NeeDrop: Self-supervised Shape Representation from Sparse Point Clouds
using Needle Dropping — Supplementary Material

Alexandre Boulch®

Pierre-Alain Langlois?

Gilles Puy! Renaud Marlet!?

"Valeo.ai, Paris, France 2LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France

We provide here complementary information about the
paper “NeeDrop: Self-supervised Shape Representation
from Sparse Point Clouds using Needle Dropping”:

We present the network architecture used in our exper-
iments, as well as the training details.

We provide a complete derivation of the loss expres-
sion defined in the main paper.

We analyze the latent space of shape representations
through shape generation, shape interpolation, latent
space visualization and classification.

We study the validity of the needle dropping construc-
tion hypothesis.

[El We analyze the impact of two point-sampling strate-
gies: with or without resampling.

[Gl We compare the quality of our reconstructions with
ShapeGF, that generates point clouds rather than
meshes.

[l We evaluate the robustness of our trained models to in-
put noise and to variations of numbers of input points.

[H We present additional results on the KITTI dataset,
including reconstruction with networks trained on
ShapeNet to test the robustness to domain gaps.

Ml We give pseudo-code for the loss defined in the paper.

Note: reference numbers for citations used here are not
the same as references used in the main paper; they corre-
spond to the bibliography section at the end of this supple-
mentary material.

A. Network

In this work, we build on the network from Occupancy
Networks [13]], which has an encoder-decoder architecture
as presented in Figure 5]

Encoder. The encoder, illustrated in Fig.Eka), is a Resid-
ual PointNet [[15]] composed of 5 residual PointNet blocks,
each containing two linear layers and a skip connection.
The encoder is applied point-wise. To gather global in-
formation at the output of each residual block, we use a

Residual
- F@ PointNet
L

— U pe
PS- . . | . . { IL S
—»O’PS

(a) Encoder

Conditional

BatchNorm
i]

Conditional

i N \ Residual

—L — I Block
Zpg

S N N N N\
X - = = == —®(Ps,x)

(b) Decoder

Linear Optional linear layer
layer (if input/output dim. differ)

@ Concatenation

Figure 5. Network used in NeeDrop, similar to [[13]]

BatchNorm

global max-pooling layer (over all points of the point cloud)
and concatenate the local feature vector (at point level) and
the global feature vector (at point-cloud level) before enter-
ing the next block.

As mentioned in Section 3.3.1 of the main paper, our
model is trained as a variational auto-encoder. Hence, our
encoder outputs two vectors p1ps and o pg, that encode re-
spectively the mean and standard deviation of the normal
distribution used for generating the latent code z p, at train-

ing time. At test time, we use zp; = [t pg to be determinis-
tic with respect to the input point cloud.

Decoder. The decoder, illustrated in Figure Ekb), is a con-
ditional multi-layer perceptron (MLP) [|6,8]]. It is composed
of five conditional residual block. Each block is condi-
tioned at batch normalization by the latent code zp,. The
query point, x € R3, is the location at which the occupancy
is estimated. Note that the occupancy is estimated with
S(¢(Ps,x)), where S is the sigmoid function, not repre-
sented in Figure [5|(b).

Parameters. In all our experiments, the latent vector size
representing a shape is set to 256. The hidden size of the
encoder is also 256, and the latent size of the decoder is set
to 512. The batch-norm layer is the usual 1-dimensional
batch normalization.

Training procedure. The encoder and decoder are
trained end-to-end. In all experiments, we use Adam [12]
as optimizer with an initial learning rate set to 1073, To
train with mini-batches, we generate the same number of
opposite-side needles (300, the same as the input point
cloud size) and the same number of same-side needles
(2048, to cover the space around the shape) for each model.
The batch size is set to 32.

In practice, we observed a low dependency of the per-
formance to the number of needles (e.g., doubling the size
of Qopp and Qsame), 50 we chose these parameters values
to permit us to train the model with a middle range GPU
NVidia 2080Ti.

Computational cost. Our only additional cost w.r.t.
occupancy-supervised methods is the computation, at train-
ing time, of nearest neighbors, which is little in our setting.
Distance-based methods have a similar “extra” cost as ours.
B. Loss derivation

In the main paper, the final loss and partial derivative
expressions, i.e., Eq. (13) and Eq. (14), are given without a
complete derivation. We derive here these expressions.

B.1. Training loss

The binary cross entropy reads as

BCE(bx,y, by) = — b3, log(bx.y)

XY VXx,y
— (1= bgy)log(l —bxy), (15)
where, recalling Eq. (4) of the main paper,
bxy = bx by + (1 — bx)(1 —by). (16)

Subsbituting the expression of by y in Eq. (I3)) yields
BCE(by,y, by) =
= by log(bxby + (1 = bx)(1 — by))
— (1= by) 10g(1 — bxby — (1 — by)(1 — by)).
17)

Then, using the fact that bx = S o ®(Ps,x) and b, =
S o ®(Ps,y), where S is the sigmoid function, we obtain:

BCE(bxy, by) =
eP(Psx)e®(Psy) 4 1

(e®Psx) + 1)(e®(Psy) 1 1)>
eq)(P‘va) + e‘i)(P51y)

(e®(Psx) 4 1)(e®(Ps:y) + 1)):
(18)

Finally, we can simplify the expression by noticing that the
denominators in the log terms are identical. It yields:

BCE(bx,y, b%y) :log(e¢(P51x) +1) + log(e<1>(P57Y) +1)
— bg’y log(e‘b(Ps’x)e‘b(PS’Y) +1)
0 @(Ps x @(Ps,
— (1 -9) log(e (Psx) 1 o®(sy))
zlog(e‘b(Ps,x) +1)+ log(ed)(Ps,y) +1)
_ bg,y log(e<1>(Ps,X)+<I>(Ps,y) +1)

-(1- bi,y) 1Og(e‘1’(PSVX) + 6‘1’(Ps,y))_
(19)

0
—byy log(

- (1 - b?{,y) lOg(

B.2. Gradient

The gradient that backpropagates in @ is
OBCE/0®(x) + OBCE/0®(y). As x and y are in-
terchangeable in the loss expression, we derive only the
x-term. We have:

OBCE (byy, 1)

= 5(®(x)) — b2, S(2(x) + P(y))

0P (x)
—(1-bgy) S(®(x) — (y)),
(20)
where we used the facts that
Olog(e® +1) _ e S(a), @1

Oa ea—l—lz

a+b a+b
Olog(e®™ +1) _ e _ S(a+b), (22)

Oa eatb 1
and
Olog(e® +eb+1) e ea?
— = = S - b .
Oa ev+eb eab41 (a—0)
(23)

The gradient expression can be further simplified by ex-
ploiting the fact that bg’y =1 when (x,¥) € Qsame, and
b%y =0 when (X,y) € Qopp-

C. Latent space analysis

In this section, we propose an analysis of the latent space
through an evaluation of the generation capacity of the net-
work, the possibility of interpolating in the latent space be-
tween two shapes, as well as a visualization of the latent
space itself over a multi-class dataset.

C.1. Shape generation

We use the same network as in Occupancy Net-
works [|13]], which uses a variational auto-encoder formula-
tion. As in previous works, we can use our trained network
for shape generation. In our network, the encoder outputs a
latent vector zs representing the shape; the decoder outputs
the probability of occupancy given the latent code and the
spatial coordinates of a point at which to evaluate the occu-
pancy. We add a latent regularization term similar to [[13] to
the training loss so that the latent space allows generation
and interpolation between shapes. For a complete overview
of variational auto-encoders, one could refer to [[7].

Instead of generating a latent vector from Ps, we pick
a random zgs and reconstruct the shape based on this latent
vector. A few generation results are shown in Figure[6]

Generation for a model trained on a single category.
We show in Figure[6|a) some shapes generated with a model
trained only on cars. The latent code zs is generated ac-
cording to a normal law where the mean and standard devi-
ation are computed over the train set. We observe that our
NeeDrop model is able to generate plausible shapes, includ-
ing details such as wing mirrors or bumpers.

Conditional generation. In Figure |§kb), we show a few
conditional generation results for several classes of the
ShapeNet dataset. For conditional generation, we follow
the same procedure as in the previous section, except for
the normal distribution parameters that are evaluated on the
train set restricted to the desired category.

C.2. Shape interpolation

To illustrate the consistency of NeeDrop’s latent space,
we show here that it can be used to interpolate smoothly be-
tween two shapes via a simple linear interpolation between
the corresponding latent codes: no spurious artifacts or in-
termediate shapes unrelated to the end-point shapes appear
on the linear path from one latent code to another.

In Figure[7] we present interpolations between three cou-
ples of shapes. For each row of the figure, we linearly in-
terpolate the latent vectors with a fixed step and show the
reconstructions. Please note that each row corresponds to
different object categories but a single network is used for
all of them, trained on all categories of ShapeNet.

(a) Random generation with a model trained only on cars

(b) Random generation with a model trained on all categories

Figure 6. Shape generation with NeeDrop using latent vectors ran-
domly sampled according to the target class distribution.

We observe good interpolations between the shapes, with
a smooth transformation from one shape to the other and
without unrelated shapes appearing along the path (e.g., a
chair interpolated between cars). Each interpolated shape
seems a plausible realization of the category it belongs to.

C.3. Latent space visualization

In order to further study the latent space of the multi-
category ShapeNet models, we perform a Principal Com-
ponent Analysis (PCA) of sampled latent vectors with 2 or
3 principal dimensions. Corresponding visualizations are
displayed on Figure [§] We represent each category with a
different color to emphasize the natural clustering of the la-
tent vectors for each shape category.

We can see clusters of shapes from the same category,
sharing common geometric features (e.g., wings for planes).

s

Shape 1

Shape 2

Figure 7. Linear interpolation in NeeDrop’s latent space between two shapes (shape 1 and shape 2) of the test set.

(a) 2D PCA

< - //
.

fr I
\\\ \ // - ’

\\l/’// \\[/ /
(b) 3D PCA

Figure 8. Principal component analysis of the latent space of the
network trained on ShapeNet parts, with one color per category.

As the clusters are mostly separable (one model category
per cluster) and somehow convex, any linear interpolation
between two shapes of the same class will likely remain in
the cluster. Figure[§]visually accounts for the success of the
previously presented interpolations.

Method | Overall accuracy
SVM 94.5%
MLP 93.2%

Random Forest 93.3%

Table 2. Accuracy of classifiers learned on the latent representa-
tions of ShapeNet parts.

C.4. Classification based on latent vectors

In order to further investigate the separability of the
classes in the latent space, we train three simple classi-
fiers on the latent vectors from the train set and evaluate
on the test set. Please note that for ShapeNet, we use the
train/test split used usually for part segmentation. It con-
tains 13 very different model categories, from planes to
chairs. We experimented with three classifiers: a Support
Vector Machine (SVM) [5]l, 1-hidden-layer multilayer per-
ceptron (MLP) and a Random Forest [10]).

The results are presented in Table 2] All classifiers per-
form more or less equally well, with more than 93% overall
accuracy. Besides, the parameters of the classifiers were not
tuned for this experiment; we used the default parameters
provided by the Scikit-Learn library [14]]. These results val-
idate the fact that the different shape categories are mostly
separable in the latent space, as can be seen in Figure|[]

D. Needle dropping analysis

As described in the main paper, the loss function is com-
posed of two terms: Lopp and Lgame. The former, computed
on the set Qopp of “opposite-side” needles, aims at setting

different labels on the different sides of the surface. The
latter, computed on the set Qgme Of “same-side” needles,
enforces consistent labels inside and outside the shape.

The construction of valid Qopp and Qgame is critical in our
approach. Ideally, these two sets of needles should contain
only “good” needles, i.e., needles for which their end-points
are indeed on opposite sides of the surface for ()opp, and on
the same side of the surface for Qgme. In practice, as the
method is fully self-supervised, such objective is difficult to
reach and each set contains wrong needles.

D.1. Needle error localization

Figure |§| presents a random draw of Qopp and Qgame ON
two shapes, for the default value of o,. Correct needles are
green and wrong needles are red.

First, we observe that a majority of the needles are green,
which validates the default value used for on(p) = dp/3,
where dj, is the distance between a point p to its closest
point in P.

Second, the number of errors on Qs,me appears to be ap-
proximately the same on both 3D models.

Third, we observe more errors in (Qopp on the plane
model than on the car model. One possible explanation
is that Qopp is sensitive to the curvature of the surface to
be estimated. To validate this assumption, we compute the
curvature of the ground-truth surface, as illustrated on Fig-
ure [T0fa), and compare it to the concentration of error for
Qopp»> as shown in Figure b). These concentrations are
obtained by aggregating a large number of random pickings
of Qopp. Each wrong needle votes for the closest vertex of
the surface mesh and a Gaussian filter is applied for smooth
visualization. We may observe that the errors for Qopp in-
deed concentrate in high-curvature regions.

D.2. Needle error statistics

The construction of Qopp is based on the hypothesis that
the surface is locally planar. At the scale of observation
(on), this assumption holds in mostly planar parts of S
(0 curvature), but it is erroneous in high-curvature areas.
A seemingly good solution would be to reduce o}, such that
we observe the surface at a scale where all neighborhoods of
points are planar. In Table[3] we use different values of oy,
and compute the rate of correct needles for Qopp and Qsame.

As expected, the smaller the scale oy, the better Qopp.
But on the other hand, reducing the value of o}, simulta-
neously decreases the rate of good needles in Qsume. This
confirms that one should find a trade-off when setting oy,.

An illustration of this phenomenon on a 2D case is pro-
posed in Figure [IT} As explained in Section 3.2.2 of the
paper, when constructing (Qs,me We first pick points in space
and then build needles with the points of Pyme U Popp. We
consider 8 cases, with two oy, values (large value on the first
row and small value on the second row), two configurations

(c) Opposite-side needles, Qopp-

Figure 9. Needle dropping visualization for Qsme (b) and Qopp (c)
for two given shapes (a). Green needles belong to correct set; red
needles are in the incorrect set and should have been placed in the
other set according to the ground-truth mesh (if it could have been
known at training time).

(a) Curvature (b) Qopp error

Figure 10. Visualization of the surface curvature (a) and of the
frequency of incorrectly classified needles, estimated over several
random draw of Qsame (b).

of needles (different orientations, first and second column)
and two cases, with and without a point from Py, to build
a needle (Figure ﬂ;fka) and (b)). In the latter case, in the
illustration, the point from Py, is placed at distance oy
from the shape.

The colored areas (except those in red) represent the

Category Multiplier v Opposite- Same-
(on(p) = a®) side side

Planes 2 70.2% 92.7%

1 83.9% 92.4%

0.5 91.8% 92.0%

0.1 98.2% 91.6%

0.01 99.8% 91.5%

Cars 2 76.0% 90.6%

1 82.9% 90.7%

0.5 88.8% 90.3%

0.1 97.1% 89.7%

0.01 99.7% 89.5%

Table 3. Rate of good needles for Qopp and Qsame as a function of
on, when constructed on planes and on ShapeNet cars.

Voronoi cells around each point, inside which a sampled
point of Py yields a good needle. On the contrary, if a
new point of Py, falls in the red area, then the constructed
needle falls on the opposite side of the surface and produces
a bad needle for Qgyme. In all these configurations, reducing
o (i.e., going from first row to second row) leads to larger
red areas, thus increasing the probability of wrong needles
in Qgame. It corroborates the observation made on ShapeNet
in Table

E. Point sampling at training time

In the main paper, for comparison purposes, we followed
the same training procedure as in the previous papers, i.e.,
sampling new points on the surface of each object at each
epoch. Therefore, over a long training period of N, epochs,
the overall information originating from each shape cannot
be strictly considered to be limited to a set of 300 points.
Yet, it is not equivalent either to training with 300NV, points
because the information comes in small fractions of 300
points per shape, that have to be processed at a time. It
impacts for instance the distance to the nearest neighbor,
which is very different when computed on 300 points or on
300V, points.

Here, we perform another set of experiments with fixed
points for each training shape (same points at each epoch)
to investigate the consequences of a truly limited amount of
information on each shape at training time. In this setting,
each shape is sampled once and for all with 300 points.

Results on the three datasets used in the main paper are
presented in Table] Conclusions are threefold. First, we
notice that the training is stable, no divergence is observed.
Second, fixed-points training reaches almost the same per-
formances as training with point re-sampling. Third, the
size of the training dataset has an impact on the robust-
ness to sampling procedure: on the car subset, the aver-

aaatave
AVl

(a) No point belonging to Piyme.
E ; (o] ; E ; o ; 9

(b) A point belonging to Py, is also present.
0/0 Opposite side needle
o Point from P, already droped
Same-side point dropping area leading to wrong same-side needle
Figure 11. Influence of on on the probability of picking a wrong
needle for Qqume: (a) with only points from Py, and (b) with

points from P,p, and a point from Pme. (Pipace = Prame U Popp 18
disjoint from Ps.)

age Chamfer distance increase by 7 x 107>, while on all
ShapeNet performances are nearly identical with both point
sampling strategies.

F. Robustness to noise and density variations

In the main paper, as in previous works, we ex-
perimented without noise except for the multi-category
ShapeNet experiment where we used a very low level of
noise equal to the level used in [[13]]. In this section, we are
interested in studying further how a model behaves when
the number of input points and the level of noise differ from
the values used in the training dataset.

On Figure [T3] we present a qualitative robustness study
of the predictions of a network trained on the car subset of
ShapeNet, with 300 input points and no noise. With this
single network, and for the same test shape, we predict the
surface from various point cloud samplings: from no noise
to a high level of noise, and from the “native” point cloud

Chamfer /5 |
Point sampling | Mean Median

Resampled 1.703 1.109
Fixed 2461 1.897

(a) ShapeNet cars, closed meshes [16], results x 1074, cf. 3]

Point sampling‘IOU 1 Cha. 4y |

Resampled 0.666 0.112
Fixed 0.669 0.106

(b) ShapeNet subset of [4], all classes, results x 107%, cf. [13].

Chamfer /5 |
Sampling | 5% 50% 95%

Resampled | 0.269 0.433 1.149

Fixed 0.202 0.526 1.322

(c) DFaust, results x1072, cf. [1].

Table 4. Performance of NeeDrop on complete point clouds with
two different point sampling procedures at training time: 300
points newly sampled at each epoch on each shape (resampled);
same 300 points sampled on each shape for all epochs (fixed).

size used at training time (300 points) to a higher resolution
(up to 10k points).

First, without noise, our model is globally insensitive to
the number of points. This is due to the PointNet structure
in the encoder: the information being gathered using global
max-pooling, no neighborhood or density notions are in-
volved in the latent vector predictions.

Second, for the same small number of points, the effect
of noise is limited. We observe a progressive loss of details
and an inflation of the shape, with hallucinated surfaces ap-
pearing inside the actual car shape. This is a behavior some-
how similar to what we can be observed when looking at the
convex envelop of the point cloud with added noise.

Finally, the conjunction of noise and of an increased
number of points worsens a lot the quality of the latent rep-
resentations, and thus of the predicted shape. The point-
wise information aggregation of the encoder, which ensures
robustness to the number of points when no noise is added,
is conversely the source of non-robustness to noise: no lo-
cal averaging effect is then possible. In addition, as the
network has been trained without noise, each point is con-
sidered meaningful, thus leading to a wrong latent vector
and a resulting surface that is very complex, with a lot of
folds. This configuration is particularly challenging for the
networks as it differs a lot from the training conditions.

A solution to palliate this degradation could be to add
noise and use variable point cloud sizes at training time, or
to pre-process the point cloud with a denoising and outlier
removal algorithm [9].

< ot
(a) ShapeGF

(b) NeeDrop

Figure 12. Comparing the point cloud generated by ShapeGF to a
point cloud (of the same size) sampled on our generated mesh.

G. Comparing to ShapeGF

To illustrate why we wrote in Section 4.1 that ShapeGF
[2]] yields “noisy” points (cf. Fig. 3(a)), we scanned as many
points on our generated surface, and zoomed on a slice of
the cabin and on an engine (see Fig.[12). With ShapeGF, the
aircraft engines are somehow blurry and not well localized,
and the two surfaces of thin volumes, such as wings, cannot
be told apart.

H. Reconstructing KITTI shapes

Figure |14] presents more results in the same setting as
Figure 3(c) in the main paper. AtlasNet is trained on the
KITTI point clouds.

The figure also shows the transfer capacity of our model
between two datasets: training on ShapeNet and testing on
KITTI. We actually provide transfer results for two models
trained on the ShapeNet dataset: a first model trained with
complete shapes (model from the main paper), and a sec-
ond model trained with partial point clouds. For the latter
model, at training time, we generate partial point clouds on
the fly using the visibility operator of [[11] to simulate visi-
bility from a single viewpoint. As there exists a symmetry
plane (vertical, from front to rear of the car) for most cars,
we exploit this symmetry at training time, by concatenating
the sampled point cloud and its mirror-image symmetrized
version. Please note that although it helps densifying and
completing the training point clouds, it does not guarantee
a complete coverage of the whole shape. In particular, cars
that are seen from the front are not completed in the back
and conversely. Besides, the underside of cars remain un-
sampled as their are never seen by the lidar.

The domain gaps include: (1) going from a training on
points uniformly sampled on perfect shapes without noise to
a training on points captured by an actual lidar, and (2) go-

ing from a training on complete shapes to a training on par-
tial shapes (i.e., point cloud not covering the whole shape).

We observe that all models transfer well to the KITTI
dataset, producing plausible reconstructions.

However, contrary to our intuition, we also observe that
the model trained on partial views does not perform better
than the model trained on the complete point clouds. To
our understanding, this is mainly due to the fact a complete
point cloud carries much more information than a partial
one. The full-model latent space is therefore more guided
and constrained by the whole geometry of a car (front and
rear should exists, with four wheels for each model, etc.),
compared to a space learned only on partial point clouds.

Details of the training for the KITTI experiment. The
object-specific point clouds for cars and pedestrians are ex-
tracted from the lidar scans using the 3D bounding boxes
provided for the KITTI 3D detection challenge. Training
point clouds are generated using the training 3D boxes. The
shapes presented in the paper and in the supplementary ma-
terial are not generated from points seen at training time;
they are generated using point clouds extracted from vali-
dation 3D boxes.

At training time, as well as test time, we sample 300
points inside a given 3D bounding box. If the box contains
less than 300 points, some points are re-sampled to reach
the desired number of points. In practice, duplicating points
(in case there is less than 300 points) has no particular effect
on the predicted latent vector, beyond the fact that there is
less information to rely on. Indeed, the backbone (a residual
PointNet) processes the points independently, and operates
feature aggregation with max-pooling operations, which are
invariant to redundancy.

I. Pseudo-code of the loss

Listing[I] provides the pseudo-code of the NeeDrop loss
for Python with a Pytorch function implementation style.
This function implements equations (13) and (14) from the
paper. The only extra step needed is the clamping of the
inputs in the forward function to prevent the logarithm to
produce infinite values. Please note that this operation is
only used in the forward function, and that it has no influ-
ence on the backward function.

References

[1] Matan Atzmon and Yaron Lipman. SAL: Sign agnos-
tic learning of shapes from raw data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2565-2574, 2020.

[2] Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun
Hao, Serge Belongie, Noah Snavely, and Bharath Hariharan.
Learning gradient fields for shape generation. In Computer
Vision—ECCV 2020: 16th European Conference, Glasgow,

[3

—

[4

—

[5

—

(6]

[7

—

[8

—

[9

—

(10]

(11]

[12]

(13]

(14]

[15]

[16]

UK, August 23-28, 2020, Proceedings, Part 11l 16, pages
364-381. Springer, 2020.

Julian Chibane, Aymen Mir, and Gerard Pons-Moll. Neural
unsigned distance fields for implicit function learning. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
December 2020.

Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3D-R2N2: A unified approach
for single and multi-view 3D object reconstruction. In
European conference on computer vision, pages 628—-644.
Springer, 2016.

Corinna Cortes and Vladimir Vapnik. Support-vector net-
works. Machine learning, 20(3):273-297, 1995.

Harm de Vries, Florian Strub, Jérémie Mary, Hugo
Larochelle, Olivier Pietquin, and Aaron Courville. Modu-
lating early visual processing by language. In 3/st Interna-
tional Conference on Advances in Neural Information Pro-
cessing Systems (NeurIPS), pages 6597-6607, 2017.

Carl Doersch. Tutorial on variational autoencoders. arXiv
preprint arXiv:1606.05908, 2016.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier
Mastropietro, Alex Lamb, Martin Arjovsky, and Aaron
Courville. Adversarially learned inference. In International
Conference on Learning Representations (ICLR), 2017.
Xian-Feng Han, Jesse S Jin, Ming-Jie Wang, Wei Jiang, Lei
Gao, and Liping Xiao. A review of algorithms for filtering
the 3D point cloud. Signal Processing: Image Communica-
tion, 57:103-112, 2017.

Tin Kam Ho. Random decision forests. In Proceedings of 3rd
International Conference on Document Analysis and Recog-
nition (ICDAR), volume 1, pages 278-282. IEEE, 1995.
Sagi Katz, Ayellet Tal, and Ronen Basri. Direct visibility of
point sets. In ACM SIGGRAPH 2007 papers, pages 24—es.
2007.

Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3D reconstruction in function space. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4460—4470, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
PointNet: Deep learning on point sets for 3D classification
and segmentation. [EEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir
Mech, and Ulrich Neumann. DISN: Deep implicit surface
network for high-quality single-view 3D reconstruction. In
Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019.

class NeeDropLoss(Function):
inputO, inputl: network output logit (without sigmoid) for first and second needle end point
target: needle label for the loss to be computed with 1 for same—side, O for opposite—side

1

2

3

4

5 def forward(ctx, inputO, inputl, target):

6

7 ctx.save_for_backward (inputO, inputl, target) # save for backward
8

9 # clamp to avoid infinite value in logarithm

10 inputO, inputl = inputO.clamp(—10,10), inputl.clamp(—10,10)

11

12 e0, el = exp(inputO), exp(inputl)

13

14 loss = log(l+e0) + log(l+el)

15 mask = (target==1) # term specific to label | (same—side)

16 loss [mask] = loss[mask] — log(l+eOxel)[mask]

17 mask = (target==0) # term specific to label 0 (opposite—side)

18 loss [mask] = loss[mask] — log(eO+el)[mask]

19 return loss

20

21 def backward(ctx, grad_output):

22

23 inputO, inputl , target = ctx.saved_tensors # get saved input and targets
24

25 # gradient for input_0

26 grad_input0 = sigmoid(input0)

27 mask = (target==1) # term specific to label | (same—side)

28 grad_inputO[mask] = grad_inputO[mask] — sigmoid(inputO+inputl)[mask]
29 mask = (target==0) # term specific to label 0 (opposite—side)

30 grad_input0O[mask] = grad_inputO[mask] — sigmoid (inputO—inputl)[mask]
31 grad_inputO0 = grad_input0 * grad-output

32

33 # gradient for input_1

34 grad_inputl = ... # exact same operations as for grad_inputO with inputl
35

36 return grad_inputO , grad_inputl , None

Listing 1. Needrop loss pseudo-code (PyTorch style)

Noise level (standard deviation of the Gaussian noise)
0 0.005 0.007 0.01

175}
2
=
. —
15)
a,
Y
>
—
w2
a2
=
c—
15)
a,
o
S
S
w
fg
=
£
15)
a,
o
S
=)
—
w2
a2
=
c—
15)
a,
o
S
on
Increasing number
of points
—
Increasing level
of noise

Figure 13. Robustness of a single network to a varying number of points and a varying level of input noise. The framed reconstruction
corresponds to the number of points and to the level of points used at training time; all predictions have been made with the same network.

| Poisson Ball pivot. AtlasNet | NeeDrop

Training set - - KITTI KITTI ShapeNet
Reference Input raw point | raw point | complete partial
Image P clouds clouds shapes shapes

—

VLS
‘e
QTN
Ve
 dald
Qe
: 99
1N
A SO APy
VS

Figure 14. Comparison of reconstructions on KITTI car point clouds.

*W®
-
N

™
VLD
W

O0POSP OO0

	. Network
	. Loss derivation
	. Training loss
	. Gradient

	. Latent space analysis
	. Shape generation
	. Shape interpolation
	. Latent space visualization
	. Classification based on latent vectors

	. Needle dropping analysis
	. Needle error localization
	. Needle error statistics

	. Point sampling at training time
	. Robustness to noise and density variations
	. Comparing to ShapeGF
	. Reconstructing KITTI shapes
	. Pseudo-code of the loss

