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Abstract

Domain-specific languages (DSL) have many potential
advantages in terms of software engineering ranging from
increased productivity to the application of formal meth-
ods. Although they have been used in practice for decades,
there has been little study of methodology or implementa-
tion tools for the DSL approach. In this paper we present
our DSL approach and its application to a realistic domain:
the generation of video display device drivers.

The presentation focuses on the validation of our pro-
posed framework for domain-specific languages, from de-
sign to implementation. The framework leads to a flexible
design and structure, and provides automatic generation of
efficient implementations of DSL programs.

Additionally, we describe an example of a complete DSL
for video display adaptors and the benefits of the DSL ap-
proach for this application. This demonstrates some of the
generally claimed benefits of using DSLs: increased pro-
ductivity, higher-level abstraction, and easier verification.
This DSL has been fully implemented with our approach
and is available 1.
Index Terms – GAL, Video cards, Device drivers,

Domain-specific language, Partial evaluation

1 Introduction

In contrast to a general purpose language (GPL), a
domain-specific language (DSL) is a language that is ex-
pressive uniquely over the specific features of programs in
a given problem domain. It is often small and more declar-
ative than imperative; it may be textual or graphic. DSLs

�This work has been partly supported by FRANCE TELECOM con-
tract CNET 96-1B-027 and DARPA contract F19628-95-C-0193.

1http://www.irisa.fr/compose/gal

have also been called application domain languages [7],
little or micro-languages [2], and are related to script-
ing languages. DSLs have been used in various domains
such as graphics [14, 19], financial products [1], telephone
switching systems [15, 21], protocols [8, 31], operating sys-
tems [28], and robot languages [5]. Languages such as
SQL, TEX and Unix shell languages may also be considered
DSLs.

Software architectures based on DSLs are primarily
aimed at achieving faster development of safer applications.
Because constructs in a DSL abstract key concepts of the
domain, the developer (that does not have to be a skilled
programmer) can write more concise and higher level pro-
grams in less time. Programming with a DSL also con-
tributes to safety because it is less error-prone than with a
GPL. Additionally, high-level constructs translate, in prac-
tice, into the reuse of validated components. Moreover,
when the language is small and specific, it is possible or
easier to apply automated proof techniques that have been
developed for general purpose languages, but have had lim-
ited success due to the generality of GPLs. For example,
termination properties may be considered if the language
is not Turing-complete. Similarly, it is easier to build test
generation tools.

A DSL may also be seen as a way to parameterize a
generic application or to designate a member of a program
family. A program family is a set of programs that share
enough characteristics that it is worthwhile to study them as
a whole. In fact, designing a DSL actually involves the same
commonality analysis [15] that is used in the study of a pro-
gram family, i.e., determining assumptions that are true for
all members of the family and variations among members.
This process should be performed by both domain experts
and software engineers.

Though actual uses of DSLs record benefits such as



productivity, reliability and flexibility [20], implementing
DSLs is often difficult and costly [9]. There are two kinds
of approaches to language implementation, each with sig-
nificant disadvantages. Approaches that are based on com-
pilers, such as application generators (translation from the
DSL to a GPL), are not easy to write or to extend, and ex-
tensions require skills in compiler technology that cannot
be expected from “domain developers”. On the other hand,
approaches that are based on interpreters are easier to write
or to extend, but are less efficient [4]. This implementation
issue also impacts maintainability because complexity in a
DSL compiler defeats the software engineering goals of us-
ing a DSL [33]. Depending on one’s objectives, either style
of implementation is thus chosen: application generator or
interpreter.

We have proposed a framework for the development of
application generators that reconciles both alternatives, of-
fering the flexibility of interpreters and the performance
of compilers [30]. The framework relies on partial eval-
uation [16, 18], a program transformation technique that
is well suited to automatically transform interpreters into
compilers [17]. Partial evaluation exploits known informa-
tion about a program’s input to be able to evaluate parts
of a program in advance. Given a program and the known
portion of its input, a partial evaluator produces a special-
ized program. In this new, semantically equivalent pro-
gram, computations depending on known values have al-
ready been performed. Given an interpreter for a DSL (that
takes as arguments a DSL program and the input data of the
DSL program) and a DSL program, partial evaluation au-
tomatically yields a specialized interpreter, i.e., a compiled
version of the DSL program.

Our framework is structured into two parts that come af-
ter the family analysis. The first part consists of the def-
inition of an abstract machine, whose operations can be
viewed as generic components that capture important op-
erations of the domain. The second part is the definition
of a DSL in terms of the abstract machine operations, thus
providing a high level interface to the abstract machine. The
use of partial evaluation in our framework is twofold, cor-
responding to each part: it maps a DSL program into an ab-
stract machine program, removing the interpretation layer,
and an abstract machine program into an efficient imple-
mentation. The development of this framework is supported
by industry partners for realistic applications.

This paper describes a realistic application of our frame-
work for the automatic generation of video card drivers.
This domain naturally forms a program family, for which
DSLs are well suited. We present the design and def-
inition of a complete DSL for video display adaptors.
Concerning performance, we show how partial evalua-
tion can yield efficient drivers. Concerning safety, we
insure that all generated drivers can be proven to ter-

minate and define some analyses that can greatly im-
prove their reliability. The DSL has been fully im-
plemented with our approach and is available at URL
http://www.irisa.fr/compose/gal.

Our contributions can be summarized as follows:

� We validate our framework of application genera-
tor design on a realistic example: video card device
drivers.

� We define a DSL for generating such drivers. This re-
stricted language allows program verifications.

� We provide a flexible implementation of this language
that generates efficient video drivers.

� We illustrate the benefits of DSLs as a software archi-
tecture.

The rest of the paper is organized as follows. Section 2
describes our framework for application generator design
in further detail. Section 3 presents the domain of video
card drivers. Section 4 describes the two-level design: ab-
stract machine and graphics adaptor language. Section 5
discusses the results of applying this approach to the do-
main of video drivers. Section 6 summarizes the results of
this experiment and identifies future work, both for the lan-
guage and the framework.

2 A Framework for Designing and Imple-
menting DSLs

In a previous paper we presented an approach to appli-
cation generator design [30]. In this approach, we consider
the implementation of a program family as a single generic
program. The parameterization of this generic program cor-
responds to variations within the program family and can be
represented using a micro-language, i.e., a DSL. In other
words, the generic program interprets DSL programs to
know what actions pertaining to the application family to
perform. The possible actions define an abstract machine
that is adapted to the domain and the application family,
whereas an interpretation layer, mapping constructs to ac-
tions, provides an interface between DSL programs and the
abstract machine. The performance overhead due to gener-
icity, in the interpretation layer as well as in the adaptation
of the abstract machine, calls for optimization via partial
evaluation.

This approach is the basis of a general framework for
designing and implementing DSLs. This framework is
sketched in figure 1; it is described further in the following
subsections. More details concerning the impact on reuse
(for code as well as expertise) and advantages over other
application generators designs are given in [30].
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Figure 1. DSL design and implementation framework.

2.1 Analysis

The first phase of the framework is a family analysis
phase. This phase studies features that are present in all
members of the family and variations among members. It
can be conducted using a methodology such as FAST’s
commonality analysis [15]. The family analysis may also
rely on a domain analysis [23, 25, 27], which discovers the
commonalities in a domain. This analysis phase has two
sets of outputs, which lead to the design of both a DSL and
an abstract machine.

2.2 Abstract Machine Design

The analysis phase identifies key objects of the domain
and program family, as well as basic operations on those
objects. These operations are used to define an abstract ma-
chine, which offers a model of computation that underlies
all programs in the family [9]. Other operations are also in-
cluded so that it is possible to construct any program in the
family from those operations.

The use of abstract machines is a natural progression
from established reuse practices. Starting from the idea of

highly parameterized subroutines in a reuse library [6], one
might consider these to be generic components or opera-
tions that provide a level of abstraction. This level of ab-
straction provides insulation between the definition of the
operation and an implementation. Given the context of a
domain-specific solution, it then seems reasonable that for
a given domain, we can define a collection of related op-
erations that cooperate to solve the relevant problems in
the domain. Finally, by enforcing an explicit state, as op-
posed to threading arguments across abstract machine in-
structions, we obtain an abstract machine model that can be
implemented efficiently.

There are many advantages to this approach. One of
these advantages is the opportunity to have several imple-
mentations of a single abstract machine. The same abstract
machine could also be implemented in different languages.
Another benefit of the approach is that it provides a for-
mal model of computation that can be reasoned about using
well-established techniques for abstract machines [26]. Be-
ing able to reason about operations in this way enables the
verification of certain properties about DSL programs, or
derive other properties like time complexities. The abstract



machine model also provides the right level of decomposi-
tion to increase reuse of the abstract machine [35].

2.3 Language Design

The analysis phase has three other outputs: terminology,
commonalities and variations among the family members.
This information, with the addition of constraints such as
the level of the language or its analyzability, is used to de-
sign the DSL.

The idea is that the DSL is implemented in terms of the
abstract machine. The key difference between the DSL and
the abstract machine is that a DSL program describes what
an application does and an abstract machine program de-
scribes how the application operates. The link between the
DSL and the abstract machine is that the DSL can be viewed
as a glue language for composing abstract machine opera-
tions, i.e., an interface to the abstract machine. This inter-
face first provides a superior abstraction to the DSL pro-
gram designer, and second, further restricts the applications
that can be expressed, thus forming the program family. The
DSL is generally designed to express programs in terms of
domain-specific concepts. For usability and analyzability, it
should have a semantics as restricted as possible, depending
on the future requirements of the program family.

2.4 Structuring the Implementation

A DSL can be implemented as either an interpreter or a
compiler (to a target machine or a GPL). The most straight-
forward approach to implementing a DSL is to build an
interpreter. While an interpreter directly interprets each
language construct to produce the results, a compiler pro-
duces a program, which when executed produces the re-
sults. Thus, the compiler approach introduces an indirec-
tion which makes it more difficult to construct. Moreover,
an interpreter facilitates prototyping. For these reasons, we
propose an approach based on interpreters.

In our framework, the implementation of the DSL is thus
expressed as an interpreter, which calls the abstract machine
operations. The abstract machine is typically implemen-
tated as a highly parameterized library.

Just as there could be many implementations for an ab-
stract machine, this staged framework also provides the pos-
sibility to have many DSL languages for one abstract ma-
chine. Since the abstract machine can express a wide range
of applications within the domain, and the DSL only a re-
stricted subset of these, it is useful to have multiple DSLs
for different users. For example, a DSL could manage a
whole database while a subset of this DSL might only be
able to express queries.

Although interpreters are easier to construct they are also
less efficient. Similarly, the genericity of a parameterized li-
brary introduces execution-time overhead. In the next sub-

section, we present an approach to obtaining efficient im-
plementations based on partial evaluation.

2.5 Efficiency via Partial Evaluation

There are two identified sources of inefficiency in the
framework presented so far: the DSL interpretation layer
and the parameterization of the library implementing the ab-
stract machine. In particular, interpretation has been cited
to be one to two orders of magnitude slower than compiled
code [29]. There exist a technique to automatically remove
these two kinds of overhead: partial evaluation. As a mat-
ter of fact, partial evaluation has proved to be very effective
in mapping software architectures to efficient implementa-
tions [22].

Partial evaluation. Partial evaluation is a fully automatic
program transformation which specializes a program to a
particular context reducing its execution time and, in some
cases, its size [10, 18]. A specialization context is defined
by assigning values to some subset of a program’s inputs.
More specifically, consider a program p, taking some argu-
ment data d and producing a result r, which may be written
as p�d� � r. If d can be split into d � �d�� d�� where d�
is a known (i.e., it does not vary) subset of the input, which
describes the context, and d� is yet unknown, we may form
a new program �p� d�� that waits until d� is available and
then calls the original p program on �d�� d�� to produce the
same result r. In other words, �p� d���d�� � p�d�� d�� � r.
However, since d� is known, computations relying on d�
can be performed before d� is actually available. There-
fore, we can form a new program pd� , equivalent to �p� d��,
where computations depending on d� have been eliminated.
We thus have pd��d�� � p�d�� d�� � r. The program pd�
is called a specialization of p with respect to the known in-
put d�. The known inputs representing the context are also
called static whereas the other unknown inputs are called
dynamic. A partial evaluator is a program PE which com-
putes pd� : PE�p� d�� � pd� .

For the case study described in this article, we have
used a partial evaluator named Tempo Specializer [10, 11].
Tempo is a fully automatic partial evaluator for C pro-
grams. Tempo can specialize programs at compile time
(i.e., source-to-source transformation) as well as at run time.
Users of Tempo specify inputs to the program entry point
and global variables as either static (i.e., already known) or
dynamic (i.e., yet unknown).

An example of partial evaluation. Figure 2 shows an
example of specializing a simple version of printf. The
top part of the figure is the original code while the bottom
part is the result of specializing the function with the input
fmt equal to "n: %d". In fact, this example represents



mini_printf(char fmt[], int val[])
{
int i = 0;
while( *fmt != ’\0’ ) {
if( *fmt != ’%’ )

putchar(*fmt);
else
switch(*++fmt) {
case ’d’: putint(val[i++]);

break;
case ’%’: putchar(’%’);

break;
default : abort(); /* error */

}
fmt++;

}
}

mini_printf_fmt(int val[])
{
putchar(’n’);
putchar(’:’);
putchar(’ ’);
putint(val[0]);

}

Figure 2. Specialization w.r.t. fmt = "n: %d"

a very simple interpreter in the two-level framework in fig-
ure 1. The fmt parameter is a program which specifies how
the data in the val parameter should be displayed. The
putint, putchar, and abort functions are the abstract
machine instructions that are used to print simple values.
The mini printf function represents the interpretation
layer which decides when and how to invoke the abstract
machine instructions to implement the behavior specified in
the fmt argument.

Partial evaluation of interpreters. Given an interpreter
for a DSL (that takes as arguments a DSL program and the
input data of the DSL program) and a known DSL program,
partial evaluation can be applied to automatically produce
an implementation that is specialized with respect to the
DSL program, i.e., a compiled DSL program. Thus, the
resulting functionality is equivalent to that of a compiler at
the cost of writing an interpreter. The use of partial eval-
uation, that makes up a stand-alone application, given the
generic program and a DSL program, can be considered an
application generator.

Ensuring efficiency. If the mapping performed by the in-
terpretation layer depends only on the input program and the
input program is a known input, a partial evaluator should
be able to eliminate the entire interpretation layer. Thus, as
shown in figure 1, when the interpretation layer is special-
ized with respect to the input program, only invocations of
the abstract machine instructions should remain: the result
is an abstract machine program. In order to ensure that the
interpreter has been correctly structured to eliminate the in-
terpretation layer, we rely on a program analysis performed
during partial evaluation: binding time analysis.

The actual partial evaluation process is split into two
phases: a binding-time analysis and the actual special-
ization transformation. During the binding-time analysis,
dependencies are propagated to determine for each sub-
expression of a program if it depends only on known values
and can, thus, be evaluated. As a result, each sub-expression
is given a binding time of static to mean it depends only on
known inputs or dynamic otherwise. The second phase per-
forms the specialization by evaluating the static expressions
and outputting the specialized program.

The code in the top of figure 2 depicts a bind-time an-
notated function. The underlined expressions have dynamic
binding times and the rest have static binding times. As
expected, the only dynamic expressions in mini printf
are calls to the abstract machine instructions. Thus, all the
interpretation is evaluated at specialization time and all that
remains are these calls, as shown in the bottom of figure 2.

The following rules define the requirements on the struc-
ture which guarantee the elimination of the interpretation
layer.

1. References to the abstract machine state in the inter-
pretation layer may only appear as subprogram argu-
ments.

2. The abstract machine implementation may not contain
any references to the interpreter state.

In our application of Tempo, we insure the successful ap-
plication of partial evaluation via the separation of the ab-
stract machine and the interpreter, each having its on state
represented in C by global variables. The interpreter state
is specified as static and the abstract machine state is spec-
ified as dynamic. The visualization of the binding times
produced by Tempo analyses lets the user assess the correct
separation between the interpreter and the abstract machine,
and thus the successful partial evaluation.

In figure 1, a second step of partial evaluation is shown
in which the implementation of the abstract machine is spe-
cialized with respect to the abstract machine program. The
reason for this second step is that the abstract machine oper-
ations are often highly parameterized reusable components.
It may also be desirable to eliminate the genericity intro-
duced by this parameterization. If these parameters depend



only on the input program, then the abstract machine pro-
gram will contain instructions with constant values for these
arguments. The second step of partial evaluation will ex-
ploit these values to remove the genericity from the instruc-
tions’ implementations. Specialization can also optimize
inefficiencies introduced by the boundaries between oper-
ations. The reason that partial evaluation is done twice is
to obtain the abstract machine program for analysis or any
other reason. If the abstract machine program is not needed,
a single application of partial evaluation to the whole inter-
preter will yield the same results.

There is an important difference between the generic-
ity removed from the interpretation layer and that of the
abstract machine layer. If the interpreter structure of our
framework is respected then the interpretation layer is guar-
anteed to be removed. However, there is no guarantee on
how much of the abstract machine layer will be removed.

3 Video Driver Domain

This section introduces the domain of the experiment:
video adaptor device drivers. A video adaptor (or video
card) is a hardware component of a computer system which
stores and produces images on the display. Video cards con-
sist of a frame buffer, and a graphics controller. The frame
buffer is a bank of high speed memory used to store the dis-
play data, including the currently visible image. The graph-
ics controller consists of two main functionalities: produc-
ing the video signal for the display, and providing access
to the frame buffer to create the display image. Graphics
controllers all provide similar sets of functionalities (e.g.,
changing the display resolution).

Although all adaptors provide similar functionalities,
their programming interface is different from vendor to ven-
dor, and often between successive models of the same adap-
tor. This is true of most devices, and is resolved by the
use of device drivers. Device drivers generally consist of
a library of functions that implement a standard API that is
fixed for all devices. Thus the driver’s purpose is to translate
the standard API operations into the operations required by
a specific device, providing a uniform interface to the oper-
ating system and applications.

Video device drivers provide two main services to the
operating system and applications. The first is to put the
graphics display into different video modes. A video mode
(or graphics mode) is defined by the horizontal and vertical
resolution, the number of colors per pixel and screen re-
fresh rates. The second service provided by the driver is to
provide access to hardware drawing operations. For exam-
ple, most video cards provide line drawing hardware, which
draws lines on the display at a much faster rate than would
be possible in software.

4 Application of the Approach

We have applied the approach described in section 2 to a
family of device drivers for video adaptors. We considered
an already existing set of device drivers from the XFree86 X
Window server created by The XFree86 Project, Inc. [36].
The XFree86 SVGA server is a generic X Window server,
written in C, supporting several different cards using a de-
vice driver architecture. This server contains drivers for
cards from about 25 different vendors. Additionally, each
driver supports as many as 24 different models from the
same company. This structure alone indicates that there is
enough similarities between models of the same vendor to
implement them as a generic program, but that it is not rea-
sonable to do so for multiple vendors. This may be due to
efficiency, but more likely is due to the lack of a methodol-
ogy to handle larger scales of variation.

The remainder of this section details the application of
our approach to the construction of an application generator
of video drivers (for different vendors) for the X Window
server. We first discuss the definition of an abstract ma-
chine for the domain, identified by studying the existing de-
vice drivers. Then we describe a DSL for generating video
drivers and related design issues.

4.1 The Abstract Machine

The abstract machine for the video driver domain was
designed primarily by studying the implementation of ex-
isting drivers. The abstract machine was also iteratively re-
fined during the development of a DSL. We identified three
patterns which appeared in the existing drivers that could be
used to guide the definition of abstract machine operations.

Operation pattern. The first of these patterns corre-
sponds to simple atomic operations in the abstract machine.
There are two forms in which this pattern appears: as re-
peated fragments of code that differ only by data, and as
fragments which perform the same treatment but have a
small number of variations on how it is performed. In the
first case, the fragments are often already identified and
placed in a library or defined as a macro. These fragments
directly correspond to abstract machine operations.

As an example of the second case, the device drivers are
dominated by occurrences of code fragments which read or
write data from or to the video card. Communication with
hardware devices can be handled in a small number of dif-
ferent ways, and the scheme chosen varies from vendor to
vendor. There were several occurrences of three of these
different schemes of I/O, differing only in certain data (e.g.,
the I/O address). These fragments were captured in a single
abstract machine operation defined as follows:

write_port(port_number: integer,



index: integer,
indexed: boolean,
pair: boolean,
pci: boolean)

This instruction is parameterized by flags to specify which
scheme to use (indexed, paired, or PCI), and the data used
by the scheme to perform the I/O (port number, index).

Combination of operations pattern. The second type of
pattern recognized can be identified as expressions or com-
binations of operations. This pattern is characterized by ex-
pressions or combinations of operations that have no com-
monalities between members of the family. For example, in
the device drivers there are sequences of shifts and logical
expressions which are different for every driver. Although
there are no commonalities in those expressions from one
driver to the next, we can identify a sufficient set of opera-
tions to construct any instance. The selection of these oper-
ations depends not only on the existing samples, but on an
understanding of the domain, and speculation on the future
of the domain.

The following code fragment shows an example of this
pattern from one of the existing drivers.

outb(0x3C2, ( inb(0x3CC) & 0xF3) |
((no << 2) & 0x0C));

outb(OTI_INDEX, OTI_MISC);
outw(OTI_INDEX, OTI_MISC |

((( inb(OTI_R_W) & 0xDF ) |
(( no & 4) << 3)) << 8));

This portion of the driver maps the value of no onto the ap-
propriate registers in order to select the clock. For a given
driver, there may be any number of reads, writes, shifts and
logic operations, but no other operations. Thus, we can im-
plement any given driver with a sequential composition of a
small number of abstract machine operations.

Control pattern. The last pattern consists of code frag-
ments that share a common control structure, but contain
code fragments matching the combination of operations
pattern previously discussed. For example, consider a func-
tion of the device driver which is used to save, restore, and
set the clock value on the video card.2 This function has the
following form:

2Video cards have programmable clocks which can be set to different
frequencies to control the video refresh rate.

Bool ClockSelect(int no)
{
switch (no) {
/* Save the clock value. */
case CLK REG SAVE:
Series of I/Os and logic operations.
break;

/* Restore saved clock value. */
case CLK REG RESTORE:
A second series of I/Os and logic operations.
break;

/* Set the clock value to no. */
default:
A third series of I/Os and logic operations.

}
}

The series of I/Os and logic operations in this example
follow the combination of operations pattern, and can be
constructed by sequences of abstract machine operations.

For this pattern, we introduce higher-order abstract ma-
chine operations. That is, abstract machine operations
which take sequences of abstract machine operations as pa-
rameters. These parameters correspond to the contained
fragments that follow the combination of operations pattern.
The example above is captured by the following abstract
machine operation:

change_clock(save_clk: instructions,
restore_clk: instructions,
set_clk: instructions)

Conclusion. Using these patterns with existing examples,
we were able to define an abstract machine that could ex-
press the behavior of any particular device driver. Although
they were typically easy to recognize, it is important to re-
alize that it was necessary to abstract from certain details in
order to see the different patterns. E.g., in our experiment,
the examples were mostly written by different people, who
had different styles of programming, and sometimes took
different approaches to the same problem. In this situation,
it was necessary to determine if the same functionality could
be implemented with a common structure, which happened
to always be the case.

4.2 The GAL Language

In this section we present the Graphics Adaptor Lan-
guage (GAL) for video device driver specification. In order
to understand where the language comes from, it is impor-
tant to know what the essential variations are among video
adaptors. The remainder of the section describes the vari-
ations that exist between cards and the corresponding con-



structs in GAL that capture them. A complete example of a
GAL specification is described in Appendix A.

4.2.1 Ports, Registers, Fields and Params

A video adaptor is controlled by setting certain parameters
stored in hardware registers of the card. These registers
have addresses. A single parameter may be stored in mul-
tiple registers and only certain bits of the registers may be
used. Thus the layout of the parameters on the register space
is the first major variation between cards.

Access to the registers are provided through various
communication schemes. As mentioned in the previous sec-
tion, there is a small number of different schemes that can
be used to communicate with a hardware device from a pro-
gram. The choice of communication scheme is the second
major variation between cards. We define several concepts
to describe these notions of communication and register lay-
out.

Ports. The first concept is the port which is used to define
a point of communication. For example, the declaration

port svga indexed:=0x3d4;

defines a port named svga, which uses an indexed commu-
nication scheme at the I/O address 0x3d4. This is a standard
port used by many video cards.

Registers. A second concept is provided by the register
declaration, which defines how to access registers on the
card using the defined ports. For example, the declaration

register ChipID:=svga(0x30);

defines a register ChipID, which is accessed through port
svga, at index 0x30.

Fields. The next concept is specified with a field declara-
tion. The field declaration defines where a logical value is
stored (in which bits of what registers) and a mapping from
logical values to actual stored values. For example, the dec-
laration

field LogicalWidth:=
Control2[5..4] # Offset scaled 8;

defines a field LogicalWidth, which is stored in bits 5
and 4 of the Control2 register and the entire Offset
register. Additionally, the mapping clause (scaled 8)

specifies that the value stored in the register is �

�

th
the actual

value. The mapping is needed because cards often store a
value which is some function of the field’s actual value.

Standard field Purpose
HTotal, Horizontal resolution
HEndDisplay, settings.
HStartBlank,
HEndBlank
VTotal, Vertical resolution
VEndDisplay, settings.
VStartBlank,
VEndBlank
LogicalWidth Width of virtual screen.
StartAddress Display start address.
ClockSelect Clock selection.
Standard param Purpose
RamSize Frame buffer memory size.
LinearBase Address of linear space.
LinearAperture Size of linear space.
NoClocks Number of fixed clocks.

Table 1. Predefined fields and params.

Parameters. Related to the field declaration, the param-
eter declaration is the definition of a constant value that is
either explicit in the specification or read from the card dur-
ing configuration. An example of the former case would
be

param NoClocks:=4;

The majority of a GAL specification consists of the def-
inition of fields for standard values that are used to control
the video adaptors and parameters which determine certain
features of the card (e.g., size of the frame buffer). Table 1
lists some of these predefined field and parameter names
that can be defined in GAL specifications.

4.2.2 Clocks

A third major variation between different adaptors is the use
of clocks. All adaptors have a clock which controls the fre-
quency at which data is sent to the display. This frequency
needs to be changed for different resolutions, and there are
two approaches to doing this. One is to have a fixed num-
ber of frequencies to choose from, and the other is to have a
programmable chip that can generate many frequencies by
changing its parameters. The cards with a fixed number of
clocks vary in the number of clocks and the frequencies pro-
vided, while the cards with a programmable clock vary in
how the clock is programmed and its range of frequencies.

A card that has fixed clocks can be specified by defining
a parameter NoClocks and a field ClockSelect. The
NoClocks constant defines the number of clocks avail-
able, and the ClockSelect field defines the field which
selects the clock.



For cards that have programmable clocks, a special con-
struct is defined to specify how to program the clock. For
example,

clock f3 is 14318*f3M / (f3N1*f3N2);

defines a clock named f3, which is programmable accord-
ing to the equation on the right. The equation defines the
frequency generated based on programmable values, which
are defined elsewhere by the three fields f3M, f3N1, and
f3N2. Given the desired clock frequency, the device driver
uses the specified equation to find values of f3M, f3N1,
and f3N2 which approximate this frequency as closely as
possible.

4.2.3 Identification

The fourth major variation observed among video cards is
how the card is identified. This information is required
for systems which dynamically configure themselves to use
whatever card is available at that time. Card identification
uses a small number of predicates which test the card and
follows a decision tree to decide if the card is supported by
the driver and which one.3 Thus, we define an appropriate
construct for specifying this type of decision tree in GAL.

The following is an example of this identification con-
struct.

identification begin
1: writable(Segment) => (true=>step 2);
2: Chip_id=>(1=>oti087,others=>step 3);
3: Chip_id2=>(0=>oti037c, 2=>oti067,

5=>oti077);
end identification;

This example identifies one of four models (oti037c, oti067,
oti077, oti087) of cards that use an OTI graphics controller.
The construct defines a series of steps numbered 1-3 to the
left. At each step, the expression to the left of the arrow
is evaluated and the result is compared to the list of deci-
sions on the right. If no decision is matched on the right,
then identification fails and indicates that the driver does
not support the card. Possible decisions are to identify the
card or proceed to another step. Step 2, for example, reads
the value of the Chip id register, and if the result is 1,
identifies that an oti087 is present, otherwise proceeds to
step 3 for further tests. The stepwise syntax reflects the way
diagnostic procedures are commonly described in manuals.

4.2.4 Modes

The final major variation between cards is that many adap-
tors require some flags be set under certain operating condi-
tions. These are referred to as modes of operation in GAL,

3One device driver often supports multiple cards from the same vendor.

and are defined with the mode construct. The mode con-
struct is used to specify a predicate and a sequence of as-
signments to fields, which enable or disable the correspond-
ing mode of operation for the video card. For example,

mode HighRes:=HTotal>800;
enable HighRes sequence is

Control[5]<=1;

This mode declaration defines a mode, HighRes, which
indicates that a ’1’ must be stored in bit 5 of Control in
order to use a video mode in which the horizontal resolution
is greater than 800 pixels. In our implementation, the predi-
cate HTotal>800 is tested after changing the video mode;
if it is true, the sequence Control[5]<=1 is executed.

In addition to user defined modes, there are also a few
built-in modes. The built-in modes have fixed predicates,
but allow the specification of enabling and disabling se-
quences. For example, the built-in mode SVGAMode is true
for all graphics modes and thus the user-defined enabling
sequence is executed each time the mode is changed.

4.2.5 Run-time variations

In addition to the variations that exist between cards, there
are variations within a single driver that depend on condi-
tions not known until run-time (of the driver). For example,
some video adaptors operate differently depending on the
hardware bus utilized (AT, PCI, or VLB). Additionally, if
one wants to build a single device driver for a number of
models from the same vendor, the variation between those
models has to be chosen at run-time. In GAL, the cases
construct is used to describe this type of variation.

As an example, the following statement is used to define
the clocks for different models of S3 cards.

cases
for S3_TRIO32,S3_TRIO64
field ClockSelect:=Miscr[3..2];

for others
field ClockSelect:=Control[3..0];

end;

This example specifies that if the card identified at run-time
is a S3 TRIO32 or S3 TRIO64, then the card has four fixed
clocks selected by bits 3 and 2 of the Miscr field. All other
cards have sixteen clocks selected by bits 3 down to 0 of the
Control field.

4.3 Design of GAL

This section discuses some of the many forces that influ-
enced the design of GAL. The first two subsections describe
two main inputs to the design process: a definition of varia-
tions in the family and knowledge about the domain. In our



case, the domain knowledge came from existing documen-
tation used by domain engineers. Other important issues are
the level of abstraction, the level of restriction, readability,
maintainability, etc. While the level of abstraction and the
level of restriction are of particular importance for DSLs, is-
sues like readability and maintainability apply to both DSLs
and GPLs

4.3.1 Defining Variations

One of the main inputs to the design of a DSL is a descrip-
tion of the variations that exist among the target set of appli-
cations. The defined variations imply requirements on the
DSL in order to distinguish among instances of the program
family. In our case, these variations came from a study of
the documentation of existing video cards. In addition to
studying different cards, inspection of the existing device
drivers provided a more detailed source of variations at the
implementation level. For example, given that there were a
small number of ways to communicate, which varied among
cards, there must be some construct in GAL specifications,
which would allow the selection of the correct communica-
tion scheme. Some of this information can also be extracted
from the parameters of the abstract machine operations.

4.3.2 Domain knowledge

The other main input to the DSL design process is knowl-
edge of the domain in terms of the abstract objects or con-
cepts and terminology used in the domain. This knowledge
may come from a domain expert or from existing natural
language specifications, as in our experiment. This is an im-
portant input because it leads to a more abstract user-level
DSL. An appropriate terminology provides a DSL that is
familiar to people of the domain. The identified abstract
objects that are affected by variations in the program family
provide starting points for declarative constructs.

In this experiment, we looked at several English spec-
ifications of video cards to identify the concepts and ter-
minology used within the domain. The clocks, ports and
registers are examples of concepts in the domain that we
identified. After identifying them, we considered what at-
tributes of the objects were related to variations within the
program family. Declarative statements were then defined
to specify the values for the attributes that varied. Thus, the
abstract objects identified in our experiment directly trans-
lated to declarative constructs in the DSL. Additionally, the
relationship between the objects translated into a reference
relationship in the DSL. For example, registers are defined
by references to port definitions. This may suggest the use
of an object-oriented analysis for DSL design.

4.3.3 Level of Abstraction

One of the most important goals guiding the DSL is to pro-
vide a high-level of abstraction. In particular, we wish to
intentionally focus on raising the level of abstraction from
the abstract machine level. In fact, it may be desirable to
include information in the DSL, which is not even used for
implementation, but may be used in analyses or for docu-
mentation.

As an example of abstraction, the abstract machine de-
veloped for the video device drivers includes operations for
doing bitwise shifts and logical operations. However, these
types of expressions do not appear in GAL because we in-
tentionally introduced the idea of fields and parameters to
eliminate the low-level procedural nature of these expres-
sions. This also eliminates a common source of errors.

After a preliminary design of the language, the language
and abstract machine are revised in an iterative way. The
revision process must satisfy the correspondence constraint
between the language and abstract machine: it must be fea-
sible to provide a mapping from the language to the op-
erations of the abstract machine as an interpreter. During
this revision process the level of abstraction must also be
considered. Although it is possible to move all of the func-
tionality of the language into the abstract machine, making
the mapping essentially one-to-one, there must be conscious
decisions made about where to draw the line between the
interpreter and the abstract machine. The primary consider-
ation here is the separation of functionality from specifica-
tion. The abstract machine should specify how applications
in the family are implemented. The interpreter, on the other
hand, should specify how to make the design decisions re-
quired to map a design specification (i.e., DSL program)
into an implementation (i.e., abstract machine operators).

4.3.4 Level of Restriction

Another major concern is restricting the language. It is im-
portant to consider what types of analyses might be per-
formed on specifications in the DSL in order to insure that
the language is restricted enough to make the analyses fea-
sible. For example, in the GAL language we have inten-
tionally not introduced loops, which insures that all device
drivers can be proven to terminate. Additionally, we per-
form other analyses to detect common errors in the specifi-
cation by providing explicit information that is difficult or
impossible to extract from general purpose languages. An
example of this is checking that the bits of each register be-
long at most to one field. This information could not be re-
trieved, in general, from a driver implemented in a language
such as C.



4.3.5 GPL principles

In addition to the design goals that are specific to DSLs,
there are several principles of general purpose language de-
sign that also apply to DSL design. General purpose lan-
guages can also help DSL design by providing a standard
set of constructs that may be restricted for use in the DSL,
but would still be recognized as a common construct.

On the other hand, the cases construct introduced in
GAL is an interesting example of a construct which possi-
bly has applications in DSLs in general (when a predefined
abstraction may, conditionally, have one of several defini-
tions), but is not useful for GPLs, since the behavior is to-
tally described by the program itself and abstractions are
explicitly invoked. One of the main purposes of introduc-
ing a DSL and an application generator is to embed knowl-
edge about how to implement certain operations of the do-
main into the application generator. As a result, there are
often declarative constructs in DSLs that are translated into
executable code by the application generator, which is not
generally true of general purpose languages. Since these
declarations really imply operations, there is often a need
to make choices between the implied operations that can
only be made at run-time. This leads to the type of dy-
namic selection of multiple definitions that is provided by
the cases statement. Since a main motivation of utilizing
a DSL is to raise the level of abstraction, it will be com-
mon for DSLs to have declarative objects which imply op-
erations and require this dynamic selection. Thus, we sus-
pect that this construct will be useful in DSLs in general,
and in fact have found it necessary in other DSLs that we
have experimented with. This suggests that there are new
constructs and principles that are interesting and unique to
DSLs and warrant study.

5 Results

In this section we present the results of applying our
framework to the domain of video device drivers. The
results are presented in terms of the advantages we have
gained from using our approach for this family of drivers.
There are two aspects of the approach that led to these
advantages. One aspect is the use of DSLs and applica-
tion generators in general, and the second is specific to our
framework for application generator design.

5.1 Domain Specific Language

The GAL language demonstrates many advantages of us-
ing an application generator with a DSL for the video device
driver domain. These benefits include an increased level of
abstraction, the possibility of automated program analyses,
reuse, and productivity.

Profile of S3_TRIO64 + S3_TRIO32
Maximum resolution: 4088x2047
Maximum virtual screen: 3328x2520

(with maximum RAM)
Ram size: 512k-8192k
Clock range: 135-270MHz
Resolution limited to 2304x1728 by

the clock (max. refresh 67Hz).

Figure 3. An extract of generated S3 card pro-
file.

There are two significant examples of the benefit of a
higher level of abstraction. The first, already discussed in
section 4.3.3, is the use of ports, registers, and fields to
abstract from the low-level bitwise operations that would
otherwise have to be used. This eliminates many common
errors, is more readable, and easier to write. A second ex-
ample is an abstraction from implementation. The X Win-
dow server can be considered a framework, where the de-
vice driver provides the additional functions. As with any
framework, the device driver needs to be implemented in a
certain way in order to be compatible with the server and re-
quires considerable knowledge about the framework. Using
an application generator, knowledge about the framework
and compatibility issues are coded in the application gener-
ator, and hidden from the designer.

GAL also demonstrates that automatic analyses can be
performed on the DSL, which would not be possible or fea-
sible with a general purpose language. Example analyses
that are performed on GAL specifications include detect-
ing unused definitions, checking for exhaustive identifica-
tion of video cards, identifying overlap in field definitions,
checking for minimum requirements on predefined fields,
and generating a card profile (summary of card characteris-
tics). None of these analyses would have been feasible on
the existing device drivers implemented in C. Using GAL
not only makes the analyses feasible, but also easy to im-
plement. For example, all of these analyses for GAL were
implemented within a single day.

One particularly interesting analysis is the one which
generates a card profile. Generating a card profile is an anal-
ysis which, from the GAL specification, produces a sum-
mary of the video modes that are supported by the gener-
ated device driver. Figure 3 shows an extract of the profile
generated for the S3 specification listed in Appendix B. A
profile is generated for each subset of cards in the specifica-
tion that have the same profile. The figure shows the profile
for the S3 TRIO64 and S3 TRIO32. This summary can
be compared with vendor specifications to find mistakes in



field definitions and provides automatic documentation of
the specification.

Finally, using an application generator provides reuse by
capturing design knowledge. In the domain of video de-
vice drivers there are large benefits of reuse because there
is a large growing number of video cards which could po-
tentially be generated from a single application generator.
The amount of productivity gained depends on the ease of
building the application generator and consequently on the
approach to its design. Thus, we discuss productivity mea-
surements in the next section with respect to our framework.

5.2 Our Framework

In addition to the advantages obtained from the DSL ap-
proach, there are several advantages demonstrated by GAL
due to our framework of generator design. The experi-
ment shows that the framework achieves automatic and pre-
dictable generation of efficient video drivers, and a high-
level of reuse. GAL also demonstrates that the benefits of
the two-level approach for analyses and multiple implemen-
tations are of practical value.

5.2.1 Reuse and Productivity

The abstract machine for X Window device drivers consists
of 95 small C procedures totaling 1200 lines. Implementing
the abstract machine has roughly the same difficulty level
as implementing a single driver directly, as the code is very
similar. Since we had existing device driver implementa-
tions, some of the abstract machine code could be reused
from those drivers.

Table 2 summarizes the number of lines of code in the
GAL system in comparison to writing drivers in C. The
interpreter for GAL consists of 4300 lines of C code and
an automatically generated parser, much of which concerns
building an environment and look-up routines for declara-
tions. Thus, together the system consists of about 5500
lines of C code. We can compare this to the size of the ex-
isting hand-coded drivers which averaged about 1500 lines.
Though the effort required to build an interpreter should be
less than that for building a device driver, we can estimate
that the application generator requires a little more than 3.5
times the effort of an individual driver (assuming code size
proportional to effort).

For the version of the X Window server we used, the ex-
isting drivers together consisted of 35000 lines of code. The
GAL specifications that have been written are at least a fac-
tor of 9 smaller than the corresponding existing C driver .
We can then estimate that these drivers could be generated
from less than 4000 lines of GAL specifications plus the
5500 lines of the generator, totaling less than 10000 lines.
This is an estimated productivity gain of a factor of 3.5. In

Average lines Total lines
per driver for all drivers

GAL generator 5500
GAL driver(s)
(estimated) 167 3900
GAL generator 9400
plus driver(s)
C driver(s) 1500 35000

Table 2. Lines of code summary.

practice there would be a higher gain, since GAL specifi-
cations are easier to write then the corresponding C driver.
In addition, having an interpreter for GAL provides a pro-
totyping environment.

5.2.2 Efficiency

Here we consider two measures of efficiency: object code
size and execution speed. Although designing an inter-
preter is easier than designing a compiler, there are signif-
icant losses in speed and size (compared to compilation).
In terms of speed, interpreters are typically 10-100 times
slower than compiled programs, and in terms of size, our
GAL interpreter is 10 times larger than a typical driver in
object code size. However, a benefit of using partial evalu-
ation is that we can regain the loss in efficiency.

We used Tempo [11], a partial evaluator for C, as the
program specializer used to translate GAL specifications to
abstract machine programs, and to produce an efficient im-
plementation of the abstract machine programs. In order to
make a size comparison, we compared the object file sizes
of the generated drivers to that of the hand-coded drivers.
On average, the generated driver is only 30% larger than
the hand-coded one. One main difference that lead to an
increase in code size is that the hand-coded drivers often
use loops to access a block of contiguous registers. GAL
does not recognize when registers are contiguous, although
it could. A second difference is that hand-coded drivers are
not always careful about saving and restoring all registers.

The speed of most of the device driver functions are
insignificant, as they are only called during configuration.
However, we picked three device driver functions used for
drawing lines and rectangles in hardware to benchmark per-
formance. Since the interpreter level of our framework is
guaranteed to be eliminated (see section 2), we are only
concerned with the abstract machine layer.

For comparison, we prepared three versions of the X
Window server for an S3 TRIO64V+ video card on a Pen-
tium PRO-200. Table 3 shows the timing results for the
three servers. The S3 XAA server is the X Window server
provided with XFree86 and the included hand-coded S3 de-



Server lines/s percent
S3 XAA 189,000 100
S3 AM 150,000 79
S3 PE 191,000 100

Server rectangles/s percent
S3 XAA 203,000 100
S3 AM 169,000 83
S3 PE 205,000 101

Table 3. Performance results.

vice driver. S3 AM is the same server with a device driver
which directly uses the abstract machine. Finally, S3 PE is
the same server using the abstract machine, but after par-
tial evaluation. The table shows the performance of these
servers for lines and filled rectangles of size 10 as measured
by the standard XBench benchmark utility.4 The table also
includes a percentage using S3 XAA as a baseline.

The table indicates that there is a loss of about 20% in
performance from the use of the abstract machine. This loss
of performance can be contributed to error checking, inter-
pretation, function call, and data copying overhead. Data
copying is due to the need to communicate across abstract
machine operations. The write operation includes error
checking to insure that if previous operations fail the re-
sulting data is not written to the card. This is particularly
important because the card could otherwise be damaged.
Finally, the I/O operations require some interpretation of
their parameters to determine the type of I/O to perform
and which addresses to use. Although directly using the
abstract machine incurs this performance loss, the results
for the S3 PE server show that the program transformations
performed by partial evaluation are able to recapture all of
the performance loss. A majority of the error checking can
also be eliminated using Tempo because often the opera-
tions preceding write operations can not fail, and thus error
conditions do not need to be checked. Finally, the param-
eters which are interpreted to select the type of I/O to per-
form and used for address computation are known and elim-
inated by Tempo. Tempo also performs inlining and copy
elimination which eliminates function call and data copying
overhead.

5.2.3 Analyses

Our framework for application generator design contributes
in two ways to the use of program analyses. The generation
process is predictable and can be analyzed, and the sepa-
ration of the abstract machine from the interpreter allows
analysis at the abstract machine level.

4A small size is used to ensure measurements are not dominated by
hardware operations which are independent of the driver.

As an example, the GAL abstract machine includes op-
erations that allocate and deallocate temporary storage and
operations which use the temporary storage. As long as the
operations which use the temporary storage are only used
between a set of allocate and deallocate operations, we can
insure there will be no uninitialized pointer dereferences.
The analyses of partial evaluation are capable of produc-
ing a specification of all the programs that could possibly
be generated by the partial evaluation process. From this,
we can obtain a formal description of all possible abstract
machine programs that could be generated, and can check
that the operations are always generated in the correct or-
der. Thus, for the GAL system we can prove that uninitial-
ized pointer dereferences will never occur. This description
of the generation process may also be analyzed for perfor-
mance properties, for example.

The separation of the abstract machine and the DSL pro-
vides an intermediate level at which analyses can be per-
formed and could allow analysis at run-time. In fact, this
separation corresponds to a standard technique of program
specification, which factors the verification process into two
parts [3]. As an example of analysis at run-time, we may
wish to check that device access within a video driver is
safe (e.g., does not access the disk device). This cannot be
done until run-time because it depends on what devices are
present at run-time. In this case, we might accept video
drivers in abstract machine form and analyze the abstract
machine at run-time. Partial evaluation can be performed
at run-time [12], so the efficiency can still be recaptured.
This kind of analysis is not feasible on machine code or
even Java bytecodes due to their general purpose nature. In
proof-carrying code [24], the burden of proof is put on the
programmer and the proof is sent with the code to be ver-
ified (verification being easier), whereas here we make the
proof easier so that it can be done at run-time.

5.2.4 Multiple implementations

The video device driver family also demonstrates a use-
ful application of having multiple implementations of in-
terpreters and abstract machines. In this domain, it would
be desirable to have abstract machines for several architec-
tures and interpreters for different operating systems. For
example, Figure 4 shows the situation where there are im-
plementations of interpreters for Microsoft Windows 95 and
Linux/X11, and implementations of the abstract machine
for the Dec Alpha and Intel based computers. In this situa-
tion, with the equivalent of two application generators (in-
terpreter/abstract machine pairs), the same GAL specifica-
tion can be used to generate four different device drivers.
We have implemented the X11/Intel path of Figure 4.

For prototyping, we have also benefited from having
a second implementation of the abstract machine which
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Figure 4. Multiple implementations.

simulates the abstract machine operations. The simulation
records the values that would be written to the card by the
real abstract machine. This is an important feature as some
video adaptors can be damaged by writing inappropriate
values to the card.

6 Conclusions and Future Work

Domain specific languages hold the promise of deliver-
ing high payoffs in terms of software reuse, automatic pro-
gram analysis, and software engineering. In this paper we
have presented GAL, an example of a complete DSL for
a realistic program family: video device drivers. We also
demonstrated the benefits of DSLs by showing how GAL
raises the level of abstraction of device driver specifications
and identifying some analyses that can be performed on
GAL specifications because it is domain specific.

A further contribution of the paper is to validate our
framework of application generator design by applying it
to this program family to provide an implementation of
GAL. Since our implementation is based on partial evalu-
ation, it provides a complete interpreter for prototyping de-
vice drivers, but still automatically generates efficient de-
vice drivers. Efficiency is demonstrated with results com-
paring hand-coded drivers to automatically generated de-

vice drivers. Generated drivers are roughly one third larger
than hand-code drivers and perform equivalently in terms
of speed. Additionally, we give measures on expected
reuse benefits; GAL specifications are roughly a factor of
9 smaller than a driver hand-coded in C.

The techniques presented in this paper have also been ap-
plied to the active networks domain [31]. In this work, we
have developed PLAN-P, a DSL for active networks. By us-
ing techniques for run-time specialization, we have success-
fully specialized PLAN-P programs at run time to achieve
the effect of a just-in-time compiler (JIT). Experimental re-
sults show that the programs produced by the run-time spe-
cializer incur no overhead in overall system performance in
comparison to using hand-written C code. Furthermore, in
comparison to Java, another mobile code approach, the spe-
cialized program is twice as fast as an equivalent Java pro-
gram compiled with an optimizing off-line byte-code com-
piler.

Although our framework significantly reduces the devel-
opment time of application generators, future work could
be done in this direction. Specifically, this approach would
benefit from a generator-specific reuse method that would
allow interpreters and abstract machines to be constructed
from reused composable parts. Additionally, given the na-
ture of DSLs, they are extended frequently to adapt to new
program requirements, and the ease of extension also needs
to be considered for such language components.

Our implementation of the static analyses indicates that
methods of quickly constructing static analyses should also
be investigated (e.g., composable analyses). This is more
important for DSLs than GPLs, since static analyses are a
major motivation of the approach.

In this work we have presented an application of our ap-
proach to a program family with existing family members.
To further validate the approach, it is also important to study
its application to a program family which is not pre-existing.
In this case, the abstract machine and DSL might be devel-
oped from the results of a domain analysis or a commonality
analysis, such as FAST [15].
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A A Complete GAL Example

Appendix B gives a complete listing of the GAL specification for several models of S3 video adaptors. In this appendix,
we explain some of the constructs that were not included in the main text.

Although the various registers of video cards are typically accessed using an addressing scheme, there is sometimes a
sequential procedure that must be followed to access some registers. The serial construct is used to specify this kind of
procedure (see listing). The construct consists of a list of sequences of actions that should be performed on the ports to access
the registers. Thus multiple ports may be accessed during the procedure, as in the example. Each sequence consists of a
port, an operation (<= write, <=> read/write, => read), and a sequence of values for writes or registers names for reads and
read/writes. The actions in the sequence are performed from the first port to the last, from left to right in the sequence. The
mode (R read, R/W read/write, W write) to the right of the sequence indicates whether this sequence applies to reading the
registers to writing the registers or both.

The serial construct in the example defines the registers PLL1, and PLL2. In order to write values to these registers the
construct would be executed as follows. Write 3 to misc[3..2], write the value of PLL1 to seq(0x12), write the value
of PLL2 to seq(0x13), and finally, write 0, then 1, then 0 to seq(0x15)[5].

The S3 specification also includes an example of a derived field, which is not discussed in the paper. This is a field whose
value is derived from one of the standard fields. In the example, StartFIFO is a derived field. Its value is set whenever the
graphics mode is set, and is based on the value of HTotal, the horizontal resolution. The declaration indicates this with the
from clause.

The clockmap is used when a card has both fixed and programmable clocks such as the S3 Trio cards. It indicates which
clocks are fixed and which are programmable. The example for the S3 indicates that clock 0 and 1 are fixed, clock 2 is not
available (NA), and clock 3 is the programmable clock f3. The parameters MinPClock and MaxPClock are also related to
clocks and specify the minimum and maximum values that can be generated by the clock (i.e. not all values of f3M, f3N1,
and f3N2 are valid).

Finally, the operating mode access is used to lock an unlock registers on the card.

B GAL S3 Listing

-- List all cards/models supported by this driver.
chipsets S3_911,S3_924,S3_80x,S3_928,S3_864,S3_964,S3_866,S3_868,

S3_968,S3_TRIO32,S3_TRIO64;

-- Define ports.
port svga indexed:=0x3d4;
port seq indexed:=0x3c4;
port misc := 0x3cc, 0x3c2;

-- Define registers.
register Miscr:=misc;
register Slock:=seq(0x8);
register Offset:=svga(0x13);
register ExtChipID:=svga(0x2e);
register ChipID:=svga(0x30);
register Memory:=svga(0x31);
register State:=svga(0x36);
register Lock1:=svga(0x38);
register Lock2:=svga(0x39);
register StartFIFOr:=svga(0x3B);
register Misc1:=svga(0x3a);
register Control:=svga(0x42);
register Control2:=svga(0x51);
register HOverflow:=svga(0x5D);
register VOverflow:=svga(0x5E);



register Control3:=svga(0x69);
-- Serial registers (see appendix A).
serial begin
misc[3..2]<= (3,- ,-,-,-) W;
seq(0x12)<=> (-,PLL1,-,-,-) R/W;
seq(0x13)<=> (-,PLL2,-,-,-) R/W;
seq(0x15)[5]<=(-,- ,0,1,0) W;

end;

-- Define predefined fields

-- Horizontal resolution fields.
field HTotal := HOverflow[0]#std;
field HEndDisplay := HOverflow[1]#std;
field HStartBlank := HOverflow[2]#std;
field HStartRetrace := HOverflow[4]#std;

-- Vertical resolution fields.
field VTotal := VOverflow[0]#std;
field VEndDisplay := VOverflow[1]#std;
field VStartBlank := VOverflow[2]#std;
field VStartRetrace := VOverflow[4]#std;

-- Virtual screen fields.
field LogicalWidth := Control2[5..4]#Offset scaled 8;
cases
for S3_928,S3_968,S3_TRIO32,S3_TRIO64
field StartAddress := Control2[1..0]#Memory[5..4]#std;

for S3_80x
field StartAddress := Control2[0]#Memory[5..4]#std;

for S3_864,S3_964
field StartAddress := Control3[4..0]#std;

for others
field StartAddress := Memory[5..4]#std;

end;

-- Define derived fields (see appendix A).
field StartFIFO from HTotal := HOverflow[6]#StartFIFOr offset 10 scaled 8;

-- Special S3 flags that must be set for 256 color graphics modes.
enable SVGAMode sequence is Misc1[4]<=1,Memory[3]<=1;

-- Define standard parameters.
param TwoBankRegisters:=false;
param InterlaceDivide := true;

cases
for S3_911,S3_924
param RamSize:=State[5] mapped (0=>1024,1=>512);

for others
param RamSize:=State[7..5] mapped (0=>4096,2=>3072,3=>8192,4=>2048,5=>5120,

6=>1024,7=>512);
end;



-- Define clocks.
cases
for S3_TRIO32,S3_TRIO64
param NoClocks:=4;
field ClockSelect:=Miscr[3..2];
param MinPClock:=135;
param MaxPClock:=270;
field f3M:=PLL2[6..0] offset 2 range 1 to 127;
field f3N1:=PLL1[4..0] offset 2 range 1 to 31;
field f3N2:=PLL1[6..5] mapped (0=>1,1=>2,2=>4,3=>8);
clock f3 is 14318*f3M / f3N1*f3N2;

clockmap is (fixed,fixed,NA,f3);
for others
param NoClocks:=16;
field ClockSelect:=Control[3..0];

end;

-- Identification procedure.
identification begin
1: ChipID[7..4] => (0x8=>step 2, 0x9=>S3_928, 0xA=>S3_80x, 0xB=>S3_928,

0xC=>S3_864, 0xD=>S3_964, 0xE=>step 3);
2: ChipID[1..0] => (0x1=>S3_911,0x2=>S3_924);
3: ExtChipID => (0x10=>S3_TRIO32, 0x11=>S3_TRIO64, 0x80=>S3_866,

0x90=>S3_868, 0xB0=>S3_968);
end;

-- Register locks on S3 chips.
enable access sequence is Lock1<=0x48,Lock2<=0xA5,Slock<=0x6;
disable access sequence is Lock1<=0x00,Lock2<=0x5A,Slock<=0x0;


