
Towards Robust OSes for Appliances:
A New Approach Based on Domain-Specific Languages

Gilles Muller, Charles Consel, Renaud Marlet,
Luciano Porto Barreto, Fabrice Mérillon, Laurent Réveillère

COMPOSE group, http://www.irisa.fr/compose
IRISA/INRIA, Campus de Beaulieu, 35042 Rennes Cedex, France

fmuller,consel,marlet,lportoba,merillon,lreveillg@irisa.fr

tel:+33.2.99.84.72.87, fax:+33.2.99.84.71.71

Appliances represent a quickly growing domain that raises new challenges in OS design and develop-
ment. First, new products appear at a rapid pace to satisfy emerging needs. Second, the nature of these
markets makes these needs unpredictable. Lastly, given the competitiveness of such markets, there exists
tremendous pressure to deliver new products. In fact, innovation is a requirement in emerging markets to
gain commercial success.

The embedded nature of appliances makes upgrading and fixing bugs difficult (and sometimes impos-
sible) to achieve. Consequently, there must be a high level of confidence in the software. Additionally, the
pace of innovation requires rapid OS development so as to match ever changing needs of new appliances.

To offer confidence, software must be highly robust. That is, for a given type of appliance, critical
behavioral properties must be determined and guaranteed (e.g., power management must ensure that data
are not lost). Robustness can be provided by mechanisms and/or tools. The ideal approach takes the form of
certification tools aimed at statically verifying critical properties. Such tools avoid the need for a laborious
and error-prone testing process.

To be first in a market requires not only that the testing process be shortened, but the development time
as well. To achieve this goal, three strategies are needed: re-use of code to rapidly produce a new product by
assembling existing building blocks, factorization of expertise to capitalize on domain-specific experience,
and open-endedness of software systems to match evolving functionalities and hardware features.

In this paper, existing OS approaches are assessed with respect to the requirements raised by appliances.
The limitations of these approaches are analyzed and used as a basis to propose a new approach to designing
and structuring OSes for appliances. This approach is based on Domain-Specific Languages (DSLs), and
offers rapid development of robust OSes. We illustrate and assess our approach by concrete examples.

1 Existing OS Approaches

An OS (or an OS sub-system) conventionally consists of two levels: mechanisms and policies. Mecha-
nisms can take the form of libraries [7] or abstract machines [8]. Policies correspond to algorithms based on
mechanisms. Ideally, a policy should be implemented as code gluing mechanisms together. In practice, the
separation between these two levels is not systematically achieved. This lack of separation makes it difficult
to understand and reason about the behavior of the OS, which, in turn, compromises robustness. Further-
more, such a blurred separation makes it hard to identify building blocks which causes poor code re-use.
Also, because building blocks are not clearly exposed, code expertise cannot be fully exploited. Factorizing
expertise is made even harder by the use of a general-purpose, usually low-level, programming language

19



which does not make domain-specific knowledge explicit. This situation puts limitations on robustness,
code re-use, and OS expertise. Let us examine each of these limitations in turn.

1.1 Limited Robustness

OS designers have traditionally limited their view of robustness to isolation of system components. In
this view, a component may consist of both a policy and its associated mechanisms, or it may represent a
single policy, or a set of related mechanisms. Component isolation is implemented by boundary protection
relying on hardware capabilities (e.g., MMU) or code instrumentation [23]. Another approach is to use
high-level, type-safe language that guarantees correct memory access; examples include Modula-3 used
in Spin [3] and ML used in the Fox Net [9]. However, the compilation technology for such languages is
at a level where the performance of generated code does not yet compare to the code produced by a C
compiler. Furthermore, developing an OS requires low-level expressiveness, not covered by a high-level
language (e.g., manipulation of raw data). This situation often necessitates additional work in programming
languages to develop various extensions [9].

Recently, a static approach aimed at verifying predefined safety rules of binary code has been proposed
by Necula and Lee [15]. In addition to being static, their approach goes beyond memory isolation. For
example, it enables one to verify the quantity of resources used by a program. Its main limitation is that it
assumes that programs are written in a general-purpose language; thus, some properties of interest may be
undecidable in general. To circumvent this problem, programmer assistance is required at various stages.

Microsoft has proposed a tool to improve driver quality which combines static and dynamic strategies
to expose driver errors. These strategies include allocation fault injection and parameter verification [1].

The common limitation of the above approaches is that they do not assume a software architecture where
separation between mechanisms and policies is explicit; as a result, no specific reasoning strategy can be
applied to either layer.

1.2 Limited Code Re-Use

The software architecture of a system also plays a key role in code re-use. Structuring a software system
in terms of components is now a well-recognized strategy to achieve code reuse. Notably, in the OS field,
this structuring technique has lead to micro-kernel architectures [2, 13, 18]. In a micro-kernel architecture,
each component (or server) corresponds to a domain boundary. However, communication across a domain
introduces overhead. Because the software components are directly mapped into protected entities, their
granularity impacts system performance. The OS architect thus faces the dilemma between defining fine-
grain components to expose code re-use opportunities and introducing coarse-grain components to optimize
performance. As shown by the Workplace project at IBM, a compromise cannot necessarily be reached [6].

Recently, several research projects have aimed at developing extensible OSes [3, 5]. Such OSes do not
rely on hardware protection boundaries; instead, they use either strongly-typed languages [11] or software-
fault isolation [23]. Extensible kernels consist of fine-grain components which enable low-level function-
alities to be exposed. This system architecture drastically improve code re-use. Although extensible OSes
provide an effective solution to code re-use, they do not address expertise re-use. In fact, low-level kernel
mechanisms require detailed expertise, which does not necessarily correspond to the skills of the industry
programmer.

1.3 Limited Expertise Re-Use

Even when mechanisms have been defined at an appropriate level and granularity, expertise is still required
to implement policies. Indeed, kernel mechanisms are often highly parameterized to cover a large set of

20



needs, and are also poorly documented. Any incorrect invocation likely leads to unexpected behavior.
For example, no requirements on resource allocations are made explicit such that resource leaks can be
prevented. Furthermore, the combination of several mechanisms must follow precise rules that are rarely
explicitly documented.

This situation requires the policy programmer to master the kernel mechanisms. This expertise can,
unfortunately, only be gained by careful examination of the source code and laborious debugging. In fact,
few programmers reach a sufficient level of expertise so as to rapidly develop correct kernel code. In the
context of appliances, the variety of products increases the demand for such experts. Finally, the lack of
tools to assist developers in verifying mechanism usage makes the demand for experts even more critical.

1.4 Limited Extensibility

Appliances typically form a family of products that evolve over time. Even when expertise has been gained
during a product’s development, turn-over is so high in the computer industry that this expertise may not be
retained. As a result, new product generations may require the same expertise to be re-acquired.

Besides expertise, extensibility critically depends on the OS architecture. Specifically, if the building
blocks have not been clearly staged, policies and mechanisms may be intertwined. As a result, it becomes
difficult to extend either mechanisms or policies. Finally, existing approaches to extending OSes enable new
components to be added via modules or servers [3, 18]. However, other than memory protection, they do not
offer any guarantees regarding the behavior of the added components. This limitation can have disastrous
consequences considering the widespread nature of appliances.

2 A New Approach Based on Domain-Specific Languages

The common thread of our approach to designing OSes is Domain-Specific Languages (DSLs) [12]. In this
approach, a DSL is developed for each family of sub-systems.

An overview of our approach. A DSL consists of two distinct parts: an abstract machine and a compiler
from the DSL to the abstract machine. This structure enforces a two-level design: policies are written in
the DSL, while the abstract machine is directly mapped into mechanisms. The two-level approach forces
the designer to stage the design issues: the first step is aimed at characterizing the policies needed for the
target sub-system family; the second step consists of determining the mechanisms that are common to these
policies. The library of mechanisms is then used to define the abstract machine.

This policy characterization defines the program patterns needed to express the policies of interest. In
addition, properties that are critical to the family of sub-systems are identified (e.g., termination, resource
allocation, . . . ). Both program patterns and properties are used to design a language dedicated to writing
the target policies. Program patterns suggest specific syntactic abstractions, while properties lead to specific
language restrictions that make the properties decidable. The latter feature contrasts with General Purpose
Languages (GPLs) where expressiveness is traded for verification. Importantly, the development of a new
DSL rarely means the introduction of a brand new syntax. Rather, this process usually consists of restricting
an existing language and adding domain-specific constructs and values.

Besides improving robustness, a DSL can also be used to expose information that can trigger domain-
specific optimizations. For example, a parameter passed across layers need not be copied if the language
guarantees that a policy only reads it; such optimizations are performed by the Flick IDL compiler [4].
Finally, our experience has shown that the restricted nature of DSLs drastically improves the development
time of compilers, reduces the number of concepts to treat, and enables the production of high-quality code.

21



Our DSLs. Our approach has been carried out in practice on two families of sub-systems: device drivers
and active networks.

The device driver study has lead to the design and implementation of two languages GAL [22, 17] and
Devil [14]. GAL specifically targets graphics cards; from a high-level specification a compiler generates a
complete device driver. Devil covers all types of devices and can be seen as an IDL for hardware program-
ming; from a device specification the compiler generates low-level code to operate the device. Both DSLs
offer high-level abstractions to overcome the intricacies of interaction with hardware, such as error-prone bit
manipulations. They enable critical properties on device specifications to be verified; for example, writing
a Devil specification is up to 5.9 times less prone to errors than writing equivalent C code [17]. Also, they
drastically improve productivity; for example, a GAL specification is 10 times smaller than the correspond-
ing X11 C driver. Finally, both GAL and Devil have demonstrated that DSLs can compete with equivalent
C code [14, 22].

Our study of active networks [24] has lead to the development of a DSL called PLAN-P [20, 21].
This DSL allows application-specific protocols to be written and dynamically deployed on both routers and
terminal equipment such as appliances. A network infrastructure is a shared resource, therefore application-
specific protocols must be well-behaved. Consequently, PLAN-P has been designed such that properties
guaranteeing the network safety be preserved (e.g., termination, linear packet duplication, . . . ). In practice,
protocol implementations in PLAN-P have been shown to be 3 times smaller than and as efficient as the
equivalent C code [20, 21].

Let us now examine in detail in what ways a DSL-based approach improves robustness, code re-use, and
OS expertise.

2.1 Improved Robustness

The explicit separation between mechanisms and policies enforced by the DSL approach enables specific
reasoning about each level. Indeed, unlike GPLs, the expressiveness of a DSL is defined such that only
well-behaved policies can be written. Compilation of policies address both static and dynamic verification
of mechanism usage (i.e., abstract machine usage). Statically, the compiler ensures that mechanisms are
invoked with proper parameters and follow precise usage rules. If the DSL designer considers that a partic-
ular static verification places too large a burden on the language’s expressiveness, dynamic checks can be
emitted by the compiler. For example, in Devil enumerated types permit to precisely define the set of valid
commands over a register. Run-time assertions (in a debug mode) enforce correct usage of the generated
interfaces by the C programmer.

As a result, since the verification of DSL programs is intrinsic to the language design, the robustness of
policies can be certified. In fact, these guarantees make DSLs a key technology for an innovation-intensive
domain such as appliances.

2.2 Improved Code Re-Use

Code re-use is also intrinsic to our approach since a DSL, and its associated abstract machine, target a
specific family of sub-systems. The common building blocks are clearly identified, and their use in imple-
menting a policy is guaranteed by the DSL compiler. This process ensures full re-use of code, in contrast
with libraries where re-use depends on programmer knowledge.

In traditional OS, improving re-use consists of opening mechanisms at a low level to enable a large
variety of policies to be defined. As the mechanisms expose lower level functionalities, the programmer
needs to introduce more glue code to set up the appropriate invocation context. In the context of DSLs, the
level at which mechanisms are exposed is not an issue anymore, because it is the compiler that generates the
code to set up the invocation context.

22



2.3 Improved Expertise Re-Use

As we have discussed previously, expertise on low-level mechanisms can be gained as appliances are devel-
oped. However, this expertise is not made explicit and can be lost as programmers change assignments. In
our approach, expertise, in the form of implementation knowledge and safety rules, is captured by the DSL
compiler. Accordingly, programmers need not to be domain experts. In practice, the DSL compiler corre-
sponds to an expertise repository. As an example, our current PLAN-P run-time system relies on Solaris
streams library which is known to be difficult and error-prone to use. The PLAN-P compiler fully hides this
complexity from the programmer. In fact, non kernel-expert students have been able to develop PLAN-P
protocols within a day.

The DSL approach represents a framework for policy development: it enables the programmer to focus
on a policy algorithm and abstracts away implementation details. As a result, more attention is devoted to
the functionalities of policies. In addition, experimenting with policies and tuning them become easier.

2.4 Improved Extensibility

The two-level design enforced by the DSL approach allows extensions to be made at two conceptual levels:
policies and mechanisms. Extensions at the policy level are characterized by the DSL syntax and property
verification. Extensions at the mechanism level can be achieved by changing the abstract machine imple-
mentation.

Active networks represent an outstanding example of an extensible system: protocols are dynamically
deployed on a heterogeneous infrastructure (e.g., routers, workstations, and appliances). Our work on
PLAN-P not only enables protocols to be introduced as policies, but it also allows different abstract ma-
chine implementations to be developed on various hardware platforms.

3 Conclusion

We have proposed a methodology to design and implement a new generation of OSes for quickly evolving
domains such as appliances. Developing OSes for such domains puts tremendous stress on robustness, code
re-use, expertise re-use and extensibility. We have showed how the DSL approach represents a new solution
to these issues. Our DSL approach has been validated on various families of sub-systems. These DSLs have
successfully addressed these issues without a loss of efficiency.

Our goal is to systematize the use of DSLs to design and develop an embedded OS from scratch. In
this new OS, each service will be captured by a DSL. We are currently analyzing families of sub-systems to
determine the critical properties of each domain. In a future stage, we plan to conduct comparative studies
with existing embedded OSes to assess the benefits and drawbacks of our approach.

References

[1] Using driver verifier to expose driver errors. http://www.microsoft.com/hwdev/driver/driververify.htm.

[2] M. Acetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach: a new kernel
foundation for unix development. In 1986 Summer Usenix Conference, pages 93–112, 1986.

[3] B.N. Bershad, S. Savage, P. Pardyak, E. Gün Sirer, M.E. Fiuczynski, D. Becker, C. Chambers, and S. Eggers.
Extensibility, safety and performance in the SPIN operating system. In SOSP’95 [19], pages 267–283.

[4] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom. Flick: A flexible, optimizing IDL compiler. In
Proceedings of the ACM SIGPLAN ’97 Conference on Programming Language Design and Implementation,
pages 44–56, Las Vegas, NV, USA, June 15–18, 1997.

23



[5] D.R. Engler, M.F. Kaashoek, and J.W. O’Toole. Exokernel: An operating system architecture for application-
level resource management. In SOSP’95 [19], pages 251–266.

[6] B.D. Fleisch. The failure of personalities to generalize. In HOTOS’97 [10], pages 8–13.

[7] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers. The Flux OSKit: A substrate for kernel and
language research. In Proceedings of the 1997 ACM Symposium on Operating Systems Principles, pages 38–51,
St-Malo, France, October 1997.

[8] B. Ford, M. Hibler, J. Lepreau, P. Tullman, G. Back, and S. Clawson. Microkernels meet recursive virtual
machines. In OSDI’96 [16], pages 137–151.

[9] R. Harper, P. Lee, and F. Pfenning. The Fox project: Advanced language technology for extensible systems.
Technical Report CMU-CS-98-107, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
January 1998. (Also published as Fox Memorandum CMU-CS-FOX-98-02).

[10] 6th Workshop on Hot Topics in Operating Systems, Cape Cod, Ma, May 1997. IEEE Computer Society.

[11] W.C. Hsieh, Fiuczynski M.E., Garrett C., Savage S., Becker D., and Bershad B.N. Language support for exten-
sible operating systems. In Workshop Record of WCSSS’96 – The Inaugural Workshop on Compiler Support for
Systems Software, pages 127–133, Tucson, AZ, USA, February 1996.

[12] D.A. Ladd and J.C. Ramming. Programming the Web: An application-oriented language for hypermedia service
programming. In Fourth International World Wide Web Conference, Boston, Massachusetts, December 1995.

[13] J. Liedtke. On �-kernel construction. In SOSP’95 [19], pages 237–250.

[14] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and G. Muller. Devil: An IDL for hardware programming. In
Proceedings of the Fourth Symposium on Operating Systems Design and Implementation, San Diego, California,
October 2000. To appear.

[15] G. Necula and P. Lee. Safe kernel extensions without run-time checking. In OSDI’96 [16], pages 229–243.

[16] Proceedings of the Second Symposium on Operating Systems Design and Implementation, Seattle, Washington,
October 1996.

[17] L. Réveillère, F. Mérillon, C. Consel, R. Marlet, and G. Muller. A DSL approach to improve productivity and
safety in device drivers development. In Proceedings of the 15

th IEEE International Conference on Automated
Software Engineering (ASE 2000), Grenoble, France, September 2000. IEEE Computer Society Press. To appear.

[18] V. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Herrmann, C. Kaiser, S. Langlois,
P. Léonard, and W. Neuhauser. Overview of the Chorus distributed operating system. In USENIX - Workshop
Proceedings - Micro-kernels and Other Kernel Architectures, pages 39–70, Seattle, WA, USA, April 1992.

[19] Proceedings of the 1995 ACM Symposium on Operating Systems Principles, Copper Mountain Resort, CO, USA,
December 1995. ACM Operating Systems Reviews, 29(5), ACM Press.

[20] S. Thibault, C. Consel, and G. Muller. Safe and efficient active network programming. In 17th IEEE Symposium
on Reliable Distributed Systems, pages 135–143, West Lafayette, Indiana, October 1998.

[21] S. Thibault, J. Marant, and G. Muller. Adapting distributed applications using extensible networks. In Proceed-
ings of the 19th International Conference on Distributed Computing Systems, pages 234–243, Austin, Texas,
May 1999. IEEE Computer Society Press.

[22] S. Thibault, R. Marlet, and C. Consel. Domain-specific languages: from design to implementation – application
to video device drivers generation. IEEE Transactions on Software Engineering, 25(3):363–377, May–June
1999.

[23] R. Wahbe, S. Lucco, T.E. Anderson, and S.L. Graham. Efficient software-based fault isolation. In Proceedings
of the 1993 ACM Symposium on Operating Systems Principles, pages 203–216, Asheville, NC, USA, December
1993. ACM Operating Systems Reviews, 27(5), ACM Press.

[24] D.J. Wetherall. Active network vision and reality: lessons from a capsule-based system. In Proceedings of the
1999 ACM Symposium on Operating Systems Principles, Kiawah Island, SC, December 1999.

24


