPF_JMP|BPF_JSET|BPF_K: A=-A;
pct+=(A&pc->k)?pc->jt:pc->jf; break;
break; case BPF_MISC|BPF_TAX:
case BPF_JMP|BPF_JGT|BPF_X: X=A;
pc+=(A>X)?pc->jt:pc->jf; break;
break; case BPF_MISC|BPF_TXA:
case BPF_JMP|BPF_JGE|BPF_X: A=X;
pc+=(A>=X)?pc->jt:pc->jf; break;
break; default:
case BPF_JMP|BPF_JEQ|BPF_X: returned=TRUE;
pc+=(A==X)?pc->jt:pc->jf; abort();
break; break;
case BPF_JMP|BPF_JSET|BPF_X: }
pc+=(A&X)?pc->jt:pc->jf; }
break; return 0;
case BPF_ALU|BPF_ADD|BPF_X: }
A+=X;
break;
case BPF_ALU|BPF_SUB|BPF_X:
-=X;
break;
case BPF_ALU|BPF_MUL|BPF_X:
A*=X;
break;
case BPF_ALU|BPF_DIV|BPF_X:
if (X==0) {
returned=TRUE;
return 0;
}
A/=X;

break;



