
Automated Software Engineering� � ���� ��
c� Kluwer Academic Publishers� Boston� Manufactured in The Netherlands�

E�cient Implementations of Software

Architectures via Partial Evaluation

RENAUD MARLET� SCOTT THIBAULT AND CHARLES CONSEL

fmarlet�conselg�irisa�fr thibault�gmvhdl�com

Compose group
IRISA � INRIA �Universit�e de Rennes �
Campus universitaire de Beaulieu� ����	 Rennes cedex� FRANCE

Editor�

Abstract� The notion of 	exibility �that is� the ability to adapt to changing requirements or
execution contexts� is recognized as a key concern in structuring software� and many architectures
have been designed to that e
ect� However� the corresponding implementations often come with
performance and code size overheads� The source of ine�ciency can be identi�ed to be in the
loose integration of components� because 	exibility is often present not only at the design level
but also in the implementation�
To solve this 	exibility vs e�ciency dilemma� we advocate the use of partial evaluation� which

is an automated technique to produce e�cient� specialized instances of generic programs� As
supporting case studies� we consider several 	exible mechanisms commonly found in software
architectures selective broadcast� pattern matching� interpreters� software layers� and generic
libraries� Using Tempo� our specializer for C� we show how partial evaluation can safely optimize
implementations of those mechanisms� Because this optimization is automatic� it preserves the
original genericity and extensibility of the implementation�

Keywords� software architectures� partial evaluation� program specialization� genericity� exten�
sibility� adaptability� selective broadcast� pattern matching� interpreters� software layers

�� Introduction

Software architectures express how systems should be built from various compo�
nents and how those components should interact� It is widely accepted that� as
the size and complexity of software systems increase� the choice of software archi�
tectures becomes a major issue because of its impact on the cost of development�
validation and maintenance� Because this choice also a�ects the extensibility and
interoperability of systems� it can have large impacts on the time from conception
to product release� providing a competitive advantage or disadvantage�

���� The �exibility issue

Complex software systems are characterized by their changing nature� computa�
tions may be distributed over a network of heterogeneous machines and components�
where tasks can migrate at run time� connections between software components can
evolve in time� computations may be intensive or scattered in time� hardware plat�
forms o�er vastly di�erent functionalities� performance and resource constraints�

� R� MARLET� S� THIBAULT AND C� CONSEL

software environments provide applications with changing services� etc� This calls
for programs that are able to adapt to changing requirements and execution con�
texts�
The �exibility of an application �or application family� re�ects its power of adap�

tation with respect to variable needs� Three 	actors
 typically express such needs�
the software vendor sells various applications within a product line �or a single�
evolving product�� varying the set of available platforms �hardware� operating sys�
tems� etc�� and features� the user con�gures or parameterizes a given application
depending on speci�c needs� the environment �CPU� operating system� network�
etc�� imposes variable resource constraints to the application as it runs�
The degree of adaptation o�ered to each of those actors is ideally de�ned at spec�

i�cation time� Given these requirements� the choice of a software architecture then
determines the general framework of a design�time �exibility� The implementation
steps that follow take advantage of this �exibility and can further restrict it� The
later the adaptation choices are in the development stages� the more �exible the
system�

���� Flexible software architectures

When architecturing software� common instances of �exibility include extensibility�
portability� interoperability� re�usability� modularity� abstraction� genericity� pa�
rameterization and con�gurability� as well as safety� fault tolerance and quality of
service� Depending on the granularity used for reasoning� �exibility typically comes
in two �avors that usually coexist� it can be provided by the generality of individual
components or by the richness of the mechanisms for composing components�
Many approaches aimed at achieving software �exibility have been proposed and

put into practice� including pipes and �lters ��� layered systems ����� data abstrac�
tion and object�oriented organization� event�based communication ��� ���� software
buses ����� coordination languages ����� and domain�speci�c languages ���� ����
Using �exible software architectures reduces the correlation of components and

favors sharing� hence also reduces complexity� Flexibility is therefore a key feature
when developing software� it leads to better a cost� time and quality of development�
validation� maintenance and evolution�

���� The �exibility vs e�ciency dilemma

Flexibility is required at adaptation time� whereas e�ciency is only required at
program�execution time� The problem is that �exibility impairs e�ciency when it
is not only present at the design level but also in the implementation� in this case�
some computations are devoted to adaptation as opposed to what the application
is supposed to produce�
For example� in a generic component� some amount of execution time is spent

in following decision trees and indirections that correspond to parameterization
choices� Because many cases are considered� this is less e�cient than using a
speci�c component that only provides the required service for a given execution

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES �

context� Likewise� concerning communication mechanisms �what glues components
together�� some amount of execution time is spent in traversing software connectors
rather than spent in the components themselves�
Flexibility and e�ciency necessitate a compromise� Our strategy is to express

�exibility at the implementation level and to remove it systematically and auto�
matically by program transformation to improve performance�

���� This article

Our contributions are the following�

� We characterize the fundamental reasons why implementing the mechanisms of
�exible software architectures can lead to ine�ciency problems�

� We advocate the use of partial evaluation� a systematic and automatic opti�
mization technique� to build e�cient implementations of software architectures
without compromising �exibility�

� To support our stand� we consider �ve representative instances of mechanisms
used in software architectures� namely selective broadcast� pattern matching�
interpreters� software layers� and generic libraries� For each of them we show
how partial evaluation indeed improves e�ciency while retaining �exibility�

The rest of the article is organized as follows� Section � characterizes the general
sources of ine�ciency in the implementation of �exible software architectures� Sec�
tion introduces partial evaluation� Section � considers in turn several mechanisms
used in �exible software architectures and the application of partial evaluation� Sec�
tion � discusses the general applicability� predictability and automation of partial
evaluation� Section � compares it to other existing techniques� Section � concludes
and gives some research directions for further improvements�

�� Sources of ine�ciency when implementing software architectures

Flexibility and e�ciency depend on the way software components interact� �i� what
data they exchange� and �ii� how they communicate� After examining these issues
in turn� this section elaborates on the �exibility vs e�ciency dilemma�

���� Data integration

Software systems are made of components that exchange or share data� These
components might not use the same data representation �data structure� layout
in memory� unit of measure� etc��� Such a situation occurs often� for example
when an existing software component is being reused in a di�erent context� when
components are programmed using di�erent languages� or when components run
on di�erent systems or hardware platforms in a distributed environment�
Data communication between heterogeneous components requires conversions�

Two main approaches are being used� One is to systematically convert component�

� R� MARLET� S� THIBAULT AND C� CONSEL

speci�c data into a universal format that is used in all inter�component communi�
cations� As a consequence� each data communication necessitates two conversions�
The universal format may be provided by an intermediate data description lan�
guages such as ASN�� ��� or IDL ����� Pushing all conversions into the callee is
another solution� The called component examines a format tag included in the
received data to determine whether these data need to be converted� at most one
conversion is needed� However� the number of converters is not linear but quadratic
in the number of formats� Extensibility is reduced because adding a new data for�
mat requires writing many new converters�
Data integration is measured by the amount of computations devoted to pro�

ducing actual �observable� results compared to computations aimed at managing
data communications between components� A tighter data integration makes data
representation more uniform across components so that less conversions are needed�
Another instance of the data integration problem is the veri�cation of data well�

formedness� When a component does not trust another component� it must check
the validity of input data� Type checkers already guarantee some static constraints
at compile time� But when the constraints are too complex to be expressed in a
type system� or when the implementation language is dynamically typed� the com�
ponent must resort to explicit� dynamic checking� Besides typing� well�formedness
veri�cation includes protection against null pointer dereference and bu�er over�ow�
This can be enforced by the language itself �e�g�� systematic array bounds checking
in Java�� It is clear that verifying safety assertions at run time impairs e�ciency�
Given a con�guration that combines two components� a tighter data integration
removes assertion checking when it can be proved that communication will always
involve legal data� It is common practice though to turn on assertion�checking only
during development� It is turned o� in production� for programs with low safety
requirements� that have no error recovery policy�

���� Control integration

Besides unifying data formats and ensuring data well�formedness and integrity�
composing software components also involves strategies to make these components
communicate�
Control integration is measured by the amount of computations devoted to pro�

ducing actual �observable� results compared to the computations needed to invoke
services between components �or choosing a service inside a component��
In systems in which the interface of components consists of a collection of routines�

communication is based explicit invocation� i�e� procedure call� Explicit invocation
is fast but not very �exible� the exact name of the routines to call must be known
at compile time� Implicit invocation refers to communications where the called pro�
cedure can depend on run�time values� For example� in an object�oriented system�
invocation of virtual methods is textually explicit but actually involves an addi�
tional object�dispatch indirection� Similarly� broadcasting a message is an implicit
invocation of procedures in other components� Implicit invocation is slower than
explicit invocation because it introduces an additional dispatch layer� That is why�

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES �

e�g�� compilers for object�oriented languages try to turn virtual calls into explicit
calls� However� implicit mechanisms o�er more support for extensibility�
In some sense� generic components can also contain aspects of implicit invocation

at a �ner grain where parameters of the component are used to select various
behaviors� Although general and extensible� parameterization impairs e�ciency
because execution time is spent in testing options� as opposed to actually providing
the required service�
Control integration also has a signi�cant impact on code size� In fact� adaptability

calls for the anticipation of many contexts of usage� Given a speci�c context� only
a few cases are needed� the other cases can be viewed as dead code� If this dead
code cannot be eliminated� the code size of the whole system is unnecessarily large�
Because of limitations of memory or network bandwidth� the size issue is important
for embedded systems and mobile code�

���� Improving e�ciency while retaining �exibility

For greater e�ciency� the integration of data and control that is expressed in the ar�
chitecture should be made tighter in the implementation� the number of conversions
should be reduced� safety and security checks should be removed when unnecessary�
implicit control should be turned into explicit control� generic components should
be adapted to speci�c uses�
Also� �exibility might actually be used at di�erent stages of the assembly of a

software system� Therefore� gaining e�ciency in the implementation may occur at
di�erent times� con�guration time� compile time� link time� load time� and run time�
In practice� the later the adaptation� the more di�cult to implement it e�ciently�
A central idea in optimizing component integration is specialization� �Other

strategies are listed in Section ��� The e�ects of specialization range from customiz�
ing the connection between components to the complete merging of the components�
functionalities� Specialization is detailed in the next section�

�� Program specialization and partial evaluation

Program specialization is a program transformation that adapts programs with
respect to known information about their inputs� We �rst give a general overview
of specialization� Then� we focus on partial evaluation� a process that automates
specialization� and introduce Tempo� a partial evaluator for C�

���� Specialization in a nut shell

������ Principles� Let us consider a program p� taking some argument data d and
producing a result r� exec p�d� � r� If the inputs d may be split into d � �d�� d��
where d� is a known subset of the inputs �i�e�� it does not vary� and d� is yet
unknown� we may form a new program pd� � equivalent to p� where computations
depending on d� have been exploited� exec pd��d�� � exec p�d�� d�� � r� The

� R� MARLET� S� THIBAULT AND C� CONSEL

mini_printf(char fmt[], int val[])
{
int i = 0;
while (*fmt != ’\0’) {
if (*fmt != ’%’)
putchar(*fmt);

else
switch (*++fmt) {
case ’d’ : putint(val[i++]); break;
case ’%’ : putchar(’%’); break;
default : prterror(*fmt); return;

}
fmt++;

}
} /* Legend Known Unknown */ �a
 Original

mini_printf_fmt(int val[])
{
putchar(’<’);
putint(val[0]);
putchar(’,’);
putint(val[1]);
putchar(’>’);

} �b
 Specialized

Figure �
 Specialization of mini_printf() with respect to fmt � "<%d,%d>"

program pd� is called a specialization of p with respect to the invariant d�� Known
�resp� unknown� input is also called static �resp� dynamic��
More generally� specialization exploits any invariant present in the code� not only

input values but also embedded constants� The idea is to factor out computations
from the specialized program�

������ Example� Let us consider the simple example shown in Figure �� At the
top of the �gure is the de�nition of mini_printf()� a simpli�ed version of the C
printf() text formatting function� At the bottom of the �gure is a specialized
version of mini_printf() with respect to the format string fmt � "<%d,%d>"�
Note that all computations depending on fmt �i�e�� the interpretation of the format
string� have been removed�
Bold face font is used here �and in the rest of the paper� to highlight parts of

the original program that only rely on the known partial input �here� fmt� or on
embedded constants �here� the initial 0 value for variable i�� They disappear in
the specialized program�

������ Advantages� Program specialization may reduce both execution time and
code size� Indeed� running pd��d�� is usually faster than running p�d�� d�� because
computations involving d� are already performed� If building the specialized pro�
gram pd� comes at a certain price though �in particular when it is performed at

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES �

run time�� it is worth it only if pd��d�� is run enough times to amortize the cost
of building pd� � In addition� cases written to treat other values than d� can be
removed from pd� � they are dead code� In this case� program pd� is smaller�
On the other hand� specialization can also involve loop unrolling� which may

increase code size� For example� in Figure �b� the whole loop has been unrolled� if
the format string had been longer� many putchar() calls would have appeared in
the specialized program� The possible drawback of loop unrolling may be prevented
while retaining most of the specialization advantages using a technique known as
data specialization ���� ����
There already exists tools that provide some primitive support for a kind of

specialization� For example� some software and hardware particularities may be
expressed at con�guration time using tools like configure� Others particularities
can be handled at compilation time using macro facilities� in addition to simple com�
piler optimizations� A more thorough comparison with other existing techniques
can be found in section ��

���� Partial evaluation

Partial evaluation is a technique that automates the specialization process ���� ���
Partial evaluation is also systematic� as opposed to ad hoc specializations that are
restricted to speci�c cases� Using the same notations as in Section ��� a partial

evaluator is a tool that automatically produces the specialized program pd� � given
a program p and a known input subset d�� Therefore� it improves speed and� in
some circumstances� may also reduce code size�
Roughly speaking� standard partial evaluation can be thought of as a combination

of aggressive inter�procedural constant propagation �not only applied to scalars but
to all data types� including pointers� arrays and structures�� constant folding� and
loop unrolling� It may be followed by procedure inlining and some algebraic sim�
pli�cations� Those transformations are beyond the scope of optimizing compilers�
Most of the �exibility �whether genericity or extensibility� of the original code is

lost in this optimization process� In contrast with manual specialization� partial
evaluation is safe� But the key point is that the original code stays una�ected and
can be later modi�ed and re�specialized� Because partial automatically takes care
of e�ciency issues� it encourages programmers to write generic code� In addition�
optimizing code using partial evaluation is much less tedious than doing manual
specialization� and scales up to large programs� Also� because the program analyses
that are part of the partial evaluation process determine the portions of the code
that can be specialized� partial evaluation is predictable�
Long con�ned to functional or logic programming� partial evaluation has now

been put into practice for imperative languages� It is reaching a level of maturity
that makes it applicable to real�sized systems� In fact� not only are there now
partial evaluation systems for languages like C� but the program specialization
approach is the basis of the development of adaptable systems in a number of
major research projects and in di�erent areas such as networking ���� ���� graphics
����� and operating systems ��� ��� ����

� R� MARLET� S� THIBAULT AND C� CONSEL

���� Tempo� a partial evaluator for C programs

Our claim concerning the applicability of partial evaluation to software engineering
is not speci�c to a language or a partial evaluator� However� it is backed up by
experiments using a speci�c tool� In the following� we use Tempo� a partial evaluator
for C programs developed in our group� ���� ���� Tempo has been applied to sizable
and realistic programs such the Sun RPC ����� Tempo and its documentation are
publicly available�� It is being used by more than twenty people around the world�
including non�partial evaluation expert� It is also being used as a front end for
specializing Java ����

There exists another system for automatic C specialization named C�Mix ����
whose analyses are less accurate and which does not support run�time code gener�
ation �see ���� for comparison details��

Tempo is an o	�line specializer ����� partial evaluation is split into two phases�
First� a preprocessing phase performs an abstract propagation of all known informa�
tion throughout the code� This phase is known as the binding�time analysis �BTA��
It partitions the program into two computational stages �static and dynamic�� for
each program construct� the BTA determines whether it can be evaluated early
�i�e�� at specialization�time� or must be evaluated late� The output of this analysis
can be visualized as pretty�printed code with color information� in a form which
is very similar to the font decoration in Figure �a� The user can thus assess the
bene�ts of applying partial evaluation� Second� a processing phase performs actual
specialization �i�e�� code generation�� given some partial input values� An additional
postprocessing phase performs inlining and some algebraic simpli�cations�

Tempo can exploit values when they are known� whether at compile time or at
run time ����� Compile�time specialization is a source�to�source program transfor�
mation� whereas run�time specialization directly produces binary code� To achieve
this� the information gathered in the BTA is used to determine a grammar of all
possible specializations �for all possible known input�� Templates of code that
correspond to the building blocks of the specialized code are thus identi�ed and
precompiled� Then� run�time specialization merely amounts to assembling precom�
piled templates and �lling holes in those templates with computed values� Binary
template assembly provides fast code generation ����� Run�time code generation
is an important feature because it does not limit us to static con�gurations� i�e��
compile�time architectures�

The following section illustrates applications of Tempo to optimize various soft�
ware architecture mechanisms�

�� Case studies

In order to support our assessment� we consider� in turn� �ve mechanisms that are
common in software architectures� For each one� �i� we give a short description of
the mechanism� taking as an example an architecture and a real system that actually
relies on it� �ii� we point out e�ciency problems inherent in the mechanism� and

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES �

�iii� we show how partial evaluation can automatically improve performance and�
in some cases� reduce code size�
Specialized code listed in this section has been automatically produced by Tempo�

apart from the following manual simpli�cations aimed at clarity� some minor trans�
formations like copy propagation �ordinarily performed by optimizing compilers�
were done by hand on the specialized source� some irrelevant parts of the code have
been omitted� as well as some type and variable de�nitions� In addition� code has
been manually pretty�printed to �t in the �gures and some comments have been
added�
All partial evaluation examples displayed in this section are compile�time source�

to�source program transformations� as opposed to run�time code generation� This is
for obvious readability reasons� when specialization values are known at run time�
and even vary during program execution� Tempo can generate binary specialized
routines on the �y that could only be displayed in assembly format�

���� Optimizing selective broadcast

Our �rst case study deals with selective broadcast� also called reactive integra�

tion ����� In such an architecture� components are independent agents that interact
with each other by sending broadcast events� Components in the system that are
interested in particular messages register callback procedures to be called each time
such messages are broadcast� This mechanism is also called implicit invocation

because broadcasting events 	implicitly
 invokes procedures in other components�
Blackboard techniques may also be based on similar indirect access mechanisms ����

������ The mechanism� The Field programming environment is a representative
example of such an architecture ����� It is an open system that integrates many
programming tools� Let us consider a system containing an editor� a debugger
and control �ow graph viewer� The example in Figure �b models�the actual
implementation of Field is more complex�a typical communication between those
tools� The editor and the �ow graph viewer register their interest in the DEBUG_AT
event� which is emitted by the debugger when execution is stepped or when a
breakpoint is reached� When the DEBUG_AT event is received� the editor wants to
set the cursor on the line where the debugger stopped� and the �ow graph viewer
wants to highlight the node of the current function in the graph�
In order to properly separate concepts� events are identi�ed here using an integer�

and data associated to events is a structure pointer �manipulated as a 	dummy

character pointer�� This only models the bare broadcast mechanism �see Figure �a��
Section ��� considers the real selection and communication mechanism of Field that
relies on string messages and pattern matching for tool integration�

������ E�ciency problems� Such a broadcast mechanism su�ers from a perfor�
mance problem related to control integration� Since invocation is implicit� broad�
casting a message is clearly slower than explicitly calling the callback procedures�

�	 R� MARLET� S� THIBAULT AND C� CONSEL

register_for_event(int event, void (*func)(char*))
{
handler[nb_handlers].func = func; // Record callback function
handler[nb_handlers].event = event; // Record event id
nb_handlers++; // Adjust nb of handlers

}
broadcast(int event, char *arg)
{
for (i = 0; i < nb_handlers; i++) // For each registration
if (handler[i].event == event) // Look for registered event
(*handler[i].func)(arg); // Run callback accordingly

} 	a
 Mechanism

{
register_for_event(DEBUG_AT, editor_goto); // Set callbacks for
register_for_event(DEBUG_AT, cfg_highlight); // event DEBUG_AT
...
debug_info->func_line = line; // Group some arguments
debug_info->func_name = fname; // into a single structure
broadcast(DEBUG_AT, (char *)debug_info); // Emit event DEBUG_AT
broadcast(BUS_ERROR, (char *)NULL); // Emit event BUS_ERROR

} 	b
 Example of use

{
...
debug_info->func_line = line; // Group some arguments
debug_info->func_name = fname; // into a single struct
editor_goto((char*)debug_info); // Invoke editor_goto
cfg_highlight((char*)debug_info); // Invoke cfg_highlight

} 	c
 Specialization

Figure 	
 Registration and broadcast

Worse� the complexity of a broadcast is linear in the number of registered events
because the whole registration table must be scanned in order to �nd� among all
registrations� the callbacks that are registered for the given event� This could some�
how be optimized with an array or a hash�table for simple event identi�ers� but not
for a pattern�matching�based selection mechanism �see Section ����� which would
require a much more complex automaton encoding�

������ Application of partial evaluation� The static con�guration here consists
in event identi�er that appear in the code� Figure �c shows the optimization of
registration and broadcast using partial evaluation� All indirect� implicit invo�
cations of callback procedures have been turned into direct� explicit calls� Note
that broadcasting an event like BUS_ERROR� for which no component has regis�
tered any interest� is turned into 	no operation
� Whereas the complexity of a
broadcast in the original program is linear in the number of registered events �i�e��
nb_handlers�� the specialized program achieves broadcast in constant time� all
functions registered for the given event are known and hard�coded� at run time� it
is no longer necessary to look in the handler table�

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES ��

The applicability of this optimization requires that the registered and broad�
cast events be known at specialization time� The example in Figure �c illustrates
compile�time specialization but a similar specialization can be done at run time�
using a run�time specializer� User�aided specialization has already been consid�
ered for run�time compilation of event dispatch in extensible systems ��� but the
approach is less automatic and less systematic�

As a by�product of partial evaluation� if there is an application�dependent policy
such that all broadcast messages should be received by at least one component �i�e��
no uncaught event�� then inconsistencies between event registrations and broadcasts
can be detected at specialization time� Assuming a warning function is called in the
body of broadcast() whenever there is no registered receiver for a message to
broadcast� then partial evaluation replaces all occurrences of such void broadcasts
by calls to the warning function� Then� testing the above policy only amounts to
looking for calls to the warning function in the specialized program� which can easily
be checked� In particular� this process allows the detection of typos in registrations
and broadcasts�

Another instance of implicit invocation �another name for selective broadcast� is
virtual method invocation in object�oriented languages� The elimination of virtual
calls �i�e�� transformation into an explicit call�� as obtained after class hierarchy
analysis ����� can also be achieved using partial evaluation �����

���� Optimizing pattern matching

Selection of callback procedures to execute may involve pattern matching rather
than just comparison of event identi�ers� In this case� when a message is broadcast�
the system invokes all the procedures that are associated with registered patterns
matching the message� In an environment like Field ����� a pattern not only iden�
ti�es the type of the message but also the parts of the message that correspond to
the arguments of the callback routine� and the format of those arguments� Pattern
matching thus serves two purposes� selection of a message �string comparison� and�
if there is a match� invocation of the callback routine with arguments decoded into
the proper internal format�

������ The mechanism� In Field� patterns and messages exchanged by tools
are all strings� The format of patterns is very similar to the Unix scanf facil�
ity� Basically� escape sequences for argument matching and decoding consist of
a percent sign� an integer specifying the position of the argument in the callback
routine and a type character� �d� for an integer� �s� for a string� etc� For ex�
ample� after registering the pattern "DEBUG AT %2s line %1d" with callback
procedure handle_debug_at� broadcasting the message "DEBUG AT ./tree.c
line 24" eventually invokes the function with the call handle_debug_at(24,
"./tree.c")�
Because the original pattern matching code of Field �implemented at Brown Uni�

versity� is more than a thousand lines long� what we show in Figure a is only

�� R� MARLET� S� THIBAULT AND C� CONSEL

PMATmake_pattern(str, ct, defaults) { ... } // Make pattern descriptor

process_message(msg, pattern, handler) // Call handler if pattern
{ // matched text
n = PMATmatch(msg, pattern, args); // Match msg against pattern
if (n >= 0) // n �-1 means failure
if (pattern->retargs == 2) // If two arguments were read
(*handler)(args[0], args[1]); // Callback invocation

}
PMATmatch(txt, pp, args)
{
if (pp->prefix_len != 0) // Direct cmp for const pre�x
if (strncmp(txt,pp->pattern,pp->prefix_len) != 0) return -1;

rslt = TRUE; // Reset matching success 	ag
txt += pp->prefix_len; // Skip constant pre�x
for (p = pp->pattern + pp->prefix_len; *p != 0; ++p) { // Scan pattern
if (*p != ’%’) // Match non�escape character
if (*txt++ != *p) rslt = FALSE; // Fail if mismatch

else { // Else scan argument
++p; // Move text pointer
if (*p == ’A’) { // Case read some argument
i = (*++p) - 1; // Index of read argument
ap = (args == NULL) ? NULL : &args[i]; // Address of read argument
if (!match_arg(&txt, &pp->arg[i], ap)) // Scan text to read argument
rslt = FALSE; } // Remember matching failure

else if (...) ... // Other cases� e
g
� %%
if (!rslt) break; } // Stop on failure

} // Return failure or
return (!rslt) ? -1 : pp->retargs; // number of read arguments

}
match_arg(sp, pa, argp) // Read some argument
{
s = *sp; // Point to text to read
if (pa->type == PMAT_TYPE_INT) { // Read integer
mode = 0; // Reset success 	ag
v = 0; // Reset computed integer
while (TRUE) { // Scan input string
if (!isdigit(*s)) break; // Look for digits
v = v*base + *s++ - ’0’; // Compute integer
mode = 1; } // Set success 	ag

if (mode == 0) return FALSE; // Fail unless success 	ag set
}
else if (pa->type == PMAT_TYPE_STRING) { // Read string
bufp = buf; // Reset string bu
er pointer
len = 0; // Reset string length
while (*s != 0 && !isspace(*s)) { // Scan input string
if (len++ < MAX_ARG_SIZE) *bufp++ = *s; // Check bu
er over	ow
++s; } // and copy char to bu
er

*bufp = 0; // Mark end of string
v = (argp != NULL) ? strdup(buf) : 0; // Make fresh string copy

}
else if (...) ... // Other type cases
if (argp != NULL) *argp = v; // Store read value
return TRUE; // Succeed

} �a
 Mechanism

Figure �
 Pattern matcher

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES ��

{
p = PMATmake_pattern("DEBUG AT %1s %2d", 2, NULL);
process_message(msg, p, my_callback);

} �b
 Example of use

{ // Scan constant pre�x "DEBUG AT "
if (strncmp(msg, "DEBUG AT %A\001 %A\002", 9)) {
n = -1;
goto end;

}
rslt = TRUE;
msg += 9;
bufp = buf; // Scan string �i
e
� %s�
len = 0;
while (*msg != 0 && !isspace(*msg)) {
if (len++ < MAX_ARG_SIZE) *bufp++ = *msg;
++msg;

}
*bufp = 0;
args[0] = strdup(buf);
if (*msg++ != ’ ’) rslt=FALSE; // Scan " "
if (!rslt) goto stop;
mode = 0; // Scan integer �i
e
� %d�
v = 0;
while (TRUE) {
if (!isdigit(*msg)) break;
v = v*10 + *msg++ - ’0’;
mode = 1;

}
if (mode == 0) rslt = FALSE;
else args[1] = v;

stop:
if (!rslt) n = -1; else n = 2; // Did the text match the pattern�

end:
if (n >= 0) // Callback invocation
my_callback(args[0], args[1]);

} �c
 Specialization

Figure �
 �continued� Specialized pattern matcher

a small representative excerpt� Figure b illustrates a typical call to the pattern
matcher� with the pattern argument "DEBUG AT %1s %2d"� To actually match
a string against a given pattern� a pattern descriptor �a C structure� must �rst
be computed� �This is not shown in Figure a for size reasons�� This descriptor�
that somehow 	precompiles
 part of the pattern� contains �among other things� the
desired types and positions for the arguments to decode� For e�ciency reasons� it
also stores the length of the longest pre�x of the pattern� that does not contain es�
cape sequences� In our case� the length is �� i�e� the size of "DEBUG AT "� It also
converts the scanf�like pattern into a type�free pattern with argument position
information� all arguments to read are marked as %A� regardless of types� and are
followed by a �char� number� e�g�� "DEBUG AT %A\001 %A\002"� Then� actual
pattern matching really starts� string comparison of the constant pre�x with the

�� R� MARLET� S� THIBAULT AND C� CONSEL

message� string conversions of arguments according to escape sequences� and literal
character comparison for embedded string constants� In the end� if the message
actually matched� the callback routine is invoked with the decoded arguments�

������ E�ciency problems� As stated by Reiss ���� p� ���� 	all Field messages
are passed as strings� While this introduces some ine�ciencies� it greatly simpli�es
pattern matching and message decoding and eliminates machine dependencies like
byte order and �oating point representation�
 As patterns and messages are more
complex� selection �i�e�� pattern matching� may become the bottleneck of broadcast�
The phenomenon can be ampli�ed if the complexity of the broadcast stays linear
�see Section ����� The e�ciency problem here is a mixture of data integration
�converting data back and forth to and from strings according to the given formats�
and control integration �broadcast selection using pattern matching��

������ Application of partial evaluation� The static parameter here is the event
pattern� We have extracted the pattern matching routines from the Field imple�
mentation and run our partial evaluator on various pattern samples� In order to
keep the original and specialized program small enough to �t in the paper� we only
present in Figure a a simpli�ed version of the code� For example� numbers are
only read in decimal notation� not in octal nor hexadecimal� Because of a current
limitation in Tempo regarding static loops that contain dynamic exits� the code
was also slightly patched as a workaround� Figure c shows the partial evaluation
�including inlining� of the call to the pattern matcher displayed in Figure b�
What must be noted is that the call to PMATmake_pattern() has been totally

evaluated away� all pattern information has been inter�procedurally propagated and
exploited so that the specialized program only performs the basic literal comparison
and conversion operations� In terms of integration overhead� the optimization can
be understood as follows� Because the type formats have been fused into control �ow
in the specialized pattern matcher� the data integration overhead now only reduces
to string conversions� Moreover� control integration overhead is now restricted to
raw string comparison� Partial evaluation of pattern matching has been well studied
in the context of functional and logical programming ��� �� ���� The performance
gain varies according the complexity of patterns� In our case� with pattern "DEBUG
AT %1s %2d" and text "DEBUG AT ./tree.c 24"� using gcc2.8.1 -O2 on
a ���MHz Sun UltraSPARC running Solaris ���� the specialized code is �� times
faster than the original code�

Pattern matching can be combined with the optimization of selective broadcast
�see Section ����� Assuming patterns and event strings are known at specializa�
tion time� all pattern matching results �success or failure� can be computed by
partial evaluation� Broadcasts then directly translate into explicit callback invoca�
tions� with no lookup� arguments to those callbacks are just calls to explicit string
conversions�
Besides� as mentioned above� there exists a manual optimization in the original

source code� the length of the constant pre�x of the pattern is saved so that only

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES ��

a simple string comparison with the �rst characters of the message is needed� then
the full pattern matching machinery is set in motion� This situation burdens the
code and the data structures� this is a drawback from a software engineering point
of view� Yet� the same optimization could have been obtained automatically from
the general pattern matching code via partial evaluation�

���� Tight integration of software layers

A layered system is a hierarchical organization of a program where each layer pro�
vides services to the layer above it and acts as a client to the layer below� The most
widely known examples of this kind of architecture are layered communication pro�
tocols �����

������ The mechanism� As an example of such an architecture� we have con�
sidered the Sun implementation of the remote procedure call �RPC� that makes a
remote procedure look like a local one� the client transparently calls a function that
is executed on a distant server� This protocol has become a de facto standard in
the design and implementation of distributed services �NFS� NIS� etc��� It manages
the encoding�decoding of local� machine�dependent data to a network�independent
format� standardized by the eXternal Data Representation protocol �XDR�� The
user speci�es the interface of the function using an Interface De�nition Language�
The IDL compiler rpcgen then generates automatically 	stub
 routines for the
client �encoding of arguments� emission� reception� and decoding of result� and the
server �reception and decoding of arguments� computation� encoding� and emission
of result�� using generic RPC functions�
The Sun implementation is divided into many micro�layers� each one being de�

voted to a small task� generic client procedure call� selection of transport protocol
�UDP� TCP� etc��� dispatches depending on scalars data size� choice between en�
coding and decoding �the same routine can perform both�� choice of generic coding
medium �memory� stream� etc��� reading�writing in input�output bu�ers with over�
�ow checks� Figure �a shows the bottom of RPC layers stack� As may be seen� the
implementation is highly parameterized� For example� a function like xdr_long()
can achieve both encoding and decoding� depending on a �ag provided in the ar�
guments�
A typical execution context for client encoding is displayed in Figure �b� The

function xdr_pair() encodes or decodes a pair of integers� It has been generated
automatically� given the de�nition of the remote procedure interface�

������ E�ciency problems� Layered systems have several good properties� their
design follows incremental abstraction steps� they favor extensibility and reuse� and
di�erent implementations of the same layer can be interchanged� However� as noted
Shaw and Garlan� 	considerations of performance may require closer coupling be�
tween logically high�level functions and their low�level implementation
 ���� p� ����
This is precisely what partial evaluation achieves automatically�

�� R� MARLET� S� THIBAULT AND C� CONSEL

xdr_pair(xdrs, objp) // �User generated from IDL spec�
{
if (!xdr_int(xdrs, &objp->int1)) // Encode or decode �st int
return (FALSE); // Stop on failure

if (!xdr_int(xdrs, &objp->int2)) // Encode or decode �nd int
return (FALSE); // Stop on failure

return (TRUE); // Succeed
}
xdr_int(xdrs, ip) // Read or write some integer
{
if (sizeof(int) == sizeof(long)) // Depending on integer size
return xdr_long(xdrs, (long *)ip); // choose coding routine

else
return xdr_short(xdrs, (short *)ip);

}
xdr_long(xdrs, lp) // Read or write a long integer
{
if (xdrs->x_op == XDR_ENCODE) // If encoding requested
return XDR_PUTLONG(xdrs, lp); // encode long int into I�O bu
er

if (xdrs->x_op == XDR_DECODE) // If decoding requested
return XDR_GETLONG(xdrs, lp); // decode long int into I�O bu
er

if (xdrs->x_op == XDR_FREE) // If free resource requested
return TRUE; // no op in this implementation

return FALSE; // Other cases are illegal
}
#define XDR_PUTLONG(xdrs,longp) \ // Use speci�ed coding medium
(*(xdrs)->x_ops->x_putlong)(xdrs,longp) // �memory� stream� ����

xdrmem_putlong(xdrs, lp) // Write long to memory
{
if ((xdrs->x_handy -= sizeof(long)) < 0) // Bu
er over	ow check
return FALSE;

*(xdrs->x_private) = htonl(*lp); // Bu
er copy
xdrs->x_private += sizeof(long); // Bu
er o
set increment
return TRUE; // Succeed

} // �htonl treat little�big endian�
#define htonl(x) x �a
 Mechanism

{
xargs = xdr_pair; // Specify argument�coding routine
xdrs->x_ops->x_putlong = xdrmem_putlong; // Choose �memory� coding
xdrs->x_op = XDR_ENCODE; // First� set up encoding
if (!(*xargs)(xdrs,argsp)) // Perform encoding
return cu->cu_error.re_status; // Abort on error �over	ow�

sendto(...); // Emit encoded call on network
} �b
 Example of use

{
*(xdrs->x_private) = argsp->int1; // Encode �st argument into bu
er
xdrs->x_private += 4; // Increment bu
er pointer
*(xdrs->x_private) = argsp->int2; // Encode �nd argument into bu
er
xdrs->x_private += 4; // Increment bu
er pointer
sendto(...); // Emit encoded call on network

} �c
 Specialization

Figure �
 Tight integration of micro�layers

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES ��

Concerning XDR� the integration of data is �xed by the protocol� Control in�
tegration seems relatively important� invocations are all explicit� apart from the
indirect call �through a function pointer� in XDR_PUTLONG()� However� invoca�
tions are numerous and exit statuses are propagated �and often checked� through
each micro�layer� Moreover� a dispatch function like xdr_long() does not actu�
ally produce any result� it merely acts as a switch� In addition� the output bu�er is
checked for over�ow for each single integer encoding� rather than once and for all�
All this introduces signi�cant overhead�

������ Application of partial evaluation� The information driving the dispatch
in xdr_long() and the number of integers written in the output bu�er can be
completely known from the execution context� Consequently� the exit status of the
inner�most layer can be known prior to run time �bu�er over�ow or not�� Propa�
gating this information to each layer makes the tests unnecessary�
Figure �c shows what partial evaluation achieves automatically on such an archi�

tecture ����� Note that the dispatches� the propagation of exit status� and the safety
checking for bu�er over�ow have all been removed� For specializing upper layers
�not shown here�� we had to slightly change the original code though� because of
a limitation in Tempo regarding the binding�time polyvariance of structures� The
specialized encoding routines can be up to �� times faster ����� including time for
network transport� remote procedure calls can be up to ��� faster�

���� Compiling language interpretation

Scripting languages ��� are intended to glue together a set of powerful compo�
nents �building blocks� written in traditional programming languages� Scripting
languages simplify connections between components and provide rapid application
development� Domain�speci�c languages ���� ��� exploit the same idea�

������ The mechanism� The Toolbus coordination architecture ��� uses this con�
cept� It consists of independent tools �seen as processes� communicating via mes�
sages� However� communication of messages is not performed by the tools� it is
carried out by a single script that coordinates all the processes� This script is writ�
ten in a language speci�c to the Toolbus architecture� called T script� Toolbus also
relies on the selective broadcast mechanism �see Section ���� and pattern matching
�see Section ����� messages are tree�like terms and patterns are terms with variables�
Figure �b shows a sample script written in T Script� As described in ���� a

T script consist of a composite process formed from builtin atomic processes� The
atomic processes are combined using choice �+�� sequence �.�� and iteration �*��
Atomic rules take terms as arguments� Terms are constructed from lower case
literal identi�ers and capitalized variable names� Each script is associated with
a tool and evaluates terms of the atomic processes snd-eval and snd-do by
calling an evaluation function for that tool� The sample script speci�es a simple
calculator� which receives expressions from other tools� evaluates them and then

�� R� MARLET� S� THIBAULT AND C� CONSEL

void interp(pe_t *pe, rterm_t *(*eval)(term_t*))
{
if (pe->op == CHOICE) {
if (try(pe->e1))
interp(pe->e1,eval);

else
interp(pe->e2,eval);

}
else if (pe->op == SEQUENCE) {
interp(pe->e1,eval);
interp(pe->e2,eval);

}
else if (pe->op == ITERATION) {
ok = try(pe->e1);
while (ok) {
interp(pe->e1,eval);
ok = try(pe->e1); }

interp(pe->e2,eval);
}
else if (pe->op == ATOMIC) {
if (pe->atomic->action == SND_MSG) {
SB_prod_term(pe->atomic->term);
SB_snd_msg(pe->atomic->term);

}
else if (pe->atomic->action == REC_MSG) {
SB_cons_term(pe->atomic->term, SB_rec_msg());

}
else if (pe->atomic->action == SND_EVAL) {
SB_prod_term(pe->atomic->term);
result = (*eval)(pe->atomic->term);

}
else if (pe->atomic->action == REC_VALUE) {
SB_cons_term(pe->atomic->term, result);

}
else if (pe->atomic->action == SND_DO) {
SB_prod_term(pe->atomic->term);
(*eval)(pe->atomic->term);

}
}

} �a
 The mechanism

Figure �
 T script interpreter

prints their result� The evaluation function for the calculator treats terms of the
form calc(X) by evaluating the expression speci�ed by X and terms of the form
prn(X) by printing X � The script consists of an iteration of the four atomic
processes rec-msg� snd-eval� rec-value� and snd-do� which respectively
wait for a message and match it to the term calc(Exp)� build the term run(Exp)
and pass it to the evaluation function for the tool� place the return value of the
previous snd-eval into the Val variable� and build the term prn(Val) and pass
it the evaluation function� Iteration continues as long as the rec-msg continues
to succeed� i�e� as long as there are messages that match the term calc(Exp)�

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES ��

(rec-msg(calc(Exp)) .
snd-eval(run(Exp)) .
rec-value(Val) .
snd-do(prn(Val))) * delta �b
 Example of use

void specialized_interp(pe)
{
ok = try(pe->e1);
while (ok)
{
petmp1 = pe->e1;
petmp2 = petmp1->e1;
SB_cons_term(petmp2->atomic->term, SB_rec_msg());

petmp3 = petmp1->e2->e1;
SB_prod_term(petmp3->atomic->term);
result = my_handler(petmp3->atomic->term);

petmp4 = petmp2->e2->e1;
SB_cons_term(petmp4->atomic->term, result);

petmp4 = petmp3->e2;
SB_prod_term(petmp4->atomic->term);
my_handler(petmp4->atomic->term);

ok = try(pe->e1);
}

} �c
 Specialization

Figure �
 �continued� Tscript compilation via partial evaluation

Figure �a shows the core of an interpreter for T scripts� The interpreter accepts
a script in abstract syntax form and traverses the tree executing each construct�
The process operators + and * use a 	try
 function in order to predetermine if a
process expression will fail� This is used� for example� to determine when to termi�
nate iteration� The atomic processes are implemented with some basic functions�
SB_cons_term() matches a message to a term and assigns values to variables
in the terms� SB_prod_term() expands variables in a term with their values�
SB_snd_msg() and SB_rec_msg() respectively send and receive a message�

������ E�ciency problems� Most often� scripts are interpreted and type�less�
These features provide more �exibility to the gluing language� However� they also
introduce performance overhead that becomes signi�cant when the building blocks
are small� As stated by Bergstra and Klint� 	there are many methods for imple�
menting the interpretation of T scripts� ranging from purely interpretative methods
to fully compilational methods that �rst transform the T script into a transition
table� The former are easier to implement� the latter are more e�cient� For ease
of experimentation we have opted for the former approach�
 ��� p� ����

�	 R� MARLET� S� THIBAULT AND C� CONSEL

The performance overhead of interpretation is due to a poor control integration�
For example� in mini_printf() �see Figure �a�� the format is interpreted� When
calling mini_printf()� some execution time is lost in scanning the format string�
before eventually invoking the printing routines putchar() and putint()� Sim�
ilarly� in the case of Toolbus� interpreting T scripts leads to a signi�cant latency in
communications�

������ Application of partial evaluation� The T script interpreter has a similar
structure to that of mini_printf() �see Figure �a�� As for mini_printf()�
partial evaluation successfully eliminates the interpretation of T scripts� producing
a program similar to what one would write by hand to implement the script func�
tionality� Given a C�structure representation of the script shown in Figure �b �pe
argument� and the evaluation function my_handler �eval argument�� specializa�
tion yields a program with one while loop resulting from the * iteration construct�
its body consists of the implementation of the four atomic processes used in the
script �see Figure �c�� Basically� the script has been compiled by partial evaluation�
For clarity� the de�nition of functions SB_xxx were not specialized� However� since
the SB_cons_term() and SB_prod_term() functions consist of basic pattern
matching� partial evaluation could be further applied to them in a similar manner
as in Section ����

The application of partial evaluation to interpreters has been extensively stud�
ied ���� In fact� constructing compilers from interpreters in one of the standard
use of partial evaluation ����� Similarly� a run�time specializer yields a JIT �just�
in�time compiler� for the price of an interpreter� It is thus not surprising that
partial evaluation is advocated as a general tool to help building domain�speci�c
languages �DSLs� �����

Typically cited performance gains range from �� to ���� depending on the static
semantics of the language being interpreted ����� Our own experience of using
Tempo for specializing interpreters gives similar �gures� For example� an inter�
preter for PLAN�P �an active network language� shows execution�time speedups
of ��� for compile�time specialization� and �� for run�time specialization ����� On
a learning bridge case study� the latency of the run�time specialized PLAN�P pro�
gram is similar the C hand�written one� and the throughput is only ��� slower�
This o�ers safety and programmability of application protocols for a very little per�
formance overhead� Another experiment involved GAL� a domain�speci�c language
for specifying video card drivers ���� While keeping the bene�ts of a high�level
description �in particular� productivity and maintainability� as the speci�cation is
�� times smaller�� the drivers generated by Tempo have the same performance as
hand�coded ones�

��
� E�cient instances of generic libraries

Generic libraries like libg��� NIHCL� COOL� or the Booch C�� Components ���
have had a large success in achieving reuse� However� for performance reasons�

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES ��

Real _in_prod(VEC *a, VEC *b, u_int i0) // Safe encapsulation
{
if (a == (VEC *)NULL || b == (VEC *)NULL) // Well�formedness veri�cation
error(E_NULL, "_in_prod");

limit = min(a->dim, b->dim);
if (i0 > limit) // Service validity checking
error(E_BOUNDS, "_in_prod");

return __ip__(a->ve+i0, b->ve+i0, (int)(limit-i0));
}
Real __ip__(Real *dp1, Real *dp2, int len) // Faster unsafe implementation
{
sum = 0;
for (i = 0; i < len; i++)
sum += dp1[i] * dp2[i];

return sum;
} a
 The mechanism

{
norm = v_get(3); // Create two vectors of size �
light = v_get(3);
...
norm_dot_light = _in_prod(norm, light, 0);

} b
 Example of use

{
norm = ...
light = ...
...
norm_dot_light = norm->ve[0] * light->ve[0] +

norm->ve[1] * light->ve[1] +
norm->ve[2] * light->ve[2];

} c
 Specialization

Figure
 Optimization of a call to a math library function

they implement a large number of hand�written speci�c components that represent
a unique combination of features �e�g� concurrency� data structures� memory al�
location algorithms�� As a consequence� the library implementation itself achieves
little reuse� It has been argued that this way of building data structure component
libraries is inherently unscalable�

Another approach is to provide only primitive building blocks and have a gener�
ator combine these blocks to yield complex custom components ���� However� the
generator is not general purpose but speci�c to a given architecture� Moreover� the
generated code may still contain aspects of the software architecture in the spec�
i�cation� Furthermore� they only address compile�time code generation� In some
cases� computer algebras such as Maple and Mathematica may also automatically
generate parts of libraries from given mathematical models �yielding Fortran or C
code�� Still� this is very restricted and speci�c to a given model and computer
algebra system�

�� R� MARLET� S� THIBAULT AND C� CONSEL

��
��� The mechanism� We have taken as an example the Meschach Library ����
developed at the Australian National University� which provides a wide range of
matrix computation facilities� It is very general in its design and implementation�
For example� many functionalities in Meschach are implemented using two routines�
The �rst one provides a safe� clean interface� it controls the validity of arguments
and performs bounds checking� The second one does the actual computation on
raw data� Such an example is shown in Figure �a� the function _in_prod()
provides a safe encapsulation to the unsafe function __ip__() which computes
an inner product� Figure �b gives an example of how the library is used� two
three�dimension vectors are allocated and used for an inner�product operation�

��
��� E�ciency problems� It is clear that the software protection provided by
the _in_prod() interface function is achieved at the expense of performance loss�
Moreover� because the function may apply to vectors of any size� the inner�product
computation involves loop management overhead� In terms of control integration�
the communication between the caller and the library function seems explicit� How�
ever� only the invocation of __ip__()� that performs the actual computation� is
signi�cant� Communication must thus be considered as implicit� Another interpre�
tation is to see this as the well�formedness aspect of the data integration problem�
In any case� the components need tighter integration�

��
��� Application of partial evaluation� As may be seen from Figures �b and �c�
partial evaluation uses available information �i�e�� the size of the vectors� to elimi�
nate all veri�cations concerning the validity of the arguments� the safety interface
layer is compiled away� That is analogous to the elimination of bu�er over�ow
checking in the RPC case �see Section ����� In addition� the raw computation
itself is slightly improved using loop unrolling� When an application heavily relies
on a generic library� such optimizations become crucial� A study of compile�time
and run�time specialization of numeric functions reports performance gains up to
a factor of ��� including speedups of � on the Fast Fourier Transform �����

�� Discussion

In this section� we analyse the case studies presented in Section � and characterize
the scope and the achievements of partial evaluation�

Case studies analysis� All the case studies in Section � have two aspects in com�
mon� First� some states are encoded in data rather than in the control �ow of the
program� callback registration array� event pattern� encode�decode �ag and bu�er
size� T script text� vector size� Second� some of these data are constant for a given
architecture con�guration� The e�ect of program specialization is to eliminate com�
putations depending on these con�guration data� thus also pruning and reducing
control�

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES ��

Generality� Having con�gurations encoded in data is a general and common tech�
nique� This generality is what makes partial evaluation systematic� as opposed to
optimizations that rely on de�nite software architectures or application domains�
A new technology does not have to be developed when a new software architecture
needs to be treated� only implementing the architecture and studying its specializa�
tion is required� However� architecture� or domain�speci�c optimizations that are
richer than specializing a generic program are beyond the scope of partial evalua�
tion�

Besides� because partial evaluation can also be performed at run time� depending
on run�time values� �exibility is not limited to source�code structuring� the archi�
tectural con�guration that decides the interaction between components may evolve
dynamically� as the program runs�

Predictability� Although we may expect partial evaluation to be successful each
time a con�guration state is encoded in some data� we must check that this state
depends only on available constants� For this� the binding�time analysis phase
prior to code transformation enables the user to visualize the code regions to be
eliminated by specialization �cf� Section ���

However� it is generally not possible to determine the actual performance im�
provement because it is as complex as estimating the execution time of general
programs� Moreover� the speedup can vary depending on the value of the known
input� Preliminary work by Andersen and Gomard suggests that traditional spe�
cialization provides an improvement that is linear in the structure of the known
input ���� �Other program transformations like lazy rewriting and common subex�
pression elimination can theoretically lead to supra�linear improvements�� In prac�
tice� experience shows that coupling pro�ling to the visualization of code regions
to be specialized provides good estimates of the performance improvement�

Degree of automation� One key advantage of partial evaluation is that it is au�
tomatic� More precisely� the program specialization process� given some known
input� is automatic� In particular� when the con�guration data is not a parameter
but hard�coded into the text of the program �e�g�� registration and broadcast state�
ments�� blindly running a partial evaluator on the whole application automatically
yields an optimized implementation�

However� there are several practical limitations to full automation� programs
generally have external con�guration parameters� the specializer does not o�er any
automatic speedup prediction� uncontrolled loop unrolling may arbitrarily increase
the code size �cf� Section ����� existing partial evaluator prototypes cannot rea�
sonably specialize more than a few thousand lines of code� It must also be kept in
mind that� altough partial evaluation should typically be used in the latest stages of
development �after prototyping and debugging�� very large code analyses and spe�
cializations can take several hours� Even if partial evaluators become more e�cient�
blindly specializing a whole application is unpractical�

�� R� MARLET� S� THIBAULT AND C� CONSEL

Thus� in practice� using partial evaluation is not a fully automatic process but
requires some user interaction� The user has to identify con�guration data �using his
own expertise� some pro�ling data� or program analyses�� split the program source
to focus on relevant parts �e�g�� identify the pattern matcher�� and instruct the
partial evaluator� Examining code regions to be specialized provides a feedback to
re�ne the identi�cation and impact of con�guration data� Then� given con�guration
values� specialized code has to be re�plugged into the original application and used
appropriately�

Ongoing work in our group aims at simplifying the user�s interaction with the
specialization process� that is� o�ering high�level means to express specialization
intentions ����� without altering the original source code� the user can specify what
to specialize� how to specialize it and when to use specialized code� Then� a compiler
processes these declarations� and the original source code is automatically instru�
mented so that it uses specialized code when appropriate� The prototype of a Java
specialization classes compiler has been implemented and is publicly available��

Our experience is that existing code �not written by us� sometimes requires mi�
nor rewriting before Tempo can specialize it successfully� Indeed� we had to slightly
change the original code in the two cases studies relying on existing code �Field pat�
tern matching and Sun RPC�� These 	binding�time improvements
 ��� are needed
when static and dynamic computations are too much intertwined and end up mak�
ing all computations dynamic� Obtaining good binding times when writing code
explicitly with specialization in mind is easier�

�� Related work

There are several other techniques for deriving e�cient implementation of software
architectures� preserving or not a form of �exibility� These techniques can be man�
ual or automatic� speci�c or systematic� implementation�time or code�generation�
time�

Language�level mechanisms� Some optimizing compilers implement a simple form
of constant propagation and constant folding� However� propagation is often intra�
procedural� and limited to scalar values� The range of optimizations provided by
partial evaluation goes much beyond that� Indeed� none of the above case studies
could have been treated using any existing compiler� A partial evaluator and an
optimizing compiler are somehow complementary�

The oldest and roughest approach to tighten the integration of components to
improve performance consists in hand�optimizing the implementation code� using
any a priori knowledge about the execution context� Because it is tedious and error�
prone� manual specialization is generally local� i�e� restricted to a small 	window

of code� it does not scale up to large systems� In addition� manual optimization
tends to duplicate code and freeze choices early in the development process� It thus
con�icts with maintenance and extensibility� Yet� it is still widely used to optimize
critical paths when performance is a major concern �e�g�� in Chorus IPCs ������

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES ��

Another common practice is to rely on a two�level language� macros �as is C
or Scheme�� templates �as in C���� etc� The idea is to program code expansion�
Although automatic� this approach is not systematic� each new optimization �i�e��
code expansion� must be explictly programmed� However� �nely tuning code ex�
pansion can lead to a fast �nal implementation ��� ��� ���� One major limitation to
this approach is that the optimization usually can only be local� not contextual� two
separate rewritings cannot usually cooperate� The reason is that the rewriting lan�
guage often does not have states �or states more complex than scalars� nor scoping
mechanisms� For example� in the selective broadcast case� macros and templates
are useless for optimizing registration and broadcast� Besides� there are other�
practical drawbacks� macros and templates are usually more complex to develop
and maintain that standard programs� they require the user to explicitly stage the
computations� Moreover� unless such systems have reached enough maturity� the
high�level part of the two�level language is often untyped or cannot be type�checked
and compiled separately� The user can only examine expanded code� which makes
debugging more di�cult� especially when expansion occurs at run�time�

Speci�cation�level mechanisms� One way to overcome these limitations is to auto�
matically generate non��exible implementation from a �exible design speci�cation�

Common examples are generators of code skeletons� stubs� etc� For example�
rpcgen �the IDL compiler for the Sun RPC� translates the de�nition of a procedure
interface into actual code� However� as discussed in Section ���� there are still
optimization opportunities captured by partial evaluation which are left unexploited
by the IDL compiler� These opportunities are located inside the libraries used by
all generated code� where knowledge about the speci�c execution context is not
exploited� Smarter compilers exist ���� but are very speci�c to the domain or the
application�

In Section ���� a domain�speci�c language was de�ned using an interpreter� Lan�
guages can also be de�ned using a speci�c semantics formalism� An implementation
is then derived from the semantics de�nition� Such a technology is developed in the
SDRR project ���� It is based on higher�order functional de�nitions and incorpo�
rates a form of specialization� Still� the authors recognize that there is much more
that can be done to further improve the performance of the generated Ada code�

Experiments are missing to compare partial evaluation with more general code
synthesis techniques� Our intuition is that partial evaluation is mostly comple�
mentary to these techniques� In particular� systems that relies on axiomatized
libraries ���� do not cover specialization of library routines� Moreover� since speci��
cation formalisms� by essence� are not meant to express operational behaviors� it is
likely that the generated code contains optimization opportunities� Concerning� in
model�integrated system development ���� and aspect�oriented programming �����
the customization of components is not general but domain�speci�c� Besides� these
strategies do not primarily focus on performance but on code structuring�

�� R� MARLET� S� THIBAULT AND C� CONSEL

Run�time �exibility� Run�time �exibility adds other tradeo�s� regardless of the
approach� being more platform independant favors porting and extensibility but
compromises e�ciency� The fact that generated code is in this case binary rather
than textual makes debugging a delicate issue� This issue not only a�ects the user
but also the developer and the maintainer of the related tools�
Dedicated run�time specializers have the advantage and drawback of being a

domain�speci�c artefact� they produce e�cient code but they are not easily exten�
sible ����� Such specializers are hard to develop� maintain� extend and port�
More general mechanisms have been proposed� consisting in run�time two�level

�or multi�level� languages� Besides a delicate debugging process� they have the
same advantages and drawbacks listed above concerning compile�time multi�level
languages� Some systems include type and coherence checking of the di�erent lan�
guage levels ��� ���� others just trust the user�s annotations ����� Besides Tempo�
there exists other general run�time specializers which may or not rely on user an�
notations �� ���� However� there were not used speci�cally on various software
architectures�

�� Conclusion

The literature on software architectures presents implementations which are a com�
promise of �exibility and e�ciency� The reason is that genericity and extensibility
introduce overhead when they are not only present at the design level but also in
the implementation�
We characterize the fundamental ine�ciency problems in �exible architecture

implementations as being related to the loose integration of data and control in
software components� We advocate the use of partial evaluation� a systematic and
automatic program transformation that can turn �exible implementations into e��
cient ones while retaining �exibility at the structuring level� This claim is validated
by �ve case studies� The discussion on the general applicability of partial evaluation
argues that it is a major tool for achieving program adaptation �����

Future work

Partial evaluation is well�suited for control integration� It also addresses the safety
and security aspects of data integration� However� it does little concerning the
heterogeneity problem of data integration �cf� Section �����
A more powerful program specialization technique� known as deforestation �����

can be used to treat certain combinations of a sequence of data conversions� How�
ever� to our knowledge� it has not yet been applied to imperative programming�
except in the simpler case of �lter fusion ����� Semi�automatic approaches to copy
elimination between software layers have been considered ���� but not yet put into
practice
Because specialization needs actual values� there is also a limit to the type of

control and software protection overhead that partial evaluation can eliminate� In
particular� traditional partial evaluation cannot exploit properties about values� such

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES ��

as interval ranges� Several extensions to partial evaluation exploiting properties
have been proposed� parameterized partial evaluation ���� and generalized partial

computation ���� However� they have not yet been put into practice on realistic
applications�
It is clear that using a partial evaluator today still requires some expertise� Yet�

we cannot expect all programmers to be or to become experts in specialization�
Thus� our long�term goal is to hide specialization as much as possible� In particular�
given implementations of �exible architectures �including design patterns ���� and a
careful analysis of the application of partial evaluation� we want to provide the user
with a programming environment where those prede�ned software architectures
have guaranteed optimizations�

Acknowledgments

The research presented here was partly supported by CNET�France Telecom grant
����B����� We would like to thank Brown University and the Australian National
University �Canberra�� that have given us access respectively to the sources of
Field and Meschach� We would like to thank as well the anonymous referees and
the members of the Compose group for their helpful and insightful comments�

Notes

�� Compose group home page http://www.irisa.fr/compose

�� Tempo� a specializer for C http://www.irisa.fr/compose/tempo

�� JSCC� a Java specialization classes compiler http://www.irisa.fr/compose/jscc

References

�� L�O� Andersen� Program Analysis and Specialization for the C Programming Language�
PhD thesis� Computer Science Department� University of Copenhagen� May ����� DIKU
Technical Report ������

�� L�O� Andersen and C�K� Gomard� Speedup analysis in partial evaluation preliminary re�
sults� In Partial Evaluation and Semantics�Based Program Manipulation� pages ���� San
Francisco� CA� USA� June ����� Yale University� New Haven� CT� USA� Technical Report
YALEU�DCS�RR�����

�� Maurice J� Bach� The Design of the UNIX Operating System� chapter �� pages ��������
Software Series� Prentice Hall� �����

�� D� Batory and B� Geraci� Composition validation and subjectivity in GenVoca generators�
IEEE Transactions on Software Engineering� ����������� February �����

�� Don Batory� Vivek Singhal� Marty Sirkin� and Je
 Thomas� Scalable Software Libraries� In
Proceedings of the ACM SIGSOFT ��� Symposium on the Foundations of Software Engi�
neering� pages �������� December �����

�� J� A� Bergstra and P� Klint� The ToolBus coordination architecture� In Ciancarini and
Hankin ����� pages ������

�� B�N� Bershad� S� Savage� P� Pardyak� E� G�un Sirer� M�E� Fiuczynski� D� Becker� C� Chambers�
and S� Eggers� Extensibility� safety and performance in the SPIN operating system� In
SOSP�� ����� pages ��������

�� Grady Booch� The design of the C�� booch components� ACM SIGPLAN Notices� ��������
��� October ����� OOPSLA ECOOP ��� Proceedings� N� Meyrowitz �editor��

�� R� MARLET� S� THIBAULT AND C� CONSEL

�� C� Chambers� S� Eggers� J� Auslander� M� Philipose� M� Mok� and P� Pardyak� Automatic
dynamic compilation support for event dispatching in extensible systems� In WCSSS��� �����
pages ��������

��� S� Chiroko
 and C� Consel� Combining program and data specialization� In PEPM��� �����
to appear�

��� Chorus� Chorus kernel v� r� implementation guide� Technical Report CS�TR��������� Chorus
Systemes� �����

��� Paolo Ciancarini and Chris Hankin� editors� Coordination and models� Proceedings of the
�rst international conference� Cesena� Italy� number ���� in LNCS� Springer Verlag� �����

��� C� Consel and O� Danvy� Partial evaluation of pattern matching in strings� Information
Processing Letters� ����������� �����

��� C� Consel and O� Danvy� Tutorial notes on partial evaluation� In Conference Record of the
Twentieth Annual ACM SIGPLAN�SIGACT Symposium on Principles Of Programming
Languages� pages �������� Charleston� SC� USA� January ����� ACM Press�

��� C� Consel� L� Hornof� J� Lawall� R� Marlet� G� Muller� J� Noy�e� S� Thibault� and N� Volan�
schi� Tempo Specializing systems applications and beyond� ACM Computing Surveys�
Symposium on Partial Evaluation� ������ �����

��� C� Consel� L� Hornof� F� No�el� J� Noy�e� and E�N� Volanschi� A uniform approach for compile�
time and run�time specialization� In Danvy et al� ����� pages ������

��� C� Consel and S� C� Khoo� Parameterized partial evaluation� ACM Transactions on Pro�
gramming Languages and Systems� ������������� ����� Extended version of �����

��� C� Consel and S�C� Khoo� Parameterized partial evaluation� In Proceedings of the ACM
SIGPLAN ��� Conference on Programming Language Design and Implementation� pages
������� Toronto� Ontario� Canada� June ����� ACM SIGPLAN Notices� ������

��� C� Consel and R� Marlet� Architecturing software using a methodology for language devel�
opment� In C� Palamidessi� H� Glaser� and K� Meinke� editors� Proceedings of the ��th Inter�
national Symposium on Programming Language Implementation and Logic Programming�
number ���� in Lecture Notes in Computer Science� pages �������� Pisa� Italy� September
�����

��� C� Consel and F� No�el� A general approach for run�time specialization and its application to
C� In POPL�� ����� pages ��������

��� C� Consel and Danvy O� Static and dynamic semantics processing� In Conference Record of
the Eighteenth Annual ACM SIGPLAN�SIGACT Symposium on Principles Of Programming
Languages� Orlando� FL� USA� January ����� ACM Press�

��� Charles Consel� Program adaptation based on program transformation� ACM Computing
Surveys� ����es��������� �����

��� O� Danvy� Semantics�directed compilation of non�linear patterns� Information Processing
Letters� ���������� March �����

��� O� Danvy� R� Gl�uck� and P� Thiemann� editors� Partial Evaluation� International Seminar�
Dagstuhl Castle� number ���� in Lecture Notes in Computer Science� February �����

��� J� Dean� D� Grove� and C� Chambers� Optimization of object�oriented programs using static
class hierarchy analysis� In Proceedings of ECOOP���� Aarhus� Denmark� August �����
Springer�Verlag�

��� Conference on Domain Speci�c Languages� Santa Barbara� CA� October ����� Usenix�

��� Eric Eide� Kevin Frei� Bryan Ford� Jay Lepreau� and Gary Lindstrom� Flick A 	exible� opti�
mizing IDL compiler� In Proceedings of the ACM SIGPLAN ��� Conference on Programming
Language Design and Implementation� pages ������ Las Vegas� Nevada� June ������ �����

��� D�R� Engler� W�C� Hsieh� and M�F� Kaashoek� ‘C A language for high�level� e�cient� and
machine�independent dynamic code generation� In POPL�� ����� pages ��������

��� D�R� Engler� M�F� Kaashoek� and J�W� O�Toole� Exokernel An operating system architec�
ture for application�level resource management� In SOSP�� ����� pages ��������

��� Y� Futamura� K� Nogi� and A� Takano� Essence of generalized partial computation� J

Theoretical Computer Science� �������� �����

��� E� Gamma� R� Helm� R� Johnson� and J� Vlissides� Design Patterns� Addison�Wesley� �����

��� D� Garlan� G�E� Kaiser� and D� Notkin� Using tool abstraction to compose systems� IEEE
journal Computer� ����������� June �����

EFFICIENT IMPLEMENTATIONS OF SOFTWARE ARCHITECTURES ��

��� B� Grant� M� Mock� M� Philipose� C� Chambers� and S�J� Eggers� Annotation�directed run�
time specialization in C� In PEPM��� ����� pages ��������

��� L� Hornof and T� Jim� Certifying compilation and run�time code generation� In PEPM���
����� pages ������

��� Proceedings of the International Symposium on Computing in Object�Oriented Parallel En�
vironments� number ���� in Lecture Notes in Computer Science� Santa Fe� New Mexico�
December ����� Springer�Verlag�

��� ISO� Speci�cation of abstract syntax notation one �ASN���� ISO standard ����� �����
��� Ian Jacobs� Janet Bertot� Francis Montagnac� and Dominique Clement� The SOPHTALK

reference manual� Technical Report RT ���� INRIA� February �����
��� N�D� Jones� What not to do when writing an interpreter for specialisation� In Danvy et al�

����� pages ��������
��� N�D� Jones� C� Gomard� and P� Sestoft� Partial Evaluation and Automatic Program Gener�

ation� International Series in Computer Science� Prentice�Hall� June �����
��� G� Karsai� A� Misra� J� Sztipanovits� A� Ledeczi� and M� Moore� Model�integrated system

development Models� architecture� and process� In Proceedings of the Computer Software
and Applications Conference �COMPSAC�� pages �������� Bethesda� MA� August �����

��� Siau Cheng Khoo and R� S� Sundaresh� Compiling inheritance using partial evaluation� In
PEPM��� ����� pages �������� ACM SIGPLAN Notices� ������

��� G� Kiczales� J� Lamping� A� Mendhekar� C� Maeda� C� Lopes� J��M� Loingtier� and J� Irwin�
Aspect�oriented programming� In M� Aksit and S� Matsuoka� editors� Proceedings of the
European Conference on Object�oriented Programming �ECOOP����� volume ���� of Lecture
Notes in Computer Science� pages �������� Jyv�askyl�a� Finland� June ����� Springer�

��� R� Kieburtz� F� Bellegarde� J� Bell� J� Hook� J� Lewis� D� Oliva� T� Sheard� L� Walton� and
T� Zhou� Calculating software generators from solution speci�cations� In Theory and Practice
of Software Development �TAPSOFT�� volume ��� of LNCS� pages �������� Springer Verlag�
�����

��� T�B� Knoblock and E� Ruf� Data specialization� In PLDI��� ����� pages �������� Also TR
MSR�TR������� Microsoft Research� February �����

��� P� Lee and M� Leone� Optimizing ML with run�time code generation� In PLDI��� ����� pages
��������

��� B�N� Locanthi� Fast bitblt�� with asm�� and cpp� In European UNIX Systems User Group
Conference Proceedings� pages �������� AT T Bell Laboratories� Murray Hill� September
����� EUUG�

��� G�R� McClain� Open Systems Interconnection Handbook� Intertext Publications� McGraw�
Hill� New York� �����

��� A�B� Montz� D� Mosberger� S�W� O�Malley� L�L� Peterson� T�A� Proebsting� and J�H� Hart�
man� Scout A communications�oriented operating system� Technical Report ������ Depart�
ment of Computer Science� The University of Arizona� �����

��� G� Muller� R� Marlet� E�N� Volanschi� C� Consel� C� Pu� and A� Goel� Fast� optimized Sun
RPC using automatic program specialization� In Proceedings of the ��th International Con�
ference on Distributed Computing Systems� pages �������� Amsterdam� The Netherlands�
May ����� IEEE Computer Society Press�

��� G� Muller� E�N� Volanschi� and R� Marlet� Scaling up partial evaluation for optimizing the
Sun commercial RPC protocol� In PEPM��� ����� pages ��������

��� F� No�el� L� Hornof� C� Consel� and J� Lawall� Automatic� template�based run�time special�
ization Implementation and experimental study� In International Conference on Computer
Languages� pages �������� Chicago� IL� May ����� IEEE Computer Society Press� Also
available as IRISA report PI������

��� OMG� CORBA� The Common Object Request Broker� Architecture and Speci�cation� Fram�
ingham� �����

��� John K� Ousterhout� Scripting Higher�level programming for the ��st century� IEEE
Computer� �����

��� Partial Evaluation and Semantics�Based Program Manipulation� New Haven� CT� USA�
September ����� ACM SIGPLAN Notices� ������

��� ACM SIGPLAN Symposium on Partial Evaluation and Semantics�Based Program Manip�
ulation� Amsterdam� The Netherlands� June ����� ACM Press�

�	 R� MARLET� S� THIBAULT AND C� CONSEL

��� ACM SIGPLAN Workshop on Partial Evaluation and Semantics�Based Program Manipu�
lation� San Antonio� TX� USA� January ����� ACM Press�

��� Proceedings of the ACM SIGPLAN �� Conference on Programming Language Design and
Implementation� Philadelphia� PA� May ����� ACM SIGPLAN Notices� ������

��� Conference Record of the ��rd Annual ACM SIGPLAN�SIGACT Symposium on Principles
Of Programming Languages� St� Petersburg Beach� FL� USA� January ����� ACM Press�

��� Todd A� Proebsting and Scott A� Watterson� Filter fusion� In POPL�� ����� pages ��������
��� C� Pu� T� Autrey� A� Black� C� Consel� C� Cowan� J� Inouye� L� Kethana� J� Walpole�

and K� Zhang� Optimistic incremental specialization Streamlining a commercial operating
system� In SOSP�� ����� pages ��������

��� C� Pu� H� Massalin� and J� Ioannidis� The Synthesis kernel� Computing Systems� ����������
Winter �����

��� Steve P� Reiss� Connecting tools using message passing in the Field environment� IEEE
Software� ���������� July �����

��� U� Schultz� J� Lawall� C� Consel� and G� Muller� Towards automatic specialization of java
programs� In Proceedings of the European Conference on Object�oriented Programming
�ECOOP����� Lisbon� Portugal� June ����� To appear�

��� M� Shaw and D� Garlan� Software Architecture� Prentice Hall� �����
��� D� A� Smith� Partial evaluation of pattern matching in CLP domains� In PEPM��� �����

pages ������ ACM SIGPLAN Notices� ������
��� R� Snodgrass� The Interface De�nition Language� De�nition and Use� Computer Science

Press� Rockville� MD� �����
��� Proceedings of the ���� ACM Symposium on Operating Systems Principles� Copper Moun�

tain Resort� CO� USA� December ����� ACM Operating Systems Reviews� ������ ACM
Press�

��� D� R� Stewart� MESCHACH� Matrix Computations in C� University of Canberra� Australia�
����� Documentation of MESCHACH Version ����

��� M� Stickel� R� Waldinger� M� Lowry� and T� Pressburger� Deductive composition of astronom�
ical software from subroutine libraries� In Twelfth International Conference on Automated
Deduction �CADE�� volume ��� of LNCS� pages �������� Nancy� France� June �����

��� W� Taha and T� Sheard� Multi�state programming with explicit annotations� In PEPM���
����� pages ��������

��� S� Thibault and C� Consel� A framework of application generator design� In M� Harandi�
editor� Proceedings of the Symposium on Software Reusability� pages �������� Boston� Mas�
sachusetts� USA� May ����� Software Engineering Notes� ������

��� S� Thibault� C� Consel� and G� Muller� Safe and e�cient active network programming� In ��th
IEEE Symposium on Reliable Distributed Systems� pages �������� West Lafayette� Indiana�
October �����

��� S� Thibault� R� Marlet� and C� Consel� A domain�speci�c language for video device drivers
from design to implementation� In DSL��� ����� pages ������

��� T�L� Veldhuizen� Arrays in Blitz��� In ISCOPE��� �����
��� E�N� Volanschi� C� Consel� G� Muller� and C� Cowan� Declarative specialization of object�

oriented programs� In OOPSLA��� Conference Proceedings� pages �������� Atlanta� USA�
October ����� ACM Press�

��� E�N� Volanschi� G� Muller� and C� Consel� Safe operating system specialization the RPC
case study� In WCSSS��� ����� pages ������

��� E�N� Volanschi� G� Muller� C� Consel� L� Hornof� J� Noy�e� and C� Pu� A uniform and
automatic approach to copy elimination in system extensions via program specialization�
Research Report ����� INRIA� Rennes� France� June �����

��� Philip Wadler� Deforestation transforming programs to eliminate trees� Theoretical Com�
puter Science� ���������� �����

��� Workshop Record of WCSSS�� � The Inaugural Workshop on Compiler Support for Systems
Software� Tucson� AZ� USA� February �����

��� �st ACM�SIGPLAN Workshop on Domain�Speci�c Languages� Paris� France� January
����� Technical Report� Department of Computer Science� University of Illinois at Urbana�
Champaign�

