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Abstract

While there has been a number of studies on Zero-Shot
Learning (ZSL) for 2D images, its application to 3D data
is still recent and scarce, with just a few methods limited to
classification. We present the first generative approach for
both ZSL and Generalized ZSL (GZSL) on 3D data, that can
handle both classification and, for the first time, semantic
segmentation. We show that it reaches or outperforms the
state of the art on ModelNet40 classification for both induc-
tive ZSL and inductive GZSL. For semantic segmentation,
we created three benchmarks for evaluating this new ZSL
task, using S3DIS, ScanNet and SemanticKITTI. Our exper-
iments show that our method outperforms strong baselines,
which we additionally propose for this task.

1. Introduction
3D perception is a critical part of many applications. We

consider here two perception tasks on 3D point clouds: clas-
sification and, more importantly, semantic segmentation.
The state of the art for these tasks is currently achieved by
deep nets trained under full supervision. Yet, while 3D sen-
sors have become more affordable, labeling 3D data has re-
mained costly and time consuming. Semantic segmentation
datasets for point clouds therefore contain a limited number
of object and scene classes, with little intra-class variation,
thus only covering partial real world situations. An option
to address these limitations is to try to make predictions at
inference time for objects unseen at training time, based on
auxiliary information regarding non-annotated classes.

Zero-Shot Learning (ZSL) only predicts classes unseen
at training time; Generalized ZSL (GZSL) predicts both
seen and unseen classes. More precisely, while transductive
(G)ZSL allows unlabeled objects of unknown classes to be
part of training data, inductive (G)ZSL forbids it, making
objects of unknown classes totally new to the model.

Much progress has been made on ZSL for image clas-
sification [60, 81, 75] and, recently, semantic segmenta-
tion [11, 80, 31, 42, 14]. But ZSL for point clouds has
only been investigated for classification and by few studies

Figure 1. Zero-shot point cloud segmentation on SemanticKITTI.
Point cloud with color gradient according to height (left image)
and ZSL segment focusing on an unseen class (right) for classes
bicyclist, traffic sign (top row), truck and motorbike (bottom row)

[15, 18, 16]. We present here the first (to our knowledge)
3D GZSL approach for semantic segmentation.

Classification makes sense for individual objects that are
more or less isolated or centered. But except when making
a digital 3D copy of an object (an easy labeling time), scans
often observe a complex scene rather than a single object.
3D classification remains however relevant in the object de-
tection task, when applied to a region proposal. We believe
ZSL semantic segmentation is a more realistic scenario, ap-
plying to complex outdoor or indoor scenes as scanned by
lidars or range cameras. It can be useful in particular as a
3D pre-annotation tool, e.g., for autonomous driving where
country-specific objects (vehicles, roadsides, work barriers,
possible road obstacles. . . ) have to be widely collected and
labeled. More precisely, the most relevant task is not ZSL
but GZSL semantic segmentation, as it makes more sense
not to forget about known classes when pre-annotating.
Zero-shot segmentation can also be useful in the few-shot
scenario as a way to mine large point cloud datasets to re-
trieve some examples to be manually annotated.

Our contributions are as follows. (1) We propose a gen-
erative framework handling both ZSL and GZSL for 3D
point clouds, both for semantic segmentation and classifi-
cation. (2) We make available 3 benchmarks for 3D GZSL
semantic segmentation based, indoors, on S3DIS [2] and
ScanNet [19], and outdoors, on SemanticKITTI [3] (cf.
Fig. 1). (3) We define 2 baselines for 3D GZSL segmen-
tation, which our method outperforms on the benchmarks.
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2. Related work

2.1. Zero-shot learning for images

ZSL can be viewed as a special case of transfer learning,
where knowledge from a source domain (seen classes) and
source task (classification or segmentation) is transferred to
a target domain (unseen classes) with a target task (different
label space) [60, 81, 75]. We review some existing methods.

Attribute classifier. A first class of methods aims to
recognize new objects based on attributes [38, 21, 47, 33,
1]. Here, no attribute list is available. But methods like
ConSE [53] can also use word embeddings as attributes and
can thus be adapted for ZSL on 3D point clouds [18].

Projection methods. This class of methods creates
a mapping between an object representation and auxil-
iary data (class prototypes) such as word embeddings, e.g.,
W2V [52] or GloVe [55]. Class are then assigned in the
prototype space [22, 78, 68]. However, these methods often
face the hubness problem [59], where a (hub) class proto-
type is the nearest neighbor of a large number of other pro-
totypes. To tackle this problem, an alternative is to do the
comparison in the object representation space [66, 85].

Generative models. ZSL can be seen as a missing
data problem: no examples of unseen classes are available
at training time. Generative methods create artificially this
missing data to train a classifier under supervision [10, 82].
As in [22], a CNN extracts visual features of seen classes,
which are used to train the generative module, conditioned
on the corresponding class prototype. Generative models
are known to reduce the bias towards seen classes in GZSL
and often to be superior to projection methods [65]. A
great variety of generative modules may be used to create
artificial features. Adversarial auto-encoders [50], condi-
tional generative adversarial models [54], denoising auto-
encoders [4] or GMMNs [43] are used in [10]. Wasserstein
GANs [27] have been used in [82], and VAEs in [37, 83].

While f-CLSWGAN [82] focuses on the GAN aspect to
make generated features somehow look more realistic and
only uses the classification loss as a regularizer, our feature
generation is only driven by classification (as [11]), which
is the task target anyway. We thus save the tuning of 2 extra
hyperparameters and we do not face the difficulty to train
a GAN, as recognized in [82]. Besides, conditioning a dis-
criminator on word embeddings is probably harder than on
the simple attributes used in [82] itself. Moreover, training
a discriminator to make generated features look like real
features may be harmful with 3D datasets, that offer less
training data than image datasets, thus less samples to learn
real-looking features. The fact is we significantly outper-
form the adpatation of f-CLSWGAN 3D (cf. Table 1).

Semantic segmentation. While ZSL for image classi-
fication has been studied extensively (see above), semantic
segmentation has only recently been tackled. [86, 34] fo-

cus on the discovery of objects of interest in a scene, either
using a hierarchical open vocabulary approach [86] or split-
ting semantic segmentation into a foreground/background
segmentation step and a classification step [34].

Other methods address the problem in a GZSL setting.
[80, 31] project the object representation onto the class pro-
totype space using semantic projection layers. On the con-
trary, [11, 26, 42, 14] project class prototype representations
onto the object representation space and generate pixel-wise
features of seen and unseen classes that are used to train
a classifier. Our generative method belongs to this second
group of approaches, adapting them to the special case of
3D point clouds.

2.2. Point cloud analysis with deep learning

Simple ways to adapt 2D methods to 3D data include
conversion to range images [28, 49], image generation from
virtual viewpoints [69, 6, 40], projection on 2D planes [70]
and using voxel grids [51, 62, 57, 77, 61, 25]. Graph Neural
Networks (GNNs) have been used to limit the loss of infor-
mation due to data projection. They operate on graphs based
on 3D neighborhoods [64, 8], possibly pre-segmented [39],
using message passing [24, 44] or defining convolution in
the spectral domain [9, 20, 36]. Deep learning on raw point
clouds has now become commonplace. The points can be
processed all together, like in PointNet [56], or using a hi-
erarchical structure [58, 41, 32, 71, 5, 84, 74, 48, 76].

2.3. Zero-shot learning for 3D point clouds

To our knowledge, only 4 publications study ZSL for
point clouds [18, 15, 16, 17], and they only address the
classification task. The pioneering work [18] adapts ConSE
[53] to 3D, using PointNet [56] to create an object represen-
tation, and GloVe [55] or W2V [52] as auxiliary informa-
tion. [15] reduces the hubness problem of [18] using a loss
function composed of a regression term [85] and a skewness
term [59, 66], and extends to GZSL. The transductive case
is discussed in [16] which extends [15] using a triplet loss.
Finally, the hubness problem is addressed in [17] along with
the proposition of a unified approach for [18, 15, 16].

None of these approaches is generative. Yet, [16] trans-
poses generative 2D methods [82, 65] to 3D for comparison.
Poor results lead [16] to hypothesize they do not generalize
well to 3D because their performance in 2D is mostly due
to the high quality of pre-trained models (on millions of la-
beled images featuring thousands of classes), which do not
exist for 3D data. In this work, we show that even with
small datasets and a few classes, generative methods out-
perform the state of the art for 3D point clouds ZSL and
GZSL, and also generalize to 3D semantic segmentation.
Recently, semantic segmentation is discussed in the techni-
cal report [46], concurrent to our work. The setting used
in [46] can be referred as zero-label learning [79], i.e., the
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unseen classes are present at training time. On the contrary,
we follow a ZSL procedure, removing from the training set
all point clouds containing unseen classes. Furthermore, we
are also addressing in our method the bias problem, which
semantic segmentation faces due to the appearance of seen
and unseen classes in the same scene.

3. Method
Point cloud semantic segmentation can largely be seen as

the classification of individual 3D points, although specific
developments are required (see below). In this section, we
introduce a general generative ZSL framework that applies
both to classification and semantic segmentation.

3.1. Problem formulation

Let C be a set of object classes, P = (Pi)i∈I be a set of
objects, and Y = (yi)i∈I be the set of corresponding class
labels. For classification, an object Pi to label is a point
cloud; for semantic segmentation, it is a 3D point.

The object classes C are partitioned into seen classes S
and unseen classes U . The objects of seen classes are PS =
(Pi)i∈IS with IS = {i ∈ I | yi ∈ S}, and likewise for
unseen classes U . At training time, only objects (Pi)i∈IS

and corresponding class labels (yi)i∈IS are available.
Class prototypes. Learning from PS and generalizing

to PU without seeing any example from a class in U is im-
possible without extra knowledge. We have to rely on aux-
iliary information: the so-called class prototypes, which are
not exemplars (as no “shot” is allowed) but D-dimensional
embedding vectors. It is denoted by T = {tc ∈ RD | c ∈
C}, where each class has a single prototype. We distinguish
T S and T U , the subsets of T for seen and unseen classes.

Object representations. Our objective is to embed the
objects in P and the class prototypes in T into a common
object representation space X where objects and prototypes
of the same class have similar embeddings. The embed-
ding function for objects is denoted by φ(·) and is typically
implemented using a deep neural network. Our embedding
function for class prototypes is a generator denoted byG(·).

Training set. We consider the difficult case of induc-
tive ZSL: no data on unseen classes is available at training
time; only their class prototypes is available, at test time.
The training set thus consists of the triplets (Pi, yi, tyi)i∈IS

where (tyi)i∈IU are the class prototypes of unseen classes.
Test set. We test on objects Ptest = (Pi)i∈Itest labeled in

Ytest = (yi)i∈Itest , where Itest indexes test samples. When
Ytest contains only classes in U , it is the vanilla ZSL test
setting; when Ytest contains classes both in S and U , it is the
generalized ZSL test setting. Semantic segmentation mainly
makes sense in complex scenes with several co-located ob-
jects of different classes. As in practice, seen and unseen
classes will often simultaneously appear in a scene, we con-
sider semantic segmentation only in the GZSL setting.

Figure 2. Four-step training and inference procedure: (1) backbone
training on the seen classes, (2) generator training, (3) classifier
training with artificial unseen features for ZSL (unseen and seen
for GZSL), (4) inference through backbone and final classifier.

3.2. Our approach

Our approach relies on 3 main modules, trained sequen-
tially (see Fig. 2): a backbone feature extractor φ(·) pro-
cessing 3D point clouds, a generative module G(·) taught
to generate features x conditioned on a class prototype t,
and a classifier f(·) predicting a class ŷ given a feature x.

Backbone feature extractor. Each object Pi inP is rep-
resented by a set of 3D points P̄i. For classification, P̄i is
the point cloud Pi itself; for semantic segmentation, P̄i is
the point cloud containing the point Pi to label. The object
embedding function φ(·) is a backbone, such as PointNet
[56]. It extracts one representation x = φ(Pi) for classifica-
tion, or several (one for each point of P̄i) for segmentation.

We first train the feature backbone φ(·) under full super-
vision of the seen classes, combining it with a linear classi-
fier b(·). For each example (Pi, yi)i∈IS of a seen class, we
compare b(φ(Pi)) to yi via a cross-entropy loss to train both
b(·) and φ(·). Only φ(·) is used afterwards; b(·) is ignored.

Feature generator. The role of generator G(·) is to cre-
ate a training set of fake but realistic unseen object represen-
tations, to train a final classifier for unseen classes. These
generated features should be similar to φ(P ) for P ∈ PU ,
i.e., to features obtained if we had had access to unseen data.
For this, we use a generative approach like in [10, 11]. Un-
like φ, that is deterministic, features of class prototypes are
generated as x=G(zj , ts), where zj is a random vector and
ts ∈T S is the prototype of a seen class s∈S. G(·) is trained
to generate features xi =G(zj , tyi

) similar to backbone fea-
tures φ(Pi), from examples (Pi, yi)i∈IS of seen classes.

Final classifier. The final feature classifier f(·) is trained
with a cross-entropy loss. For ZSL, it supervised by gener-
ated features of unseen classes only, i.e., using a training set
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DU = {(G(zj , ty), y) | y ∈ U , 1 ≤ j ≤ |DU |}. For GZSL,
f(·) is trained on DU∪S , containing features generated for
unseen classes and features of the seen training data (back-
bone outputs). Classification is successful if the distribution
of generated features in DU is similar to that of φ(P ) for P
in PU (or P in PC for GZSL) and if the object representa-
tion space can be linearly separated for each class.

Inference. For inference, given a point cloud P , features
are first extracted using the trained backbone φ, then classi-
fied using the final classifier f (see Fig. 2). In other words,
inference consists in computing ŷ = f(φ(P )). Therefore,
the inference time and space complexity basically is that of
the backbone. The generator is only used at training time.

Reducing bias toward seen classes. In GZSL, both un-
seen and seen classes appear in the test set. As described
in [13], a bias toward seen classes can then be observed.
The reason is twofold. First, the feature extractor may fo-
cus only on features useful to discriminate seen classes, in-
ducing a loss of information required to deal with unseen
classes. Second, as the generator is trained only on seen
classes, it generates feature of better quality for seen classes
than unseen ones. This bias is addressed in two ways:

Class-dependent weighting. When we train the classi-
fier, the loss for unseen classes is weighted with a factor
β > 1. The assumption is that, as the generator is only
trained on seen classes, it generates lower quality features
for unseen classes, which are thus more difficult to classify.
Therefore, we give more importance to the unseen classes
at training time, forcing the classifier to focus on them.

Calibrated stacking [13]. The bias for seen classes can
be reduced at test time as a post-processing by subtracting
a small value ε from the seen-class score (after softmax).

The weight factor β and the offset ε are hyperparameters
chosen using a validation set created from the train set.

4. Experiments

4.1. Datasets and Metrics

Classification. ModelNet40 [77] is used in [18, 15, 16,
17] as a classification benchmark. It consists of 40 object
classes of CAD objects. For the ZSL setting, it is split into
30 seen and 10 unseen classes. The 10 unseen classes are
the ones of ModelNet10, which is a subset of ModelNet40.

Semantic segmentation. As it is the first time ZSL se-
mantic segmentation is tackled for 3D data, there is no ref-
erence benchmark. We created 3, based on 3 common 3D
semantic segmentation datasets. S3DIS [2] includes point
clouds of 271 scanned rooms, with points labeled among
13 classes. ScanNet [19] contains 1513 indoor scans with
annotations for 20 classes. SemanticKITTI [3, 23] pro-
vides point clouds acquired by a lidar on a car driving in
the streets. Grouping moving and non-moving objects with
the same semantics results in 19 different classes. We keep

the same 10 sequences for training but, as test sequences are
unavailable, we use the validation sequence for ZSL testing.

ZSL splits. To assess ZSL, we need seen and unseen
classes. To ease the adoption of our benchmark, we cre-
ate a single but rich ZSL split per dataset, with a variety of
difficulties, while allowing to leverage on textual semantic
proximity. To make the datasets appropriate for the induc-
tive setting, we discard, in the seen-class training set, any
point cloud containing an instance of an unseen class. It
is a hard but necessary constraint, although it reduces the
size of the original datasets. The fact is keeping all point
clouds in their entirety and learning only from labeled seen-
class points cannot qualify as an inductive setting because
the backbone can then leverage on the contextual presence
of unlabeled unseen-class points, even if these unseen-class
points do not back-propagate class information.

The small number of classes and their distribution reduce
options as there must be enough samples of seen classes to
train on. Yet to make segmentation challenging we consider
4 unseen classes in each dataset: beam, column, window,
sofa for S3DIS; desk, bookshelf, sofa, toilet for ScanNet;
motorcycle, truck, bicyclist, traffic-sign for SemanticKITI.
For indoor scenes (S3DIS, ScanNet), expected semantically
close categories are sofa (unseen) and chair (seen), and desk
(unseen) and table (seen). For outdoors (SemanticKITTI),
poles are chosen as seen while traffic signs, most of which
are attached to a pole, are not. To allow inductive ZSL,
traffic-sign poles are thus not seen at training time. Yet
the split allows to evaluate the correlation. Moreover, bi-
cycles (usually parked) are seen while bicyclists (including
the bikes) are not; it allows to evaluate the ability to add an
unseen rider onto a seen class, and conversely for motorcy-
cle and motorcyclist. Last, trucks are unseen, with no direct
correlation other than being vehicles like cars.

Metrics. We evaluate the methods with commonly used
metrics: global accuracy (Acc) and accuracy per class for
classification; average intersection-over-union (mIoU) for
semantic segmentation. In the particular case of GZSL, as
the results may be biased toward seen classes, a common
metric is to report the Harmonic mean (HM) of the the mea-
sures for seen and unseen classes (whether Acc or mIoU).

4.2. Backbone feature extractors and generators

Feature extractors. Many backbones allow point cloud
classification and segmentation. We experimented with 4,
illustrating our method is not backbone-dependent. For
classification, we chose PointNet as in [15, 18] to enable
comparisons and to show our results are not just due to a
better backbone. Besides, PointNet is only 4% less accurate
than the state of the art on ModelNet40. For segmentation,
in the absence of prior work, we chose three backbones at
the state of the art when trained under full supervision: Con-
vPoint [5] for S3DIS, FKAConv [7] for ScanNet, and KP-
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Figure 3. Effect of bias reduction parameters on HmAcc (Mod-
elNet40 classification) and HmIoU (semantic segmentation on
S3DIS, ScanNet, SemanticKITTI): (a) class-dependent weighting
factor β, (b) calibrated stacking value ε (average over 20 runs).

Conv [71] for SemanticKITTI. Each backbone is trained on
the seen classes using the recommended setting described
in its respective paper.

Generators. We tested 4 generators, as in [10, 11]: a
denoising auto-encoder (DAE) [4], a generative moment-
matching network (GMMN) [43], a conditional GAN [54]
and an adversarial auto-encoder [50]. We chose the best
performing generator on the validation sets: DAE for clas-
sification and GMMN for segmentation (see supp. mat.).

4.3. Parameter setup

Parameters governing the training are selected by cross-
validation. We create validation sets out of the training sets.

Validation sets. To create cross-validation splits, we fol-
low the ZSL protocol of [10]: we randomly select 20% or at
least 2 of the seen classes of the training data as validation
classes. The feature backbone and the generator are trained
from scratch on each split, using only the seen classes not
selected for validation. Splits are evaluated only on valida-
tion classes. For semantic segmentation, some classes are
present in almost every pillar (chunk to process for point
clouds), e.g., floor or ceiling for indoor scenes; they cannot
be selected as unseen validation class.

Number of generations. In ZSL, the final classifier f(·)
is trained on artificial examples. For classification, a study
of the impact of the number of generated examples at train-
ing allows to observe that: first, a very small dataset does
not perform well and second, a plateau is reached at about
100 samples per class, with a maximum around 500, which
is the value we select. For semantic segmentation, we fol-
low the procedure from [11], where object representations
are generated according to their frequency in the dataset.

Bias reduction in GZSL. As β is a training parameter
and ε is used for post-processing, we tune them sequentially
with cross-validation. A range study is shown on Fig. 3.

Class-dependent weighting. We observe on Fig. 3(a) the

Figure 4. Per-class accuracy for each unseen class of ModelNet40,
for each kind of embedding (word and image, see Sect. 4.5).

relative stability of the evaluation metric on all datasets/
tasks when 10 < β < 100. As a close-to-maximum value
is reached for β = 50, we use this value in all experiments.

Calibrated stacking. We then select a value of ε. As the
best ε varies substantially for each dataset (see Fig. 3(b)),
we choose it dataset-wise: 0.995 for ModelNet40, 0.4 for
S3DIS, 0.6 for ScanNet and 0.2 for SemanticKITTI.

Note that class-dependent weighting (β > 1) yields a
gain up to 2 pts on classification (see Fig. 3(a), compared to
β= 1) while calibrated stacking gains up to 8 pts. However,
it brings a gain up to 13 pts on the segmentation task, which
fully justifies the use of both bias reduction techniques.

4.4. Benchmark results

We now present the results of our method on the bench-
marks. As opposed to the previous section, where param-
eter studies were made on small validation sets created out
of the training sets, we train here on the whole training sets
of seen classes, which explains the better results we obtain.

4.4.1 Classification

We evaluate classification on ModelNet40 [77] using
classes of ModelNet10 as unseen, like [18], to allow com-
parison. Classification results for both ZSL and GZSL are
presented in Table 1 (averaged over 20 runs for our method).

Influence of auxiliary information. Results are pre-
sented for three class prototypes: Word2Vec (W2V) [52],
GloVe [55], and their concatenation (GloVe+W2V). For
both ZSL and GZSL, we observe that, while using W2V or
GloVe alone leads to similar performances, their concatena-
tion performs much better: +7.5% (ZSL), +5.4% (GZSL).

Fig. 4 provides detailed ZSL accuracy for each unseen
class and each kind of class prototype (see supp. mat. for
GZSL). We see that some classes (bed, desk, monitor, night-
stand) are incorrectly predicted (if predicted at all) regard-
less of the class prototype. Except for bathtub and toilet,
W2V+GloVe outperforms the worst of the two embeddings
by a large margin. No performance gain is however guaran-
teed by using W2V+GloVe over W2V or GloVe alone.
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Full
super-
vision

ZSL GZSL

Method W2V GloVe Glove W2V GloVe GloVe + W2V
Gener- + W2V Bias Acc. Acc. HM Acc. Acc. HM Acc. Acc. HMative Acc. Acc. Acc. Acc. reduct. S U S U S U

PointNet [56] 89.2

f-CLSWGAN* [82] X 20.7 - - 76.3 3.7 7.0 - - - - - -
CADA-VAE* [65] X 23.0 - - 84.7 1.3 2.6 - - - - - -
ZSLPC [18] 28.0 20.9 20.5 40.1 22.5 28.8 49.2 18.2 26.6 - - -
MHPC [15] 33.9 28.7 - X 53.8 26.2 35.2 53.8 25.7 34.8 - - -
3DGenZ (ours) X 28.6 29.3 36.8 X 48.8 29.3 36.6 44.7 28.4 34.7 47.8 36.5 41.3

Table 1. ZSL and GZSL classification results (in %) on ModelNet40. *: adaptation of 2D methods to 3D point clouds, implemented in [16].
Results for ZSLPC are with the best reported variant, i.e., PointNet + NetVlad [18]. For fair comparison we report results with the same
PointNet backbone. Results are averaged over 20 runs for our method.

Training set S3DIS ScanNet SemanticKITTI
Back- Classi- mIoU HmIoU mIoU HmIoU mIoU HmIoU
bone fier S U All S U All S U All

Supervised methods with different levels of supervision
Full supervision S ∪ U S ∪ U 74.0 50.0 66.6 59.6 43.3 51.9 45.1 47.2 59.4 50.3 57.5 54.5
ZSL backbone S S ∪ U 60.9 21.5 48.7 31.8 41.5 39.2 40.3 40.3 52.9 13.2 42.3 21.2
ZSL-trivial S S 70.2 0.0 48.6 0.0 39.2 0.0 31.3 0.0 55.8 0.0 44.0 0.0

Generalized zero-shot-learning methods
ZSLPC-Seg* [18]† S U 65.5 0.0 45.3 0.0 28.2 0.0 22.6 0.0 49.1 0.0 34.8 0.0
DeViSe-3DSeg* [22]† S U 70.2 0.0 48.6 0.0 20.0 0.0 16.0 0.0 49.7 0.0 36.6 0.0
ZSLPC-Seg [18]† S U 5.2 1.3 4.0 2.1 16.4 4.2 13.9 6.7 26.4 10.2 21.8 14.7
DeViSe-3DSeg [22]† S U 3.6 1.4 3.0 2.0 12.8 3.0 10.9 4.8 42.9 4.2 27.6 7.5
3DGenZ (ours) S S ∪ Û 53.1 7.3 39.0 12.9 32.8 7.7 27.8 12.5 41.4 10.8 35.0 17.1

Table 2. GZSL semantic segmentation results (in %). †Our adaption of the method. *Direct, unrepaired (failing) adaptation.

Comparison with state-of-the-art methods. Tab. 1 re-
ports scores for ZSLPC [18] and MHPC [15] as well as
the adaptation to 3D point clouds of the 2D methods f-
CLSWGAN* [82] and CADA-VAE* [65] proposed in [16].
All methods, including ours, use the same backbone.

For ZSL, our method performs the best with GloVe and
places second with W2V. Interestingly, it establishes the
new state of the art with W2V+GloVe, while the previous
state-of-the-art method [18] shows a significantly lower ac-
curacy when combining both embeddings. It could be due
to the nearest-neighbor search in a higher dimension space.

For GZSL, our approach is less accurate than baselines
on seen classes. It is due to the parameter setting policy of
our bias reduction techniques, that we set to favor similar
scores for seen and unseen classes, trading seen-class accu-
racy for more accurate unseen classes. The fact is we out-
perform on HmAcc the other methods for W2V, and reach
the state of the art for GloVe. With W2V+GloVe, we out-
perform the state of the art by a significant margin.

This shows that, contrary to what was believed [16], 2D
generative ZSL methods can successfully be transferred to

3D, and even outperform non-generative ZSL methods on
point clouds. In particular, we invalidate the hypothesis that
the success of 2D generative models relies on pre-trained
models [16]: all our networks are trained from scratch, only
on seen classes of moderately-sized 3D datasets. Transfer
to 3D however is not straightforward. In particular, contrary
to a number of other 2D ZSL methods, 2D generative ap-
proaches are known not to require reducing a bias towards
seen classes, as they work at feature level and can gener-
ate as many unseen examples as needed. Yet, because 3D
backbones trained from scratch are somehow too special-
ized on seen classes, compared to 2D backbones pre-trained
on huge datasets, we had to resort to two bias reduction
techniques to outperform the state of the art on 3D ZSL.

4.4.2 Semantic Segmentation

We now present results for semantic segmentation on
S3DIS, ScanNet and SemanticKITTI. As we are the first
to address this task, there is no method to compare with.
We however define two baselines, before comparing them
to our method. The scores are reported in Table 2.
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Figure 5. Zero-shot segmentation on scenes from S3DIS (row 1-2), ScanNet (row 3-4) and SemanticKITTI (row 5-6). For each two-row
block, first row is the ground truth, second row is our ZSL prediction. Unseen classes have pink colors.

Supervision as upper bound. To scale our results, we
train three supervised models (see grey rows in Tab. 2): with
the backbone feature extractor and the classifier trained on
all classes, seen and unseen (full supervision); with the
backbone trained on seen classes only, and the classifier on
all classes (ZSL backbone); with the backbone and clas-
sifier trained on seen classes only (ZSL-trivial). The first
model is an upper bound when all classes are seen; the
second provides an upper bound for zero-shot methods. It
performs noticeably worse than the fully-supervised model,
which hints that the backbone feature extractor trained only
on seen classes generates object representations for unseen
classes that are not easily distinguishable from seen classes.

For seen classes, our method behaves similarly with all
datasets: it reaches a mIoU around 10 points below the
maximum score (reached by ZSL backbone and a fully-
supervised classifier). However, we notice different a be-
haviour on the unseen classes. While on SemanticKITTI,
our performance is close to the performance of the ZSL
backbone, we observe a much larger gap on S3DIS and
ScanNet. This suggests that the generation of class pro-
totypes for the unseen classes is of lower quality on S3DIS
and ScanNet than on SemanticKITTI.

Baselines. We create two baselines for zero-shot 3D seg-
mentation: (1) ZSLPC-Seg is an adaptation of the ZSL clas-
sification method ZSLPC [18] to segmentation. ZSLPC is

itself an adaptation of ConSe [53] from 2D images to 3D
point clouds. (2) DeViSe-3DSeg is an adaptation of Devise-
Seg to 3D point clouds, Devise-Seg being itself an adap-
tation of DeViSe [22] from classification to segmentation,
as proposed in [11]. The two baselines rely on a nearest-
neighbor search, either in the class prototype space or in
the object representation space. However, experimentally,
searching the K = 1-nearest neighbors leads to no predic-
tion at all for unseen classes (light-red rows in Table 2). It
illustrates that adapting a ZSL method to 3D or to segmen-
tation is not straightforward. To construct meaningful base-
lines, we modify these methods by looking for the nearest
unseen class among the K-nearest neighbors. If no such
unseen class is found, then the class of the closest neigh-
bor is selected. The values of K that maximize the HmIoU
are: for DeViSe-3DSeg, K = 7, 2, 5 on S3DIS, ScanNet,
SemanticKITTI, respectively; for ZSLPC-Seg, K = 5, 2, 5.

Results. Our approach outperforms the baselines by
large margins and establishes the state of the art on the
three defined benchmark. According to the HmIoU metric,
the gap is much larger on S3DIS than on SemanticKITTI
and ScanNet. It is possible that our method deals relatively
better with a smaller number of classes, while the baseline
methods benefit more from a larger number of classes.

Figure 5 provides qualitative results of our segmentation
method on the three datasets. On S3DIS, the object are cor-
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rectly located, but the classifier hesitates between classes,
e.g., between window and board. As a result, predictions
are mixed, which produces a salt-and-pepper effect. On
ScanNet, the unseen classes sofa and toilet seem well seg-
mented, with a bit of oversegmentation on sofa. On the
contrary, the network has more difficulties to segment desks
and bookshelves. On SemanticKITTI, objects appear much
better segmented even though the mIoU for unseen classes
in Table 2 is close to the one on S3DIS. The network is more
confident, resulting in consistent segmentations, but it over-
segments some classes. The semantic similarity between a
pole and a traffic-sign, and between a two-wheeler with or
without a rider, is a useful cue for ZSL, but an issue for
GZSL, that has to tell them apart. In fact, our bias reduc-
tion boosts traffic signs and bicyclists so much that poles
and unridden bicycles are not segmented anymore. Yet, un-
seen trucks are segmented without much altering seen vehi-
cle segmentation, except for other vehicles.

It is remarkable that our framework proves to work both
for classification and segmentation. Not all classification
models adapt well to semantic segmentation. In fact, the
two baselines DeViSe-3DSeg and ZSLPC-Seg originating
from ZSL classification methods [18, 22] do not transfer
well to semantic segmentation, despite our improvements.

4.5. Image-based 3D zero-shot learning

The auxiliary information for ZSL provides descriptions
of unseen classes. Our method uses W2V and GloVe repre-
sentations as auxiliary information, which are created from
word co-occurrences in text corpora. We have shown in
the previous sections that it is possible to meaningfully link
these class prototypes to the point cloud representations.

We propose to investigate the use of an alternative auxil-
iary information based on image representations. As images
capture the appearance of objects, visual representations
should better link to object geometry. Here we describe an
object class with a small set of images, and generate a visual
representation by averaging features extracted using a CNN
pre-trained on large datasets such as ImageNet [63]. Al-
though rare, image-based representations have already been
used for ZSL, e.g., human action recognition in videos [73].

We experiment with image representations as class pro-
totype for 3D ZSL and GZSL. We consider 2 different im-
age encoders, one pre-trained with supervision (ResNet-
18 [30]) and one with self-supervision (ResNet-50 [12]).
Experiments are run with the same parameters as for text
embeddings. To generate prototypes for each class (seen
and unseen), we average the features of the top-100 images
obtained by a Google search with the class name. Results
are shown in Table 3. Results for word embeddings are re-
called from Tables 1 and 2, for comparison purposes.

For ZSL and GZSL, the two backbones performs as well
or better than their counterpart for text embeddings, even

Classif. Segmentation
ModelNet40 ScanNet KITTI

Representation ZSL GZSL HmIoU

W2V+GloVe (self-sup.) 36.8 41.3 12.5 17.1
ResNet-18 [30] (sup.) 43.6 40.0 13.9 3.6
ResNet-50 [12] (self-sup.) 37.0 36.5 15.5 5.3

Table 3. Image-based 3D G/ZSL classification and segmentation.

without further tuning of the ε and β parameters (GZSL
case). Image embeddings even outperform text embedding
for segmentation on ScanNet, but fail on SemanticKITTI. A
reason to this failure may be the presence of multiple classes
per images (e.g. bicycle/ist, motorcycle/ist, sign/pole) lead-
ing to indistinguishable representations.

SemanticKITTI left aside, the good performance of the
self-supervised representations underlines that this image-
based approach can be a competitive alternative to the usual
text-based ZSL. Indeed, in the same spirit as the non-
supervised word embeddings of W2V, our image-based ap-
proach requires little or no supervision: merely the manual
collection of a small quantity of images associated to given
class names. Moreover, looking at the class-wise accuracy
(for ResNet-18) on Fig. 4, we observe that the distribution
of accuracies over the classes with an image-based repre-
sentation is significantly different than with the text-based
representations. In particular, classes like nightstand and
monitor perform much better with image-based representa-
tions as auxiliary data. Taking the best of the two embed-
dings is a promising perspective and is left as future work.

5. Conclusion
In this study, we present a generative method for zero-

shot learning on 3D point clouds. Experiments on a clas-
sification task shows that our method reaches the state of
the art in both a classical and a generalized setting. Addi-
tionally, we show that our method can be easily extended
to zero-shot semantic segmentation. To our knowledge, we
are the first to tackle this task. We define natural baselines
for 3D zero-shot segmentation, based on state-of-the-art ap-
proaches for classification, and compare them to our ap-
proach. Our method outperforms them on the three indoor
and outdoor datasets we propose, based on S3DIS, Scan-
Net and SemanticKITTI. Besides, we introduce the use of
image-based representations as an alternative auxiliary data
for 3D ZSL and GZSL. We show that it is possible to out-
perform text-based representations in ZSL for classification.
This experiments opens new perspectives as we observe that
text embedding and image embeddings produce different
performance distribution. Future work includes merging the
two types of information to maximize zero-shot efficiency,
as well as using phrasal (multi-word) embeddings to dis-
cover complex corner cases in large datasets.
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Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds
— Supplementary Material —

We present here complementary information on the 3DV
2021 paper “Generative Zero-Shot Learning for Semantic
Segmentation of 3D Point Clouds”. It provides more details
and results on the following topics:

A. Generators:
1. implementation,
2. comparison,
3. number of generated representations.

B. Classification:
1. validation splits on ModelNet40,
2. standard deviation, best and worst accuracy,
3. sensitivity to the number of seen classes,
4. ZSL confusion matrices,
5. GZSL confusion matrices,
6. classification results on McGill and SHREC2015.
7. ablation study of bias reduction,

C. Semantic segmentation:
1. cross-validation splits,
2. semantic segmentation baselines,
3. classwise performance,
4. alternative splits,
5. visualization of class prototype spaces,
6. upper bound for semantic segmentation.

D. GZSL with image-based embeddings:
1. image selection,
2. feature averaging and normalization,
3. classwise performance,
4. visualization of class prototype spaces,
5. sensitivity to the image collection quality.

After some cleaning, code should be available in the fall
of 2021 on https://github.com/valeoai. Stay
tuned.

A. Generators
We experimented with 4 different kinds of generators

(see Section 4.2 of the paper):
• a denoising auto-encoder (DAE) [4],
• a generative moment-matching network (GMMN) [43],
• a conditional GAN (AC-GAN) [54],
• an adversial auto-encoder (AAE) [50].

We detail here their implementation and compare them.

A.1. Implementation details

To implement the generators, we basically follow the set-
tings described in more details in [10, 11].

Each of these generators is made of 2 fully-connected
layers, although with a different architecture.

Figure 2. (reminder) Training and inference: (1) backbone train-
ing on the seen classes, (2) generator training, (3) classifier train-
ing with artificial unseen features for ZSL (unseen and seen for
GZSL), (4) inference through backbone and final classifier.

• The DAE consists of a encoder and a conditional de-
coder; it is trained with a mean square error loss.

• The AAE extends the DAE with a discriminator to con-
strain the latent code with an adversial criterion so that
it follows a (normal) prior distribution; compared to
the DAE, the AAE loss include an additional adversar-
ial loss term.

• The AC-GAN generator is trained to produce condi-
tional distributions similar to the true distributions; the
training loss is the sum of a multi-label cross-entropy
loss and an adversarial binary cross-entropy loss.

• Last, the GMMN is a conditional MLP trained with a
loss penalizing the maximum mean discrepancy.

The number and size of the layers is kept consistent with
[10, 11]; we did not try to optimize them. The experiments
show that this setting also works well for generating 3D-like
features from textual class prototypes as well as from 2D
image features. More generally, we believe that generative
ZSL methods developed for 2D images can be transferred
well in this manner to handle 3D point clouds.

For training, we use the Adam optimizer [35] as in
[10, 11], keeping the same parameters regarding the learn-
ing rate (decay) and the number of training epochs. As we
use different datasets, the definition of one training epoch is
however a bit different.

• For classification, we show every point cloud of the
training set once in every epoch.
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Figure 6. Cross-validation Acc (5-split average) wrt. the number of
generated examples per class in ZSL classification (ModelNet40).

• For semantic segmentation, we use the default defini-
tion of an epoch for the respective backbone [5, 71].

A.2. Generator comparison

We ran cross-validation experiments with the four kinds
of generators. We studied the behavior of the generators on
ModelNet40 for classification and on S3DIS, ScanNet and
SemanticKITTI for semantic segmentation.

For each dataset/task, we only used validation data cre-
ated out of the available bases classes. The construction
of validation sets is described in Section B.1 for classifica-
tion, and Section C.1 for semantic segmentation. Results
are presented in Table 4. We remark that the generators do
not perform similarly and, more interestingly, that the best
generator vary from one dataset/task to the other. This is an
observation also made in [10].

A.3. Number of generated representations

With the cross-validation splits for ModelNet40, we
study the impact of the number of generated examples for
classification, as shown in Figure 6. The maximum top-1
accuracy is reached with 500 generated representations. We
then use this number of generations for the (G)ZSL classi-
fication task.

Based on these experiments, we chose to use DAE
for classification tests on ModelNet40 and GMMN for
semantic segmentation tests on S3DIS, ScanNet and Se-
manticKITTI.

B. Classification
B.1. Validation splits on ModelNet40

Cross-validation is done with 5 splits on ModelNet40,
i.e., on the 30 (seen) classes not in the 10 (unseen) classes
of ModelNet10. Following [10], we select as validation
classes in each split 20% of the seen classes, i.e., 6 classes.

B.2. Standard deviation, best and worst accuracy

The classification results presented in the paper for our
method are averaged over 20 runs. We detail in Table 5 the
standard deviations, as well as the results of the best and

worst runs. We consider that the observed standard devi-
ations, between 1.6 and 3.0 points of accuracy, are under-
standable and acceptable given the difference of modality
between the text-based class prototypes and the 3D features,
that have to be bridged. Interestingly, combining GloVe and
W2V not only leads to a better accuracy but also to a lower
standard deviation for the ZSL task. However, in the GZSL
setting, the standard deviation of combining Glove+W2V is
a bit higher compared to using only Glove or W2V only.

More detailed results are shown in Table 6, where we
report the average accuracy and standard deviation for each
class, over 20 runs. Following [18, 15, 16, 17], we report
the global accuracy (also known as the Top-1 Accuracy): a
prediction is considered as correct if it matches the ground-
truth class. Additionally, we also report the class accuracy
(Acc.), which is the (unweighted) average of the classwise
accuracy over all classes. As the ModelNet40 test set is
relatively balanced, the difference between the two kinds of
average accuracies is small.

As noted in the paper, we observe that some classes like
‘bed’, ‘desk’, ‘monitor’ and ‘nightstand’ have a very low
accuracy. Unsurprisingly, the standard deviation of the ac-
curacy for these classes is low as well. More interestingly,
the standard deviation tends to increase with the accuracy,
except for class ‘table’, whose high accuracy is rather sta-
ble. It is difficult to know the reason of this behavior without
more advanced studies, that would however be quite spe-
cific to this dataset, given its moderate size and variety with
respect to all involved parameters. The causes of this high
standard deviation may include: the absence of a similar-
enough category among the seen classes; variations when
training the generator, that never gets supervised informa-
tion on unseen classes; weak correlations between textual
embeddings and 3D features; and classification ambigui-
ties. Yet, when considering all classes together, both the
average class accuracy and the global accuracy show a mod-
erate standard deviation (around 2 points of accuracy).

B.3. Sensitivity to the number of seen classes

To study the sensitivity of our method to the number of
seen classes, we train our complete pipeline with a different
number of seen classes on ModelNet40. Note that, for this
analysis, we always evaluate the performance on the same
10 unseen classes of ModelNet40, but we train the networks
using only on a subset of the 30 seen classes. We start from
N = 10 and go on toN = 30 seen classes by selecting, each
time, the first N classes in alphabetical order. For each N ,
we train all the networks used in our pipeline from scratch.
We use the W2V class prototypes. For each N , we repeat
the experiment 5 times and report the average scores ob-
tained over these experiments.

We present in Figure 7 the global accuracy as a function
of the number of seen classes. The list of selected seen
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Dataset Task Setting Metric DAE GMMN AC-GAN AAE

ModelNet40 classif. ZSL % HM 36.0 30.5 34.6 29.8
S3DIS segment. GZSL % HmIoU 15.9 18.6 10.3 12.4
ScanNet segment. GZSL % HmIoU 7.2 9.1 6.5 6.3
SemanticKITTI segment. GZSL % HmIoU 4.4 6.1 4.1 4.3

Table 4. Comparison of the performance of the different generators for classification (on ModelNet40) and for semantic segmentation (on
S3DIS, ScanNet and SemanticKITTI), based on the validation splits. The best generators regarding this validation data (DAE and GMMN)
are kept for testing.

Figure 7. Impact of the number of seen classes for training on the ZSL classification task.

Setting ZSL GZSL

Metric Top-1 Acc (%) Acc-HM (%)

Word W2V GloVe GloVe W2V GloVe GloVe
embedding +W2V +W2V

Worst 25.5 23.5 33.3 33.5 31.8 36.4
Average 28.6 29.3 36.8 36.6 34.7 41.3
Best 32.8 35.0 39.7 38.7 38.1 44.6
Std. deviation 2.1 3.0 1.7 1.6 1.9 2.1

Table 5. Variance study over 20 runs for zero-shot classification
with our method on ModelNet40: ZSL Top-1 Acc (%) and GZSL
seen-unseen Acc-HM (%), for different word embeddings.

classes is presented on the x-axis of the graph.
We notice that the results are unstable for a number of

seen classes below 16 (‘lamp’, ‘laptop’) or below 18 (‘man-
tel’ and ‘person’). It is likely that the feature backbone is
poorly trained, or that the generator is unable to “align” the
space of class prototypes to the space of object representa-
tions when only a small number of seen classes is available.
The performance stabilizes above 18 seen classes, with a
noticeable jump in performance around 29 or 30 classes. A
possible explanation for this jump could be that the class
‘wardrobe’ helps the alignment of the space of class pro-
totypes onto the space of object representations because of

some semantic closeness to the unseen classes ‘dresser’ and
‘nightstand’ and because of geometric similarities between
point clouds belonging to these classes. To validate this
kind of hypotheses, more similar experiments would be re-
quired, changing the last, 30-th class, or changing the posi-
tion at which the class ‘wardrobe’ is included.

B.4. ZSL confusion matrices

As shown in Figure 8(a) for the ZSL setting, a lot of dif-
ferent classes are wrongly predicted as ‘sofa’ or ‘table’. It
indicates that object representations generated for these two
classes are similar to the representations of the classes that
are falsely predicted as those two classes. In fact, these two
classes are the equivalent of hubs as described in [15], ex-
cept that we use here representations in the object domain.

The confusion matrix also shows that the class ‘desk’ is
often mistaken for class ‘table’. The confusion in this case
is probably caused by the fact that the two classes are close
both semantically at text level and geometrically/visually
at 3D appearance level. This also applies to class ‘night-
stand’, that is often mistaken for class ‘dresser’. A close
textual semantics (embeddings) for these two classes could
lead to generate geometrical features that are similar, which
would make it hard for the classifier to tell apart instances
of the two classes. The fact is that classes ‘nightstand’ and
‘dresser’ look alike in the ModelNet40 dataset as the CAD
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Bathtub Bed Chair Desk Dresser Monitor
Night
stand Sofa Table Toilet

Class
Acc.

Global
Acc.

W2V 45.0 3.8 37.7 2.2 54.0 2.0 0.1 9.8 94.8 40.7 29.0 28.6
std deviation 14.8 3.7 9.6 1.0 7.9 0.4 0.1 5.5 2.3 17.2 2.3 2.1
GloVe 21.6 0.0 81.7 3.8 37.9 1.8 1.1 65.1 16.6 53.6 28.3 29.3
std deviation 7.4 0.0 7.8 2.0 17.2 0.5 1.0 3.8 7.3 14.4 2.9 3.0
GloVe+W2V 22.3 0.1 81.3 1.1 85.2 3.0 0.1 47.5 91.5 25.5 35.8 36.8
std deviation 8.8 0.2 7.3 1.0 2.3 0.5 0.3 6.3 6.3 11.0 1.4 1.7

Table 6. Classwise classification accuracy in the classical ZSL setting for W2V, GloVe and GloVe+W2V on the ModelNet40 benchmark,
i.e., using the 10 classes of ModelNet10 as unseen classes.

(a) ZSL (b) GZSL with β = 50, ε = 0 (c) GZSL with β = 50, ε = 0.995

Figure 8. Confusion matrices for zero-shot classifications in ZSL and GZSL settings. The red color map is for unseen classes, and the blue
color map for seen classes. Each row shows the distribution of the predictions of one class: the darker the color is, the more often object
points of this class are predicted as the class of the column.

models are not in a metric scale.
We can note as well that nearly no object is ever pre-

dicted as ‘monitor’, even actual monitors themselves. This
could indicate that the generated object representation for
the textual semantic embedding of this class is grossly
wrong and does not come even close to the object represen-
tation of any other class. A reason for this behavior could
be that the semantic embedding of ‘monitor’ is an outlier
in the class prototype space. Consequently, no knowledge
from scene classes can help discovering this unseen class.

B.5. GZSL confusion matrices

In Figure 8(b) and Figure 8(c), we present the confusion
matrices in the GZSL setting with β = 50 and either ε = 0
or ε = 0.995.

By comparing the two confusion matrices, we can ob-
serve the influence of the calibrated stacking in the result-
ing distribution. With ε = 0, predictions are good for the
seen classes, but unseen classes are rarely predicted. Us-
ing ε = 0.995, which is the parameter maximizing the har-
monic mean on the validation set, we clearly see a shift of
the predictions toward the unseen classes, that in fact greatly
improves accuracy. Seen classes are however negatively im-

pacted with this shift as their prediction becomes less sharp;
some of the seen classes that were correctly predicted with
ε = 0 may then be predicted as one of the unseen classes.

We can see the parameter ε as a way to counter the natu-
ral tendency of the network to classify all objects as belong-
ing to a seen (supervised) class, and re-balance the predic-
tions between seen and unseen classes.

B.6. Classification results on more datasets

Section 4.4.1 and Table 1 of the main paper compare our
method to state-of-the-art ZSL and GZSL classification on
the classic ModelNet40 [77] dataset. We complete here the
comparison by experimenting as well on McGill [67] and
SHREC2015 [45] datasets.

Following [18, 15, 16], we consider ModelNet40 classes
as seen classes, and use unseen classes from McGill (14
classes, 115 examples) and SHREC2015 (30 classes, 192
examples). To be comparable with the literature, we fol-
low [15] when adapting theses datasets for the ZSL and
GZSL tasks. It means in particular that classes appearing
in the seen classes of ModelNet40 are removed from the
McGill and SHREC2015 dataset, and are not used as unseen
classes. Besides, to be comparable with the experiments in
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at
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et

ZSL GZSL

Gen- W2V GloVe Glove Bias W2V GloVe GloVe + W2V
Method era- + W2V reduc- Acc. Acc. HM Acc. Acc. HM Acc. Acc. HMtive Acc. Acc. Acc. tion S U S U S U

M
od

el
N

et
40

f-CLSWGAN* [82] X 20.7 - - 76.3 3.7 7.0 - - - - - -
CADA-VAE* [65] X 23.0 - - 84.7 1.3 2.6 - - - - - -
ZSLPC† [18] 28.0 20.9 20.5 40.1 22.5 28.8 49.2 18.2 26.6 - - -
MHPC [15] 33.9 28.7 - X 53.8 26.2 35.2 53.8 25.7 34.8 - - -
TZSLPC‡ [16] 23.5 - - 83.7 0.4 0.8 - - - - - -
3DGenZ (ours) X 28.6 29.3 36.8 X 48.8 29.3 36.6 44.7 28.4 34.7 47.8 36.5 41.3

M
cG

ill

f-CLSWGAN* [82] X 10.2 - - 75.3 2.3 4.5 - - - - - -
CADA-VAE* [65] X 10.7 - - 83.3 1.6 3.1 - - - - - -
ZSLPC† [18] 10.7 10.7 16.1 - - - - - - - - -
MHPC [15] 12.5 11.1 - X - - - - - - - - -
TZSLPC‡ [16] 13.0 - - 80.0 0.9 1.8 - - - - - -
3DGenZ (ours) X 8.4 7.2 9.4 X 50.5 7.2 12.5 48.9 6.4 11.3 49.6 8.6 14.5

SH
R

E
C

20
15

f-CLSWGAN* [82] X 5.2 - - 74.2 0.8 1.6 - - - - - -
CADA-VAE* [65] X 6.2 - - - 80.0 1.7 3.3 - - - - - -
ZSLPC† [18] 5.2 3.6 6.8 - - - - - - - - -
MHPC [15] 6.2 4.1 - X - - - - - - - - -
TZSLPC‡ [16] 5.2 - - 82.1 0.9 1.8 - - - - - -
3DGenZ (ours) X 4.9 4.1 4.9 X 54.1 4.3 8.0 47.2 3.9 7.2 50.9 4.6 8.4

Table 7. ZSL and GZSL classification results (in %) on ModelNet40 [77], McGill [67] and SHREC2015 [45]. For a fair comparison, we
report results based on the same PointNet backbone. Results are averaged over 20 runs for 3DGenZ (not other methods). Missing figures
are due to code unavailable and previous publications not evaluating with all kinds of word embeddings.

*: adaptation of 2D methods to 3D point clouds, implemented in [16].
†: best reported variant in [18], i.e., PointNet + NetVlad.
‡: inductive baseline reported in [16].

[18, 15, 16], we use the same PointNet backbone as we al-
ready used for the experiments with the ModelNet40 unseen
classes. Furthermore, we use the same hyperparameters for
the bias reduction as we used for the ModelNet40 unseen
classes, as the same seen classes are used and no additional
cross-validation is necessary.

Results are shown in Table 7. (For a complete overview,
we also recall in Table 7 the results on ModelNet40, that
were already provided in Table 1 of the main paper.) Please
note that missing figures are due to code unavailable and to
previous publications not evaluating with all kinds of word
embeddings.

These test datasets are difficult challenges for ZSL and
GZSL as the 30 classes of SHREC2015 as well as 10 of
the 14 classes in the McGill datasets are animals, whereas
the ModelNet40 seen classes used for training do not con-
tain a single animal and focus on man-made objects. This
is probably a reason why, in Figure 3 of [18], the t-SNE vi-
sualisation of the McGill and ModelNet40 word represen-
tations looks quite disjoint. Morevoer, it can be noted that
the number of test examples for SHREC2015 and McGill
is quite low compared to the 908 test examples for unseen
classes in ModelNet40. More variation from one method to

another can thus be expected with these two datasets.
Indeed, compared to the results with ModelNet40 unseen

classes, an overall drop in Top-1 Acc. and HM can be ob-
served on McGill and SHREC2015 unseen classes, both in
our results and with the other methods. It corroborates the
difficulty of the task mentioned above.

For the ZSL task, we are a bit below the state of the art
with word2vec (W2V) embeddings, but we are compara-
ble with Glove embeddings (better on ModelNet40, not as
good on McGill, equal on SHREC2015). For the GZSL
task, which is also relevant for semantic segmentation, we
see that our framework with bias reduction achieves state-
of-the-art results (HM) on all three datasets with W2V em-
beddings, and is comparable to the best method using GloVe
embeddings (on ModelNet40, which is the only dataset
tested in the literature with these embeddings).

(In a recent unpublished work [17], better results are ob-
tained on McGill with a different backbone network. How-
ever, as the choice of the backbone network, for the same
ZSL or GZSL method, has a large impact on performance,
as can be seen in Tables 2 and 3 of [17], these results are
not directly comparable to those reported in Table 7 nor in
the main paper.)
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These ZSL and GZSL classification results validate our
approach and suggest it is relevant to use it as a general
framework to also derive a semantic segmentation method.

B.7. Ablation study of bias reduction

Section 4.3 and Figure 3 of the main paper provide an
ablation and a parameter range study for ZSL classification
(on ModelNet40), and for GZSL semantic segmentation (on
S3DIS, ScanNet and SemanticKITTI). We complete here
this ablation study with the case of GZSL classification.

Table 8 reports the results for GZSL classification on
ModelNet40 for our 3DGenZ framework with and without
our bias reduction method. It can be seen clearly that our
bias reduction improves the HM and the accuracy of unseen
classes for all kinds of word embeddings. Because bias re-
duction provides a trade-off, this improvement comes with
a drop of the performance in the seen classes, as already
described in Section B.5.

C. Semantic segmentation
C.1. Cross-validation splits

Cross-validation is done with 5 splits on S3DIS, 4 splits
on ScanNet and 3 splits on SemanticKITTI. Following [10],
we select 20% of the seen classes in each split as validation
classes with a minimum of at least 2 classes. Therefore,
we have 2, 3 and 3 selected validation classes in S3DIS,
ScanNet and SemanticKITTI, respectively.

For each validation split, as we are in the inductive zero-
shot setting, the feature backbone is trained using only seen-
class data that do not include classes selected as validation
classes, and the validation evaluations are done only on the
validation classes. We would also like to highlight again
that the unseen classes for testing are not used in the valida-
tion process.

As explained in the main part of the paper, frequently ap-
pearing classes in the semantic segmentation datasets can-
not be used as validation classes because removing them
would drastically reduce the size of the training dataset.
We present in Table 9 our choices of validation classes.
These chosen validation classes avoid reducing too much
the amount of remaining training data.

C.2. Baselines for semantic segmentation

To our knowledge, this work is the first1 to address zero-
shot semantic segmentation for point clouds. To show the
efficiency of our proposed approach, we designed two base-
lines based on previous work for zero-shot classification.

1An unpublished report on this topic was recently made public [46].
However, it operates in a different setting as the unseen classes are present
at training time, although unlabeled. In our inductive setting, strictly no
unseen class can seen at training time, which makes the task substantially
more difficult and which also reduces the size of training data to satisfy
this constraint.

As baselines, we adapted the ZSLPC [18] and DeViSE
[11] methods to semantic segmentation. However, a di-
rect adaption did not produce valuable results as we ob-
served a strong prediction bias towards the seen classes on
all datasets we experimented with (see lines for ZSLPC-
Seg* and DeViSe-3DSeg* in Table 2 of the paper). A bias
reduction mechanism was thus also needed for these two
baseline methods.

However, these methods use a different paradigm than
ours: they base classification on a nearest-neighbor search
in the space of class prototypes, whereas we produce classi-
fication scores and pseudo-probabilities (after softmax) via
a trained classifier. As a result, it was not possible to ap-
ply the same bias reduction techniques that we used (class-
dependent weighting and calibrated stacking). Neverthe-
less, we tried to rebalance unseen classes by reducing the
distance to prototypes of unseen classes by a constant value;
it is somehow similar to the calibrated stacking we are us-
ing, where the pseudo-probability of unseen classes is in-
creased by ε, but it is in a totally different and much larger
space. Unfortunately, it did not lead to valuable results.

To construct meaningful baselines, we thus had to design
a more complex bias reduction technique. To reduce the
bias towards seen classes, we proceed as follows: we search
the K-nearest-neighbors in the space of class prototypes;
if a prototype of an unseen class is present among these
K neighbors, we pick the class of the nearest prototype of
unseen class; otherwise, we pick the class of the nearest
prototype. We call the corresponding methods ZSLPC-Seg
and DeViSe-3DSeg, respectively.

As described in the paper, we select the best performing
value for K depending on the dataset (see Table 11).

C.3. Classwise performance on segmentation

C.3.1 Performance details on S3DIS

The GZSL semantic segmentation method presented in this
paper achieves a HmIoU of 12.9% on the test data of S3DIS
(Table 1 of the main paper). The detailed classwise results
are shown here in Table 10.

According to per-class mIoU, the best performing un-
seen class is ‘Beam’, and the worst is ‘Column’. However,
a relatively bad performance of the class ‘Column’ can also
be seen in the full-supervised learning scenario (FSL). This
could indicate that this class is based on visual features that
are hard to differentiate from other classes.

Regarding classwise accuracy, ‘Sofa’ also performs very
well. Yet, a large Acc with a low mIoU is the indication
that points that should be labeled with another class (than
‘Sofa’) are actually mispredicted as ‘Sofa’. The per-row
normalized confusion matrix in Figure 9 supports this as-
sumption, as 35% of the ‘Chairs’ are predicted as ‘Sofas’.
A reason could be that while substantially different geomet-
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GZSL

Method Bias W2V GloVe GloVe + W2V
reduc- Acc. Acc. HM Acc. Acc. HM Acc. Acc. HMtion S U S U S U

3DGenZ w/o bias reduct. 79.3 9.96 17.6 79.7 12.1 21.0 79.0 13.4 22.8
3DGenZ w/ our bias reduct. X 48.8 29.3 36.6 44.7 28.4 34.7 47.8 36.5 41.3

Table 8. Ablation study: GZSL classification with 3DGenZ on ModelNet40 with and without our bias reduction mechanism.

Datasets Split 1 Split 2 Split 3 Split 4 Split 5

S3DIS
Door,
Bookcase

Bookcase,
Board

Door,
Table

Table,
Chair

Chair,
Board

ScanNet
Chair,
Table,
Cabinet

Counter,
Bathtub,
Sink

Counter,
Table,
Sink

Chair,
Cabinet,
Bathtub

-

SemanticKITTI
Other-vehicle,
Person,
Motorcyclist

Bicycle,
Person,
Other-ground

Other-vehicle,
Motorcyclist,
Other-ground

- -

Table 9. Classes used for validation in the different cross-validation splits for the semantic segmentation task.

Figure 9. Confusion matrix for the GZSL semantic segmentation
of S3DIS with 3DGenZ. The red color map is for unseen classes,
and the blue one for seen classes. Each row shows the distribution
of predictions of one class: the darker the color is, the more often
points of this class are predicted as the class of the column.

rically, these two classes are close regarding textual seman-
tic, hence word embeddings.

It can also be seen in the confusion matrix that the classes
‘Beam’, ‘Column’ and ‘Window’ are often falsely predicted
as ‘Wall’, which could be due to the fact that all these
classes similarly feature large flat smooth surfaces.

The confusion matrix additionally shows that, probably
due to remaining weight issues, some seen classes have a
tendency to be predicted with the label of an unseen class,

Figure 10. Confusion matrix for the GZSL semantic segmentation
of ScanNet with 3DGenZ. The red color map is for unseen classes,
and the blue one for seen classes. Each row shows the distribution
of predictions of one class: the darker the color is, the more often
points of this class are predicted as the class of the column.

although for these seen classes the classifier is presented
with the actual 3D features, as opposed to generated ones.
For example, the class ‘Board’ is falsely predicted as ‘Col-
umn’ in 54% of the cases. This effect probably also con-
tributes to many ‘Chair’ points being predicted as ‘Sofa’.
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S3DIS
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IoU
FSL mIoU 53.9 54.4 96.5 75.9 66.0 78.7 96.0 70.3 74.1 63.1 10.2 54.1 72.4 59.6
3DGenZ mIoU 19.1 34.1 92.8 56.3 39.2 25.4 91.5 57.3 62.3 13.9 2.4 4.9 8.1 12.9
3DGenZ Acc. 19.7 39.8 96.9 58.7 43.5 25.8 92.9 61.9 80.3 20.0 9.1 62.4 23.7 -

Table 10. Classwise GZSL semantic segmentation performance (%) on the S3DIS split: fully-supervised learning (FSL), i.e., training using
annotations for both seen and unseen classes, as upper bound, and GZSL with 3DGenZ with respect to unseen classes (in bold face).

Method \ Dataset S3DIS ScanNet SemanticKITTI

ZSLPC-Seg 5 2 5
DeViSe-3DSeg 7 2 5

Table 11. Best value of bias reduction parameterK for the baseline
GZSL semantic segmentation methods.

C.3.2 Performance details on ScanNet

To complete the results presented in Table 1 of the paper, the
classwise performance in the FSL and GZSL settings on the
test set of ScanNet are reported in Table 12. The confusion
matrix for the GZSL scenario is shown in Figure 10.

Like for S3DIS, a number of seen classes are wrongly
classified as ‘Wall’. Again, it could be due to large flat sur-
faces that are shared by all of the misclassified classes.

In the unseen classes, an intriguing observation is the
bias of the ‘Desk’ and ‘Bookshelf ’ classes towards the
‘Sofa’ class. We hypothesize that features extracted by the
backbone for examples of ‘Bookshelf ’ and ‘Desk’ are closer
to generated representations for ‘Sofa’ than to generated
representations of their own class. As several seen classes
are also wrongly classified as ‘Sofa’, we suspect that the
‘Sofa’ class accumulates hard-to-classify examples besides
examples of its own class, in a hub-like effect [15] already
observed for classification (see Section B.4).

The unseen class ‘Desk’ is also often misclassified as the
seen class ‘Table’. This ambiguity exists both on the geo-
metrical and on the semantic level.

Another observation is that, compared to the Se-
manticKITTI and the ModelNet40 datasets, the bias correc-
tion is less strong towards unseen classes.

C.3.3 Performance details on SemanticKITTI

Table 13(a) provides the classwise semantic segmentation
performance for our method on the SemanticKITTI dataset
(main split). As for S3DIS and ScanNet, the Acc is much
larger than the mIoU for unseen classes. The confusion ma-
trix in Figure 11 confirms here as well that it is due to points
of seen classes being predicted as some unseen class. For
example, the instances of the seen class ‘Other vehicle’ are

Figure 11. Confusion matrix for the GZSL semantic segmentation
of SemanticKITTI with 3DGenZ. The red color map is for unseen
classes, the blue one for seen classes. Each row shows the distri-
bution of predictions of one class: the darker the color is, the more
often points of this class are predicted as the class of the column.

predicted in 91% of the cases as the unseen class ‘Truck’,
and the seen class ‘Person’ is predicted in 78% of the cases
as the unseen class ‘Motorcycle’.

There is also a cluster of classes whose textual seman-
tics and 3D appearance are strongly connected, which might
cause some confusion. These are the classes ‘Bicycle’, ‘Mo-
torcycle’, ‘Bicyclist’, ‘Motorcyclist’ and ‘Person’. Classes
‘Motorcyclist’ and ‘Bicyclist’ are used for the person as well
as the motorcycle if this person is on a (motor)bike. The
prediction on the seen classes ‘Bicycle’, ‘Person’ and ‘Mo-
torcyclist’ is in the majority of the cases distributed between
the unseen classes of ‘Motorcycle’ and ‘Bicyclist’. For the
mentioned seen classes, it is very harmful; in fact, they have
a mIoU of 0%.

It illustrates that, in this kind of setting, the class-
dependent weighting and the calibrated stacking may turn
the bias towards seen classes into a bias towards unseen
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IoU
FSL mIoU 58.0 67.5 21.2 75.5 12.0 35.2 13.6 96.5 20.6 10.7 39.9 63.3 34.2 59.5 81.1 4.8 56.9 30.0 57.4 63.4 47.2
3DGenZ mIoU 64.9 44.0 16.9 63.2 15.3 33.8 10.4 91.0 10.1 4.3 26.1 0.2 27.5 43.1 71.3 2.8 6.3 3.3 13.1 8.1 12.5
3DGenZ Acc. 75.7 68.3 27.6 78.1 35.4 40.2 12.1 97.4 18.5 5.1 31.3 0.3 44.3 56.0 83.2 3.1 13.4 5.9 49.6 26.3 -

Table 12. Classwise GZSL semantic segmentation performance (%) on the ScanNet split: fully-supervised learning (FSL), i.e., training
using annotations for both seen and unseen classes, as upper bound, and GZSL with 3DGenZ with respect to unseen classes (in bold face).
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FSL mIoU 42.0 88.6 93.6 65.8 0.0 2.7 41.1 28.9 69.7 63.7 89.4 77.1 70.5 70.7 87.5 74.4 58.6 26.7 41.6 54.5
3DGenZ mIoU 0.0 87.3 86.9 61.8 0.0 0.0 0.0 18.6 0.0 0.0 88.8 78.6 73.6 38.2 87.8 28.0 11.5 0.9 2.6 17.1
3DGenZ Acc. 0.0 91.5 87.4 74.8 0.0 0.0 0.0 19.9 0.0 0.0 93.3 89.2 79.8 38.6 94.0 66.8 57.2 32.7 90.8 -
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FSL mIoU 74.4 88.6 93.6 65.8 58.6 2.7 41.1 28.9 69.7 63.7 89.4 77.1 70.5 70.7 87.5 42.0 0.0 26.7 41.6 38.8
3DGenZ mIoU 0.0 84.5 78.9 53.5 3.9 0.0 0.0 21.8 0.0 0.0 85.4 72.6 67.8 50.1 87.9 0.0 0.3 3.0 2.0 12.7
3DGenZ Acc. 0.0 91.6 80.1 73.3 14.9 0.0 0.0 0.0 0.0 91.7 87.3 25.6 75.3 55.1 95.4 0.0 51.1 25.6 30.8 -
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FSL mIoU 88.6 93.6 65.8 2.7 41.1 28.9 69.7 63.7 89.4 77.1 70.5 26.7 41.6 70.7 87.5 58.6 0.0 74.4 42.0 51.0
3DGenZ mIoU 82.4 82.8 47.2 0.0 0.0 15.3 0.0 0.0 82.9 70.2 0.0 66.9 0.0 0.1 88.5 0.9 1.9 0.1 0.0 1.4
3DGenZ Acc. 94.4 82.9 57.7 0.0 0.0 17.6 0.0 0.0 92.1 82.3 0.0 77.1 0.0 0.1 96.0 18.3 74.5 3.0 0.0 -

Table 13. Classwise semantic segmentation performance (%) on SemanticKITTI using main split 1 (a) or alternative splits 2 (b) and 3 (c):
fully-supervised learning (FSL), i.e., training using annotations for both seen and unseen classes, as upper bound performance, and GZSL
with 3DGenZ w.r.t. unseen classes.

classes, although their parameters β and ε are specifically
and systematically adapted to the dataset. However, these
bias-reduction parameters are set by cross-validation us-
ing validation-unseen classes that are unrelated test-unseen
classes, which could be an issue.

C.4. Alternative splits

As the 3D ZSL segmentation task is new, no benchmark
is available to evaluate our method. We thus had to make
our own benchmarks, creating class splits in existing 3D
semantic segmentation datasets and curating data for induc-

tive ZSL (strictly no unseen class in training data).

To create these splits, as already stated, one of the con-
cerns is to keep as much training data as possible, which
favors less represented classes as unseen classes. How-
ever, the choice of unseen classes also defines the difficulty
of the benchmarks. Section 4.1 of the paper presents the
rationale of the split choices for S3DIS, ScanNet and Se-
manticKITTI. As we hope that our benchmarks will be used
for further research, we define here two additional splits
on SemanticKITTI, that we see as even more challenging
than the split we present in the paper, and we evaluate our
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(a) S3DIS (b) ScanNet (c) SemanticKITTI (split 1 for color)

Figure 12. t-SNE [72] visualizations of the W2V+GloVe class prototypes for semantic segmentation datasets (blue seen, orange unseen).

method on them.
In the alternative split 2 for SemanticKITTI, we start

from the split presented in the paper (main split 1) and we
replace the role of bicycles and motorbikes, i.e., ‘motor-
bikes’ and ‘bicyclists’ are now seen, while ‘motorcyclists’
and ‘bicycles’ are now unseen. The motivation for this split
is exactly the same as the one we describe in the paper, i.e.,
allowing to leverage on closely related classes. However,
we see this other split as more challenging, at least for our
backbone, as the mIoU for ‘bicycle’ is comparatively lower
in the FSL scenario; furthermore, the mIoU is even 0.0%
for ‘motorcyclist’. Results for this alternative split are re-
ported in Table 13(b). Our model achieves on this split an
HmIoU that is 4.4 points lower than the HmIoU of 17.1%
achieved on the split used in the paper (split 1). We assume
it is linked to the intrinsic difficulty of classifying ‘bicycle’
and ‘motorcyclist’, as highlighted in the FSL scenario.

An even more difficult scenario is the selection of classes
‘Bicycle’, “Bicyclist’, ‘Motorcycle’ and ‘Motorcyclist’ as
unseen, given that these four classes are all semantically
and geometrically very close and that it is difficult to tell
them apart. This assumption is confirmed by the results on
this alternative split 3, reported in Table 13(c). We achieve
an HmIoU of only 1.4%. While the accuracy of ‘Motorcy-
clist’ is quite high, the very low mIoU shows that it is very
hard to distinguish the different unseen classes and a lot of
examples are wrongly classified as ‘Motorcyclist’.

C.5. Visualisation of class prototype spaces

To assess the difficulty of transferring knowledge of seen
classes to unseen classes, we examine the textual semantic
similarities and dissimilarities of word embeddings. To that
end, we provide in Figure 12 t-SNE visualizations [72] of
the W2V+GloVe class prototypes for the semantic segmen-
tation datasets (S3DIS, ScanNet, SemanticKITTI). These
diagrams can be compared to the respective performance
Tables 10, 12, 13 and confusions matrices in Figures 9-11.

C.6. Upper bound for semantic segmentation

Following the idea of a helpful anonymous reviewer, we
experimented with 3D features as class prototypes, only to

ZSL Supervised

HM
W2V&
Glove image “ideal”

ZSL
backb.

Full
superv.

S3DIS 12.9 5.7 21.0 31.8 59.6
ScanNet 12.5 15.5 17.0 40.3 47.2
Sem.KITTI 17.1 5.3 17.5 21.2 54.5

Table 14. Comparing the ZSL results with the upper bound
(“ideal”) and with supervised models.

get a kind of upper bound as this does not satisfy the zero-
shot principle. We trained the 3D backbone under full su-
pervision using only seen classes. Then we created class
prototypes using the ground-truth segmentation masks of
seen and unseen classes, averaging features of all correctly-
classified points for each seen class, and features of all
points for each unseen class. Finally, we used our method
with these “ideal” prototypes instead of the word- or image-
based prototypes. Because these prototypes are obtained
using knowledge about the 3D backbone, we had to reduce
our bias term to zero. The results are summarized in the
Table 14. They suggest that we are probably close to the
best results one can hope for with this kind of generative
approach with that backbones.

D. Image-based representations
To built our class prototypes based on image represen-

tations, we use images of objects belonging to each class
of the datasets and extract deep features for each of these
images using a pre-trained CNN on ImageNet [63]. Details
about the selection of the images are given in Section D.1
and feature extraction is described in Section D.2. In Sec-
tion D.3 the classwise results for the different datasets are
given and in Section D.5 the sensitivity to the image collec-
tion quality is discussed.

D.1. Image selection

For each of the classes, we collect the first 100 images
returned by a Google image search with the corresponding
class name, using the option to select images with a major-
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Figure 13. The first ten images collected with Google Images and used to generate the image embeddings of ModelNet40 (unseen classes).

ity of white pixels. This search setting is used to favor the
selection of images containing only one object, typically on
a white background. We show in Figure 13 the first ten im-
ages obtained for the unseen classes of ModelNet40 using
this procedure. It can be seen that most of these images
indeed contain only one object of the desired class.

Our reason for such a setting is that we would like the
CNN to extract features that are specific to each object class,
and also with less noise coming from background pixels.

Note that this use of images in the wild comes with strictly
no annotation effort, in the spirit of zero-shot learning. The
paper actually reports results with a network pre-trained
with self-supervision [29], as well as with a network pre-
trained with full supervision.

Please also note that, although ImageNet features a thou-
sand classes, a number of seen and unseen classes in our
datasets are not classified in ImageNet (which however
does not mean they cannot appear in the background), e.g.,
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IoU
W2V+Glove self 19.1 34.1 92.8 56.3 39.2 25.4 91.5 57.3 62.3 13.9 2.4 4.9 8.1 12.9
ResNet-18 [30] full 43.3 36.5 92.7 67.7 33.8 45.9 90.8 62.9 65.5 0.8 0.7 4.9 5.5 5.7
ResNet-50 [12] self 25.0 37.0 93.5 64.1 36.8 34.6 91.4 55.4 65.4 0.3 1.0 3.4 3.9 4.1
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W2V+Glove self 64.9 44.0 16.9 63.2 15.3 33.8 10.4 91.0 10.1 4.3 26.1 0.2 27.5 43.1 71.3 2.8 6.3 3.3 13.1 8.1 12.5
ResNet-18 [30] full 50.2 40.6 15.7 61.1 8.3 32.9 9.7 90.9 5.2 0.8 26.3 0.1 24.7 43.8 72.1 3.8 8.9 15.6 8.0 3.7 13.9
ResNet-50 [12] self 56.7 42.7 16.0 59.4 13.0 35.0 10.8 90.9 7.2 0.4 29.7 11.9 25.6 40.2 72.4 3.4 10.7 15.7 11.3 3.1 15.5
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IoU
W2V+Glove self 0.0 87.3 86.9 61.8 0.0 0.0 0.0 18.6 0.0 0.0 88.8 78.6 73.6 38.2 87.8 28.0 11.5 0.9 2.6 17.1
ResNet-18 [30] full 0.0 85.6 93.3 66.0 0.0 0.0 0.0 0.3 0.0 0.0 87.7 75.3 70.3 62.4 87.4 1.5 0.3 0.0 5.7 3.6
ResNet-50 [12] self 0.0 86.4 93.0 61.4 0.0 0.0 0.8 7.2 0.0 0.0 88.9 77.9 72.8 62.3 88.0 4.1 1.9 0.0 5.3 5.3

Table 15. Classwise semantic segmentation performance (IoU in %) on datasets S3DIS (a), ScanNet (b) and SemanticKITTI (c), with three
different kinds of embeddings as class prototypes: (1) W2V+GloVe word embeddings, (2) image embeddings from a ResNet-18 fully
supervised on ImageNet [30], (3) image embeddings from a ResNet-50 self-supervised on ImageNet [12]. Unseen classes are in bold face.

seen ‘Ceiling’ and ‘Floor’, and unseen ‘Column’ in S3DIS;
seen ‘Counter’ and ‘Sink’ in ScanNet; seen ‘Building’ and
‘Road’, and unseen ‘Bicyclist’ in SemanticKITTI.

In any case, even objects of classes that appear both
among ImageNet categories and among the classes of our
3D datasets come with very different modalities, i.e., image
vs point cloud. Besides, they are never directly associated as
we only use the image-based pre-trained network to create
embeddings from the images selected as described above.

D.2. Construction of image-based representations

For each of the 100 images that we collected for each
class, as described in Section D.1, we extract the image fea-
tures obtained after the global average pooling layer of the
pre-trained CNN. These 100 image features are then aver-
aged for each class before being `2-normalised. This con-
structs the image-based class prototypes that we used for the
ZSL and GZSL tasks (Section 4.5 and Table 3 of the paper).

D.3. Classwise results for semantic segmentation

We report in Table 15 our classwise GZSL performance
on datasets S3DIS, ScanNet and SemanticKITTI, when us-
ing either word embeddings or image embeddings. The
word embeddings are the concatenation W2V+GloVe. The

image-based representations are extracted using a ResNet-
18 trained under full supervision on ImageNet [30], or a
ResNet-50 trained by self-supervision on ImageNet [12].

With S3DIS, in Table 15(a), we observe relatively sim-
ilar results on seen classes, whether we use word or image
embeddings. However, regarding unseen classes, we get a
significantly lower IoU for classes ‘Beam’ and ‘Column’ us-
ing the image-based representation, compared to the word-
based representation. We suppose that the quality of the re-
trieved images for these classes, mainly due to ambiguities,
explains the poor performance. As a matter of fact, ‘Beam’
images are disparate, containing, e.g., images of light beam
or of the drink Jim Beam, and many of the ‘Column’ images
picture antique columns, or columns from Excel sheets..

Likewise, the results reported in Table 15(b) on ScanNet
show that the performance is nearly independent of the type
of class prototype on the seen classes. A possible explana-
tion for the drop of performance on the class ‘Picture’, in
particular with the image-based representations, could be a
confusion between the scene that is pictured and the pic-
ture itself. We hypothesize that the good results for the un-
seen classes come from the large number of collected im-
ages which unambiguously display the unseen objects, as
opposed to the S3DIS case.

Finally, on SemanticKITTI, we reach again similar per-
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ResNet-18 [30] (full supervis.) ResNet-50 [12] (self-supervis.)

(a) S3DIS (b) S3DIS

(c) ScanNet (d) ScanNet

(e) SemanticKITTI (main split) (f) SemanticKITTI (main split)

Figure 14. t-SNE [72] visualizations of image-based embeddings for the semantic segmentation datasets (blue seen, orange unseen).
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formance for all types of class representations for most of
the seen classes. Among the unseen classes, the mIoU
drops significantly for the classes ‘Bicyclist’ and ‘Motorcy-
cle’ when using the image-based representations whereas it
doubles for the class ‘Truck’. A possible explanation for the
drop is that many images of the class ‘Motorcycle’ actually
shows someone riding the motorcycle, which is considered
as class ‘Motorcyclist’ in SemanticKITTI. A similar phe-
nomenon is observed for classes ‘Bicycle’ and ‘Bicyclist’. It
also probably explain why the t-SNE representation of these
pairs of classes are close to each other (see Figure 14).

D.4. Visualisation of class prototype spaces

Figure 14 shows t-SNE visualizations [72] of the class
prototypes extracted for the three datasets.

We observe the same clusters for both kinds of pre-
trained networks, which confirms that the difference in pre-
training only has a somehow marginal impact on the results.
(Please also remember that t-SNE visualization is not deter-
ministic.) Besides, these diagrams remain consistent with
the groupings already observed with word embeddings (cf.
Figure 12), although they slightly differ.

D.5. Sensitivity to the image collection quality

To evaluate the impact of bad images in the image col-
lections harvested automatically, we manually removed im-
ages that were not correct instances of the desired classes.
As we are only removing images and not adding new ones,
the image collections are smaller after this process. Conse-
quently, it may have both a positive and a negative effect.

Results are shown in Table 16. We notice a significant
improvement on SemanticKITTI, where the HmIoU more
than doubles. We also notice an improvement on the other
datasets, except a slight drop of performance for ScanNet
when using ResNet-50, possibly due to reduction of the
number of images. This experiment confirms that finding
images that unambiguously represents the object category
is key in reaching a good performance.

ResNet-18 [30] ResNet-50 [12]
(full supervis.) (self-supervis.)

Dataset Original Denoised Original Denoised

S3DIS 5.7 6.5 4.1 7.9
ScanNet 13.9 15.5 15.5 14.7
SemanticKITTI 3.6 8.2 5.3 11.1

Table 16. Impact on HmIoU (%) when “denoising” the image col-
lections, using both kinds of pre-trained networks.
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