
Scaling up Partial Evaluation
for Optimizing the Sun Commercial RPC Protocol

Gilles Muller, Eugen-Nicolae Volanschi, Renaud Marlet
IRISA / INRIA

Campus Universitaire de Beaulieu
35042 Rennes Cedex, France

fmuller,volanski,marletg@irisa.fr

Abstract

We report here a successful experiment in using partial evaluation
on a realistic program, namely the Sun commercial RPC (Remote
Procedure Call) protocol. The Sun RPC is implemented in a highly
generic way that offers multiple opportunities of specialization.

Our study also shows the incapacity of traditional binding-time
analyses to treat real system programs. Our experiment has been
made with Tempo, a partial evaluator for C programs targeted to-
wards system software. Tempo’s binding-time analysis had to be
improved to integrate partially static data structures (interprocedu-
rally), context sensitivity, use sensitivity and return sensitivity.

The Sun RPC experiment files, including the specialized imple-
mentation, are publicly available upon request to the authors.

1 Introduction

Remote Procedure Call (RPC) is a protocol that makes a remote
procedure look like a local one. A call to this procedure is done
transparently on the local machine but the actual computation takes
place on a distant machine.

Performance is a key point in RPC. A lot of research has
been carried out on the optimization of the layers of the proto-
col [23, 5, 16, 24, 14, 18]. Many studies have been proposed, but
they necessitate the use of new protocols, incompatible with exist-
ing standard such as Sun RPC.

The high genericity of the RPC implementation is an invitation
to specialization. Our group is currently developing a partial eval-
uator for C, named Tempo [7]. It is targeted at realistic programs,
as opposed to toy examples or especially (re)written programs. It is
more specifically designed to treat industrial-strength system code.
The RPC experiment described here has been one of the driving test
examples of Tempo’s recent research, design and implementation.

Our contributions are the following:

� We have automatically optimized the Sun RPC by reusing
the existing software layers, and obtained a 1.35 speedup on
complete remote procedure calls (including network trans-
port). On the RPC protocol itself (only the client encoding
of data before it is sent), the specialized code runs up to 3.75
times faster.

To appear in the ACM SIGPLAN Symposium on Partial Evalu-
ation and Semantics-Based Program Manipulation, June 1997,
Amsterdam.

� We have shown that traditional binding time analysis (BTA)
is not fine enough to successfully specialize system code
such as Sun RPC, and illustrated the need for the improved
BTA that has been implemented in Tempo.

� Concerning software engineering, we have illustrated the fact
that partial evaluation is a very appropriate tool to suppress
fine-grain modularity overhead in generic software.

This work� shows that partial evaluation is reaching a level of ma-
turity that makes it suitable to treat realistic programs.

The paper is organized as follows. Section 2 gives an intro-
duction to RPC and describes relevant implementation details on
the Sun RPC. Section 3 explores specialization opportunities. Sec-
tion 4 describes Tempo and the functionalities that were added to it
in order to treat the RPC case. Section 5 gives some benchmarks on
a real example. Section 6 discusses related work in the field of sys-
tem software as well as in partial evaluation. Section 7 concludes
and lists some future work.

2 The Sun RPC Standard Protocol

The Sun Remote Procedure Call (RPC) protocol was introduced in
1984 as a basis for the implementation of distributed services be-
tween heterogeneous machines. This protocol has become a stan-
dard in distributed operating systems design and implementation.
It is notably used for implementing widespread distributed services
such as NFS [17] and NIS [21].

Because large networks are often heterogeneous, distributed en-
vironments need to encode data and often rely on Sun XDR proto-
col (one of the components of Sun RPC). Examples of these en-
vironments are PVM [11] for a message passing model and Star-
dust [4] for a Distributed Shared Memory model.

The RPC implementation used in this paper is the 1984 copy-
righted version of the Sun RPC.

2.1 The Layers

The RPC protocol provides one main functionality (see Figure 1):
it makes a remote procedure look like a local one. It supplies an
interface between a client (on the local machine) and a server (on
the remote machine) through stub functions. Those functions are
automatically generated from the signature of the called procedure.

The RPC relies on two kinds of operations.

(1) It marshals / unmarshals (i.e., encodes / decodes) data from
a local machine dependent representation to a network inde-

�This research is supported in part by France Télécom/SEPT grant 951W0009.

Send
arguments

Receive
results

Send
results

Receive
arguments

RPC
execution

MarshalUnmarshal

Marshal Unmarshal
RPC
Call

Server StubClient Stub

Application space

System space

Figure 1: The RPC protocol

pendent one. The network data representation is standardized
by the eXternal Data Representation (i.e., XDR) protocol.

(2) It manages the exchange of messages through the network.
The RPC implementation is composed of a set of modular micro-
layers, each one devoted to a small task such as managing the
transport protocol (e.g., TCP or UDP), or reading / writing data
from / into the marshaling buffers. The micro-layers may have sev-
eral implementations although, most of the time, given an applica-
tion, the configuration never changes.

Let us consider a very simple example: a function rmin which
takes two integers and returns their minimum, computed on a re-
mote server. From the procedure interface specification, rpcgen
(the RPC stub compiler) produces an assortment of source files that
implement the rmin interface function on the client’s side and the
dispatch of procedures on the server’s side (the same server may
manage several procedures).

Figure 2 shows an abstract� execution trace of a call to rmin.
The actual arguments are stored in a structure that is passed as a
single argument.

2.2 The Internals

To describe the specialization opportunities we must first examine
some RPC internals.

On the client end, a RPC call performs the following oper-
ations (see Figure 1): encoding of arguments into some output
buffer, emission of the output buffer on the net, reception of the
result in some input buffer, decoding of the input buffer and return
of decoded result to the caller. The server performs similar actions,
but in the opposite order: first decoding of arguments, then coding
of the result.

Before doing any remote procedure call, the layers of proto-
col management must be initialized. In order to do that, the user
must explicitly call the function clnt_create(), specifying a
server name, the remote procedure identifier and version, and the
chosen transport protocol. This initializes some state variables and
stores some values at the beginning of the output buffer, forming a
constant header which is the prefix of all procedure calls. In those
variables lie our potential invariants.

�In the following code listings, irrelevant items are removed for clarity: some dec-
larations, “uninteresting” arguments and statements, casts. Moreover, some structures
may be flattened (only fields are shown).

The important “variables” (actually fields of a structure named
cu_data) in the encoding and decoding are the following (see
Figure 3):

� cu_inbuf: input buffer,

� cu_outbuf: output buffer,

� cu_sendsz: size of input buffer,

� cu_recvsz: size of output buffer,

� cu_xdrpos: size of output header.

Reading or writing buffers makes use of the following variables
(fields of structure named XDR):

� x_op: flag saying if we are encoding or decoding,

� x_base: “base” pointer to start of buffer,

� x_handy: remaining space in the buffer,

� x_private: “current” pointer to buffer.

Reception uses this additional variable:

� inlen: number of received characters.

Function xdrmem_putlong() (see Figure 4) shows the use of
x_handy and x_private for writing an long integer into the
output buffer. Reading an integer follows a similar pattern.

2.3 Genericity in Sun RPC

The high genericity of the RPC implementation must be noted. It
is already apparent in the execution abstract trace of Figure 2.

More specifically, a string argument that is passed to function
clnt_create() specifies the choice of the transport protocol
(e.g., TCP or UDP). In our case, functions clnt_create()
and clnt_call() will eventually call the more specific func-
tions clntudp_create() and clntudp_call(). Similarly,
the XDR encoding / decoding protocol has several implementa-
tions. In our case, with the XDR implementation using memory
buffers, a generic call like XDR_PUTLONG() amounts to calling
xdrmem_putlong(). All protocol parameterization are imple-
mented with function pointers.

Besides, there is one single function to perform the encoding or
the decoding of a given structure type. Only x_op ultimately de-
cides if a value should be actually read or written (actual argument
is a pointer). Figure 5 illustrates this on function xdr_long().

2

arg.int1 = ... // Set first argument
arg.int2 = ... // Set second argument
rmin(&arg) // RPC User interface generated by rpcgen

clnt_call(argsp) // Generic procedure call (e.g., TCP, UDP...)
clntudp_call(argsp) // UDP procedure call

// Write procedure identifier
XDR_PUTLONG(&proc_id) // Generic marshaling (e.g., to memory, stream...)
xdrmem_putlong(lp) // Write long int into output buffer and check overflow
htonl(*lp) // Possible big/little endian conversion

xdr_pair(argsp) // Stub function generated by rpcgen
// Write first argument

xdr_int(&argsp->int1) // Machine dependent switch on integer size
xdr_long(intp) // Generic encoding or decoding
XDR_PUTLONG(lp) // Generic marshaling to memory, stream...

xdrmem_putlong(lp) // Write into output buffer and check overflow
htonl(*lp) // Possible big/little endian conversion

// Write second argument
xdr_int(&argsp->int2) // Machine dependent switch on integer size
xdr_long(intp) // Generic encoding or decoding
XDR_PUTLONG(lp) // Generic marshaling to memory, stream...

xdrmem_putlong(lp) // Write into output buffer and check overflow
htonl(*lp) // Possible big/little endian conversion

Figure 2: Abstract trace of the encoding part of a remote call to rmin

x_privatex_base
cu_inbuf

data to be read

x_private
cu_outbuf
x_base

x_handy
cu_sendsz

cu_xdrpos

header yet unassigned

meaningless

x_handy

Input buffer

Output buffer

cu_recvsz
inlen

already read data

already written data

Figure 3: The input and output buffers

3

bool_t xdrmem_putlong(xdrs,lp) // Copy long integer into output buffer
XDR *xdrs; // XDR handle
long *lp; // Pointer to long integer to write

{
if((xdrs->x_handy -= sizeof(long)) < 0) // Decrement space left in buffer
return FALSE; // Report failure on overflow

*(xdrs->x_private) = htonl(*lp); // Copy to buffer
xdrs->x_private += sizeof(long); // Point to next copy location in buffer
return TRUE; // Report success

}

Figure 4: Writing a long integer into the output buffer: xdrmem putlong()

bool_t xdr_long(xdrs,lp) // Generic encoding or decoding of a long integer
XDR *xdrs; // XDR handle
long *lp; // Pointer to long integer to read or write

{
if(xdrs->x_op == XDR_ENCODE) // If in encoding mode

return XDR_PUTLONG(xdrs,lp); // Write long integer into buffer
if(xdrs->x_op == XDR_DECODE) // If in decoding mode
return XDR_GETLONG(xdrs,lp); // Read long integer from buffer

if(xdrs->x_op == XDR_FREE) // If in “free memory” mode
return TRUE; // Nothing to be done for long int, return success

return FALSE; // Return failure if nothing matched
}

Figure 5: Reading or writing a long integer: xdr long()

For example a higher level functions like xdr_pair(), that calls
twice xdr_int(), may be used to either read or write two inte-
gers, depending on x_op (see Figure 9).

3 Specialization Opportunities

Specialization is a process that exploits invariants in order to op-
timize a program. Seeing several generic software layers, a dis-
patch like in xdr_long(), and a buffer overflow check like in
xdrmem_putlong(), the heart beat of the specialization hunter
speeds up.

We only consider here the partial evaluation of the client� stub
routine (i.e., the actual function that performs the remote procedure
call), as opposed to the specialization of a user’s code that would
make use of stub routines; we want the stub functions to be reusable
in many contexts. In that sense, it may be seen as some kind of
post-processing optimization to rpcgen�.

3.1 Specializer vs. Optimizing Compiler

There is no doubt that a smart compiler can optimize a function
like xdr_int() (see Figure 6). Using constant folding on the
test condition, the body can be reduced to a single call, either to
xdr_long() or xdr_short(), that in addition can be easily
inlined.

�We are currently working on the specialization of the server stub routine, which
is very similar to the client part, as far as the encoding/decoding is concerned.

�Note that we consider here only the specialization of the (user) library protocol
layer of RPC, as opposed to the system protocol layer (in the kernel).

But there is nothing an optimizing compiler can do in cases
such as xdr_long() (see Figure 5) where the actual value of
x_op is computed somewhere above in the call tree. Clearly, we
must resort to a partial evaluator.

3.2 The Invariants

Roughly speaking, off-line specialization relies a partition in two
sets of all expressions and statements of the program. Those that
depend only on known input are called static (they can safely be
evaluated at specialization time); others, that may depend on yet
unknown input, are called dynamic (they should be residualized).

The Sun RPC requires initializations before any remote proce-
dure is called. There lies the known parameters we want to ex-
ploit in order to achieve specialization. They are given as argu-
ments to the initialization function clnt_create(). After call-
ing this function, which is done only once, the following variables
will never vary later on; they are run-time invariants.

� cu_recvsz and cu_sendsz are assigned constant buffer
size values.

� cu_xdrpos is assigned the length of the output buffer
header, after it is initialized.

� cu_inbuf and cu_outbuf are assigned some dynamic
memory space obtained by a call to malloc().

In principle, those variables are not known until run-time (hence
they are dynamic) and what we actually need here is a run-time
specializer. The partial evaluator that we used (see section x4) does
have a run-time specializer, but unfortunately it cannot treat all C
constructions yet. Thus, we had to do the specialization in the con-
text of the client initialization in order to be able to consider the

4

bool_t xdr_int(xdrs, ip) // Generic encoding or decoding of an integer
XDR *xdrs; // XDR handle
int *ip; // Pointer to integer to read or write

{
if(sizeof(int) == sizeof(long)) // According to machine integer size
return xdr_long(xdrs,(long *)ip); // Encode or decode as a long integer

else // Or
return xdr_short(xdrs,(short *)ip); // Encode or decode as a short integer

}

Figure 6: Reading or writing an integer: xdr int()

#define XDR_PUTLONG(xdrs,longp) \ // Generic encoding of a long integer
(*(xdrs)->x_ops->x_putlong)(xdrs,longp) // Choice of protocol via function pointers

Figure 7: Encoding of a long integer: XDR PUTLONG()

above variables as static.
Calling function clnt_create() at specialization time pro-

vides actual values for variables cu_recvsz, cu_sendsz and
cu_xdrpos. But actual values for variables cu_inbuf and
cu_outbuf may vary from one execution to another, due to the
call to malloc(). However, those values will never be residual-
ized because there are pointers. What matters to us is the relative
arithmetic operations involving pointers to buffers array cells. Any
initial value will do.

Finally, protocols such as XDR or transport protocol are sets of
operations implemented as a structure of function pointers. For ex-
ample, consider macro XDR_PUTLONG in Figure 7. Field x_ops
of structure XDR holds the chosen XDR implementation; field
x_putlong of structure x_ops holds a pointer to the integer en-
coding function; and calling the operation involves pointers deref-
erencing. All protocol structures are constant (hence static) after
the client initialization is performed.

At first sight, treating the above variables as static might be
considered as a trick. But is actually not uncommon in operating
systems [20]. Using such properties of the code is the only way
one can handle run-time invariants without having to do run-time
specialization.

3.3 Binding Times of State Variables

The remaining variables reflect some state of the buffer encoding
and decoding processes.

� x_op is always assigned a known value (whether to encode
or to decode) before being used; it is static.

� x_base is assigned cu_inbuf or cu_outbuf, which
may be considered static (as seen above).

Whereas a local XDR structure is defined for decoding, and dis-
carded when it is finished, the same structure is reused for all
encodings. Here is how this structure is assigned during the
clnt_create() initialization (see Figure 3):

x_base = cu_outbuf;
x_handy = cu_xdrpos;
x_private = x_base;

Variables are thus assigned known, static values. Then, each time
that a new encoding is performed, x_handy and x_private are
reinitialized in the following manner:

start = x_base + cu_xdrpos;
last = x_private + x_handy;
x_private = start;
x_handy = last - start;

Whereas x_private is straightforwardly set to a pointer to the
first cell after the buffer output header, the previous values of
x_handy and x_private are used to compute the last position
after the output buffer, from which the actual buffer size (i.e., the
new x_handy value) is recomputed. From the algorithm point of
view, there exists a simpler way to compute the buffer size, but it
is not the point here because what we want is to treat automatically
existing code. What is important is that x_private and espe-
cially x_handy stay static throughout the code.

All those variables being static, we might expect to eliminate
the dispatch on variable x_op and, when writing for output, buffer
overflow check controlled by x_handy.

3.4 Specializing Common Cases

Since inlen is the size of the received data, it is intrinsically dy-
namic. The reason why inlen is unknown in general is that the
remote procedure call may fail. Ill formed received data must also
be guarded against. However, most of the time, inlen is the size
of the expected result data, which is usually constant, apart from
the case of variable length data structures.

There is a standard trick to deal with that, involving only minor
rewriting. Suppose we know expected_inlen, the expected
value for the input message length. Then a piece code that looks
like

inlen = some dynamic value;
statements using inlen

may be manually rewritten as

inlen = some dynamic value;
if(inlen == expected_inlen) {

inlen = expected_inlen;
statements using (static) inlen

} else
statements using (dynamic) inlen

5

bool_t xdrmem_putlong(xdrs,lp) // Static return value
XDR *xdrs; // Static & dynamic pointer to partially static structure
long *lp; // Static pointer to a dynamic value

{
if((xdrs->x_handy -= sizeof(long)) < 0) // Use static facet of xdrs pointer
return FALSE; // Return static failure

*(xdrs->x_private) = *lp; // Use dynamic facet of xdrs pointer
xdrs->x_private += sizeof(long); // Static & dynamic increment
return TRUE; // Return static success

}

Figure 8: Binding-time analysis of xdrmem putlong(): Static, Dynamic, and Static&Dynamic

Now, in the “then” branch of the condition, the static facet of the
variable expected_inlen is transmitted to inlen, that the fol-
lowing statements may exploit. Yet, the “else” branch preserves the
semantics; it handles the general case.

The actual value for expected_inlen may be computed at
specialization time thanks to a dummy encoding call to the generic
encoding / decoding function. We are thus able to specialize the
client decoding of result.

4 Scaling up Tempo for the RPC

Since partial evaluation rose to a recognized field of computer sci-
ence, starting ten years ago, the spectrum of program transforma-
tions has not changed much. However, what has drastically im-
proved is the power of the analysis that trigger the transformations,
not only treating more difficult constructions (higher order, states),
but also yielding finer results.

The heart of off-line partial evaluators lies in the binding-time
analysis (BTA). The BTA problem has a spectrum of solutions,
from the trivial one (everything is dynamic) to finer analysis: the
more static statements or expressions, the more computation can be
factorized. Refinements of early BTA in functional programming
languages have led to:

� partially static data structures,
� flow sensitivity: binding time of a variable may depend on

program point,
� context sensitivity: several instances of a function with dif-

ferent arguments (and store) binding times may coexist (i.e.,
binding-time polyvariance).

Because of the complexity of the C language, those extensions were
not included in early partial evaluators for C [1, 2]. BTA was not
really improved further because it seemed to fit encountered prob-
lems, which were mainly toy examples or carefully (re)written pro-
grams.

As explained in the following subsections, trying to run a tradi-
tional BTA on the RPC code failed miserably. Understanding the
reasons why it failed led us to reconsider two facts that we had
taken for granted:

� An expression must be either static or dynamic.
� Static expressions may evaluate to a non-liftable value, i.e., a

pointer, a structure, or an array, which do not have a textual
representation in C. Such expressions need to be residual-
ized. But then, the use of such an expression in a dynamic
context has to be considered dynamic, forcing all other uses
and corresponding definition to become dynamic as well.

Yet, realistic programs such as RPC make a heavy use of non-
liftable values. That had to be addressed.

4.1 Tempo

Our group is developing a partial evaluator for C, named Tempo [7].
To make sure that the analysis and optimizations that it performs
address realistic programs, Tempo has been targeted towards a spe-
cific and very demanding application area: system software. The
Sun RPC case has been one of the driving test-examples of Tempo’s
research, design and implementation [25, 26].

Tempo is an off-line specializer [6]: partial evaluation is split
into a preprocessing phase that performs alias, side-effect, binding-
time and action (i.e., program transformation) analysis and, given
some input values, a processing phase which does code generation.
Tempo supports traditional compile-time specialization as well as
run-time specialization [8]. Both share the same common core
analysis [7].

Tempo’s BTA includes the above-mentioned refinements : par-
tially static data structures (interprocedurally), flow sensitivity and
context sensitivity. Though those features were already well-
understood in other partial evaluation contexts like functional lan-
guages, they had to be adapted for C imperative programming.

We found actual uses for these features in our RPC case study.
Partially static data structures are totally indispensable throughout
the code. Additionally, context sensitivity is useful for the integer
encoding function. This function is usually called with dynamic
data, representing the RPC arguments. However, there is one en-
coding of a static integer in each sending: the marshaling of the
procedure identifier. Differentiating between the two call contexts
preserves a specialization opportunity.

Other needs in the BTA emerged only after more experience
with systems applications. They are covered in the following sub-
sections. Additional comparisons may be found in [13, 12].

4.2 Use Sensitivity

In most situations, the data structures used within the XDR layer
are partially static. Typically, these structures are passed to a pro-
cedure by means of a pointer. If this pointer is static (e.g., because
the structure was allocated during the client creation), one would
expect to statically access the known fields of the structure, and to
dynamically access the unknown fields.

This is the case, for example, in xdrmem putlong() where
the buffer descriptor is passed via the static pointer xdrs (see
Figure 4). The field x_handy is static, because the size of the
message is statically determined. On the other hand, accesses to
field x_private must be residualized, because the output buffer
is filled with dynamic values.

Because of the dual behavior of the pointer xdrs, a traditional
BTA would conservatively treat it as dynamic. This would inhibit
the specializer to eliminate the test for overflow, resulting in poor

6

bool_t xdr_pair(xdrs, objp) // Original function generated by rpcgen
XDR *xdrs; // XDR handle
pair *objp; // Pointer to arguments structure

{
if(!xdr_int(xdrs, &objp->int1)) // Encode (or, potentially, decode) first argument

return FALSE; // Abort on failure
if(!xdr_int(xdrs, &objp->int2)) // Encode (or, potentially, decode) second argument

return FALSE; // Abort on failure
return TRUE; // Report success

}

Figure 9: Specialized encoding (and, potentially, decoding) routine xdr pair()

void xdr_pair_spec(xdrs,objp) // Function now returns void
XDR *xdrs; // XDR handle
pair *objp; // Pointer to arguments structure

{ // Overflow check eliminated
*(xdrs->x_private) = objp->int1; // Inlined call for writing first argument
xdrs->x_private += 4u; // Point to next copy location in buffer
*(xdrs->x_private) = objp->int2; // Inlined call for writing second argument
xdrs->x_private += 4u; // Point to next copy location in buffer

} // Return code eliminated

Figure 10: Specialized encoding (but not decoding) routine xdr pair()

optimization. This issue is crucial in realistic programs, that make
extensive use of non-liftable values, manipulating large nested data
structures including pointers and arrays.

Motivated by several examples like this one, an enhanced BTA
has been implemented in Tempo. The conceptual problem was
identified to be the use insensitivity [13] of traditional analyses,
meaning that dynamic uses of a dual pointer pollute all the static
uses. The new, use-sensitive BTA is able to take into account a
dual binding time for a variable or structure field: the static facet is
used in all static contexts, and the dynamic facet is used otherwise.
In other words, a static and dynamic expression can be evaluated
and exploited at specialization time. However, it is also present in
the residualized program.

The analysis annotations produced by Tempo on function
xdrmem_putlong() are shown in Figure 8. Note the differ-
ent binding times due to different uses of the pointer xdrs, which
allow the overflow condition to be reduced.

4.3 Return Sensitivity

In the same example, the function xdrmem_putlong() returns
a (boolean) static value selected under a static condition. However,
xdrmem_putlong() contains dynamic side-effects on the out-
put buffer. Consequently, all the calls to this function must be resid-
ualized. Then, a traditional BTA considers that the return value
is dynamic. This thus inhibits specialization of the caller. In our
case, the caller (actually xdr_int) is always testing the result of
xdrmem_putlong() to eventually trigger an error. Residualiz-
ing the call forces the test to be kept as well. As a result, a sig-
nificant improvement of the encoding process is lost: each single
scalar buffer copy involves an additional and superfluous test.

An extension was added to Tempo in order to successfully spe-
cialize such cases. In the implementation, the program is automat-
ically rewritten, so as to return the result through a global static

variable. The rewritten function becomes a procedure (void func-
tion), and is called in the residual program for the dynamic side
effects. The expression containing the call is specialized with re-
spect to the returned static value.

As an example, consider the original xdr_pair() function
generated by rpcgen (see Figure 9). The specialized version
is shown in Figure 10. Syntax has been cleaned up and stan-
dard compiler optimizations like copy propagation have been per-
formed manually in order to make the specializer output readable.
Note that the return code has been eliminated and that the calls to
xdr_int() have been specialized (no more overflow check) and
inlined. The specialized caller (function clntudp_call(), not
shown), also exploits the known returned TRUE value (no buffer
overflow). Note also that the static XDR implementation with func-
tion pointers is reduced and inlined.

4.4 User Interface

In order to treat real-size applications, special support had to be
added in Tempo to ease the specialization “tuning” phase.

In principle, an off-line specializer has the advantage of a cer-
tain predictability, in the sense that the program transformations are
decided at analysis time, before specialization actually takes place.
The results of the analysis phase have to be output in a easy-to-read
format. Currently, Tempo represents various kinds of information
in a colored picture of the program, visualized in MIME format
through an emacs interface. This information includes: binding
times, polyvariance, aliases, side-effects, used global variables, and
program transformations (i.e., actions). Colors provide the same
kind of information as can be seen in Figure 8.

7

Array Size Original Specialized Speedup Folded Speedup

20 0.047 0.017 2.75 – –
100 0.20 0.057 3.50 – –
250 0.49 0.13 3.75 – –
500 0.99 0.30 3.30 0.26 3.80

1000 1.96 0.62 3.15 0.53 3.70
2000 3.93 1.38 2.85 1.13 3.50

Table 1: Client marshaling performance (in milliseconds)

Array Size Original Specialized Speedup

20 2.32 2.18 1.05
100 3.32 2.89 1.15
250 5.02 4.02 1.25
500 7.86 5.99 1.30

1000 13.58 10.05 1.35
2000 25.24 18.80 1.35

Table 2: Round trip RPC call performance (in milliseconds)

4.5 Further Improvements

A current limitation of Tempo forces all the instances of a same
structure type to have the same binding time for a specific field
and program point. This approximation greatly simplifies the im-
plementation of both the analysis and the specializer. Furthermore,
from an intuitive point of view, we expected all instances of a struc-
ture type to follow a common behavior in system programs. Typ-
ically, all file descriptors should have the same static fields (likely,
the open mode, the permissions, etc.). However, this intuitive uni-
formity is broken in some cases, including network software. In
our RPC case, the behavior of system descriptors tends to be differ-
ent between the send path and the receive path. We thus had to split
the client encoding and decoding into two different functions, that
are specialized independently. Removing this limitation is being
worked on.

The alias analysis implemented in Tempo is very similar to the
points-to model of aliasing [9, 22]. It is interprocedural, flow-
sensitive but context-insensitive. For specialization, the finer the
alias analysis, the less (possibly dynamic) wrong target locations
are considered, hence the less conservative (i.e., dynamic) binding
times are assigned. In this experiment, the computed alias informa-
tion was fine enough not to prevent specialization to take place.
However, other on-going experiments with system code suggest
that context sensitivity as well as exact structure layout (as opposed
to simply field names) might be needed for alias analysis.

5 Benchmark

This section analyzes the performance we obtained by specializing
the RPC layer with Tempo.

Our test program emulates the behavior of scientific parallel
programs that exchange large chunks of structured data. The test
program loops on a simple remote procedure call that sends and
receives an array of integers. We have made two different kinds
of measurements, comparing the Tempo specialized client with the
non specialized one: (i) a micro-benchmark of the sending (i.e.,
encoding) layer in the client, and (ii) a full round-trip remote pro-
cedure call. The interest of this second experiment is to take into

account architectural machine behavior such as cache, memory and
network bandwidth which highly affect global performance. Addi-
tionally, we consider different array sizes.

The whole client test program specialized by Tempo is about
1500 lines long (without comments), including 500 lines of dec-
larations. The reason why it might seem large is that a lot of ini-
tializations are needed and that there exist many small functions
(which are seldom used all at the same time) due to the generic
micro-layer structure.

Measurements have been done on two Suns 4/50 connected
with a 100 Mbits ATM link. All programs have been compiled us-
ing gcc, with option -O2.

Summary of Results

On the encoding layer, the specialized code is up to 3.75 times
faster than the non specialized one (see table 1). On the round-trip
RPC execution, we have a speedup of up to 1.35 (see table 2). It
must be noted that in our experiment, only the client program is
specialized. It is realistic to think that the speedup can be doubled
by also specializing the server.

Micro-benchmark

Table 1 gives results of the micro-benchmark. Speedup varies from
2.35 to 3.75. Surprisingly, the speedup decreases with the size of
the array of integers. When the array size grows, most of the mar-
shaling time is spent in encoding the array of integers. Though
specialization decreases the number of instructions used to encode
an integer, the number of memory moves remains constant between
the specialized and non-specialized code. The reason for which the
speedup decreases with the size is that, on our test machine, in-
structions execution time is dominated by memory accesses.

During specialization, the array encoding loop is unrolled. Un-
rolling large loops is sometime nasty because it breaks the locality
of instructions accesses in the cache. In order to analyze unrolling
effect on the cache, we have partially folded back the code into a
loop (see two last rows of table 1). We have kept an unrolled loop
body corresponding to an array size of 250 (i.e., array sizes 500,
100 and 2000 correspond to 2, 4 and 8 iterations of the loop). This

8

operation is manual. When the size of the array grows, the folded
loop becomes faster than the unrolled generated one. This clearly
shows the break of the cache locality.

Round-trip RPC

The specialized round-trip RPC runs up to 1.35 faster. Like for
the micro-benchmark, the speedup decreases with the size of the
data because of memory accesses. In addition to these memory
accesses, the RPC implementation includes a call to bzero() that
initializes the input buffer on both the client and server sides. These
initializations further increase memory access overhead as the data
size grows. Note that the marshaling micro-benchmark code does
not contain any call to bzero().

It must be noted that the ATM cards and drivers used in our ex-
periment are three years old and quite inefficient (100 Mbits) com-
pared with up to date products, in term of latency and bandwidth
(155 Mbits, and even 622 Mbits). Therefore, we expect to have
much better results in the future.

6 Related Work

Partial Evaluators for C. To our knowledge, the only other par-
tial evaluator for C programs is C-Mix [2]. Like Tempo, C-Mix is
an off-line evaluator, based on inter-procedural analyses, and able
to deal with complex data structures and side-effects.

While being a powerful tool, C-Mix was not specially written
to deal with system programs. More precisely, the following ap-
proximations of its analyses make it unsuitable for our XDR ex-
ample. The BTA of C-Mix is program-point insensitive, which
means that a variable is considered dynamic as soon as it is dy-
namic in a marginal part of the program (e.g., an exception treat-
ment). Also, the BTA is mono-variant, resulting in a unique analy-
sis of each function, with respect to the union of all the calls in the
program. Furthermore, structure splitting (approach used in C-Mix
to treat partially static data structure) is intraprocedural for argu-
ments, which also makes it unsuitable for the Sun RPC case.

Another practical aspect is that C-Mix systematically duplicates
code after a static conditional. This improves the precision of the
BTA, but can easily cause an exponential code explosion, which
is much more difficult to control than the code duplication coming
from loop unrolling.

Finally, C-Mix’ BTA is use-insensitive. As a consequence, it
will systematically consider as dynamic any pointer to a partially-
static data structure. In order to circumvent this problem, C-Mix
attempts at automatically splitting such structures into a static com-
ponent and a dynamic one. However, this strategy seems to be ap-
plicable only in some particular cases. More importantly, structure
splitting would modify the global type declarations which belong
to the operating system’s interface. This makes it impossible to
separately specialize an application module, and, in particular, our
XDR example.

General RPC Optimizations. A considerable amount of work
has been dedicated to optimize existing RPC implementations (see
for example [23, 16, 24]). In these studies, a fast path in the RPC is
identified, corresponding to a performance-critical, frequently used
case. The fast path is then optimized using a wide range of tech-
niques. Some of these consist of manual optimizations on a specific
layer of the RPC protocol stack. Our approach aims precisely at au-
tomating such optimizations.

Other techniques aim at minimizing the operating system over-
head in the critical path, typically by eliminating some context
switches or data copies. Even in the cases where data copies cannot

be eliminated, they are eventually replaced by cheaper operations,
like page re-mapping. All these techniques are orthogonal to our
study, and should indeed give best results when combined with our
kind of optimizations.

Optimizing Stub Compilers. Clark and Tennenhouse [5] were
the first to identify the presentation layer as an important bottle-
neck in protocol software. They attribute it to up to 97% of the to-
tal protocol stack overhead, in some practical applications. Rather
than optimizing an existing implementation, they propose some
design principles to build new efficient implementations. Among
those principles, the Application Level Framing (ALF) and the In-
tegrated Layer Processing (ILP) are directly relevant to the presen-
tation layer.

Thekkath and Levy [24] generate argument marshaling code
at run-time, when a client is bound to a server. This code, es-
pecially built for the given client-server pair, is obtained by as-
sembling simple, hand-generated code templates, corresponding to
elementary data types. Their use of dynamic code generation is
not targeted to build very efficient code by exploiting run-time in-
formation. Rather, they observe that, by dynamically generating
this code, and executing it in the kernel, arguments can be directly
copied to the network buffer. In other implementations, marshal-
ing code is running in user space, so it must first assembles the
arguments in a user-level buffer, which is then copied by the kernel
into the network buffer. Another difference from our study is that
they generate this specialized code only on the send path. For the
receive path, a generic, user-level marshaling code is executed.

Hoschka and Huitema [14] convert marshaling code from a
table-driven implementation to a procedure-driven implementation.
In the former, a generic interpreter is selecting among several ele-
mentary decoding procedures, organized as a function table, while
the latter is a straight sequence of code specialized for a given com-
pound type. Their transformation does not include complex opti-
mizations. Rather, they are interested in the time vs. space tradeoff
decision.

O’Malley et al. [18] present another stub compiler, called USC.
As opposed to XDR, which converts between a fixed host for-
mat and another fixed extern representation, USC is able to con-
vert data between two user-specified formats. USC integrates sev-
eral domain-specific optimizations, resulting in much faster code
than the one produced by XDR. However, in order to perform
this aggressive optimizations, USC imposes some restrictions over
the marshaled data types: types such as floating point numbers or
pointers are not allowed. In fact, USC is not designed for general
argument marshaling, but rather for header conversions and inter-
facing to memory-mapped devices.

Blackwell [3] manages external data formats which allow vari-
able encoding, such as Q.93B [10] or ASN.1 [15]. In these rep-
resentations, each data field is tagged to indicate its actual format,
chosen between several possible ones. Since unmarshaling code
cannot be generated at compile time, Blackwell builds a special-
purpose on-line compiler, which generates specialized marshaling
code for the formats that are frequently encountered at run time.
The optimizations integrated in this compiler aggressively exploit
domain-specific information, such as the absence of aliases, the
ability to reorder copy operations of distinct fields, or the align-
ment properties which make it possible to collapse several adjacent
fields into a single word.

All these studies require building a special-purpose code gener-
ator, with a complexity ranging from an ad-hoc template assembler
to a full, domain-specific, optimizing compiler. In contrast, we
take the stubs generated by an existing stub compiler, and derive
the specialized stubs with Tempo.

9

7 Conclusion and Future Work

This experiment has taught us several things.
Partial evaluation can be applied to realistic industrial-strength

programs and yields non-trivial results. We automatically obtained
a 1.35 speedup on complete (including network transport) remote
procedure calls and a 3.75 speedup on the pure marshaling process.
Some work is still required to solve a few problems. However, first
results are very encouraging. We can now consider the automa-
tion of previous operating systems specialization that have been
obtained manually [20, 19].

We are currently working on the following improvements. As
for RPC, we are working on the specialization of the server. The
hypothesis are similar to those of the client. We also plan to special-
ize the lower level network layers integrated in the system kernel,
such as sockets and UDP. As for Tempo, we are considering remov-
ing the constraint that give the same binding time to all instances of
the same data structure and providing a finer control over the loop
unrolling. Improving the Tempo’s alias analysis has less priority
but is nonetheless unavoidable.

We observed that finding potential invariants and opportunities
of specialization requires a good knowledge of the application do-
main. This observation is coherent with other experiments realized
in our group. Specialization of complex real cases cannot be totally
automated. More precisely, heavy analysis and transformations can
be automated, but there are some cases where it must be guided or
helped by a expert in the application domain. This stresses the im-
portance of a user-friendly interface (see x4.4).

This experiment should encourage people to write (or keep on
writing) generic applications, letting partial evaluation take care of
performance issues. In particular, in the operating systems domain,
people should keep on trying to write generic modules without wor-
rying too much about performance. Thanks to partial evaluation,
adaptability, maintainability and reuse, should be considered more
important than immediate efficiency.

Partial evaluation is reaching a relative level of maturity. Still,
acknowledged successes in a realistic context are very scarce.
While continuing to explore new and indispensable theoretical ba-
sis, partial evaluation community must realize the importance of
large scale experiments.

Acknowledgments

The authors would like to thank the other designers and implemen-
tors of Tempo (Charles Consel, Jacques Noyé, Luke Hornof, Julia
Lawall, Scott Thibault, François Noël, Alan Sayle, Sandrine Chi-
rokoff et al.) for fruitful discussions, patient attention, and unspar-
ing efforts.

References

[1] L.O. Andersen. Binding-time analysis and the taming of
C pointers. In Partial Evaluation and Semantics-Based
Program Manipulation, Copenhagen, Denmark, June 1993,
pages 47–58. New York: ACM, 1993.

[2] L.O. Andersen. Program Analysis and Specialization for the
C Programming Language. PhD thesis, Computer Science
Department, University of Copenhagen, May 1994. DIKU
Technical Report 94/19.

[3] T. Blackwell. Fast decoding of tagged message formats. In
Fifteenth Annual Joint Conference of the IEEE Computer and
Communication Societies, San Francisco, CA, March 1996.

[4] G. Cabillic and I. Puaut. Stardust: an environment for par-
allel programming on networks of heterogeneous worksta-
tions. Journal of Parallel and Distributed Computing, Febru-
ary 1997.

[5] D.D. Clark and D.L. Tennenhouse. Architectural considera-
tions for a new generation of protocols. In SIGCOMM Sympo-
sium on Communications Architectures and Protocols, pages
200–208, Philadelphia, PA, September 1990. ACM Press.

[6] C. Consel and O. Danvy. Tutorial notes on partial evalua-
tion. In Conference Record of the Twentieth Annual ACM
SIGPLAN-SIGACT Symposium on Principles Of Program-
ming Languages, pages 493–501, Charleston, SC, USA, Jan-
uary 1993. ACM Press.

[7] C. Consel, L. Hornof, F. Noël, J. Noyé, and E.N. Volanschi. A
uniform approach for compile-time and run-time specializa-
tion. In O. Danvy, R. Glück, and P. Thiemann, editors, Partial
Evaluation, International Seminar, Dagstuhl Castle, number
1110 in Lecture Notes in Computer Science, pages 54–72,
February 1996.

[8] C. Consel and F. Noël. A general approach for run-time spe-
cialization and its application to C. In Conference Record
of the ��

rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles Of Programming Languages, pages 145–156, St.
Petersburg Beach, FL, USA, January 1996. ACM Press.

[9] M. Emami, R. Ghiya, and L.J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function
pointers. In Proceedings of the ACM SIGPLAN ’94 Confer-
ence on Programming Language Design and Implementation,
pages 242–256. ACM SIGPLAN Notices, 29(6), June 1994.

[10] ATM Forum. ATM user-network interface specification ver-
sion 3.0, 1993.

[11] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunde. PVM: Parallel Virtual Machine - A Users’
Guide and Tutorial for Networked Parallel Computing. MIT
Press, 1994.

[12] L. Hornof and J. Noyé. Accurate binding-time analysis for
imperative languages: Flow, context, and return sensitivity.
In ACM SIGPLAN Conference on Partial Evaluation and
Semantics-Based Program Manipulation, Amsterdam, The
Netherlands, June 1997. ACM Press.

[13] L. Hornof, J. Noyé, and C. Consel. Accurate partial evalua-
tion of realistic programs via use sensitivity. Research Report
1064, IRISA, Rennes, France, June 1996.

[14] P. Hoschka and C. Huitema. Control flow graph analysis
for automatic fast path implementation. In Second IEEE
workshop on the architecture and Implementation of high
performance communication subsystems, Williamsburg, VA,
September 1993.

[15] ISO. Specification of abstract syntax notation one (ASN.1).
ISO standard 8824, 1988.

[16] D.B. Johnson and W. Zwaenepoel. The Peregrine high-
performance RPC system. Software - Practice And Experi-
ence, 23(2):201–221, February 1993.

[17] Sun Microsystem. NFS: Network file system protocol speci-
fication. RFC 1094, Sun Microsystem, March 1989.

10

[18] S. O’Malley, T. Proebsting, and A.B. Montz. USC: A uni-
versal stub compiler. Technical Report TR94-10, University
of Arizona, Department of Computer Science, 1994. Also in
Proc. Conf. on Communications Archi. Protocols and Appli-
cations.

[19] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye,
L. Kethana, J. Walpole, and K. Zhang. Optimistic incremen-
tal specialization: Streamlining a commercial operating sys-
tem. In Proceedings of the 1995 ACM Symposium on Oper-
ating Systems Principles, pages 314–324, Copper Mountain
Resort, CO, USA, December 1995. ACM Operating Systems
Reviews, 29(5),ACM Press.

[20] C. Pu, H. Massalin, and J. Ioannidis. The Synthesis kernel.
Computing Systems, 1(1):11–32, Winter 1988.

[21] R. Ramsey. All about administering NIS+. SunSoft, 1993.

[22] E. Ruf. Context-insensitive alias analysis reconsidered. In
Proceedings of the ACM SIGPLAN ’95 Conference on Pro-
gramming Language Design and Implementation, pages 13–
22. ACM SIGPLAN Notices, 30(6), June 1995.

[23] M.D. Schroeder and M. Burrows. Performance of Firefly
RPC. ACM Transactions on Computer Systems, 8(1):1–17,
February 1990.

[24] C.A. Thekkath and H.M. Levy. Low-latency communication
on high-speed networks. ACM Transactions on Computer
Systems, 11(2):179–203, May 1993.

[25] E.N. Volanschi, G. Muller, and C. Consel. Safe operating sys-
tem specialization: the RPC case study. In Workshop Record
of WCSSS’96 – The Inaugural Workshop on Compiler Sup-
port for Systems Software, pages 24–28, Tucson, AZ, USA,
February 1996.

[26] E.N. Volanschi, G. Muller, C. Consel, L. Hornof, J. Noyé, and
C. Pu. A uniform automatic approach to copy elimination
in system extensions via program specialization. Research
Report 2903, INRIA, Rennes, France, June 1996.

11

