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Few-shot Object Detection and Viewpoint
Estimation for Objects in the Wild

Yang Xiao, Vincent Lepetit, Renaud Marlet

Abstract—Detecting objects and estimating their viewpoints in images are key tasks of 3D scene understanding. Recent approaches
have achieved excellent results on very large benchmarks for object detection and viewpoint estimation. However, performances are still
lagging behind for novel object categories with few samples. In this paper, we tackle the problems of few-shot object detection and
few-shot viewpoint estimation. We demonstrate on both tasks the benefits of guiding the network prediction with class-representative
features extracted from data in different modalities: image patches for object detection, and aligned 3D models for viewpoint estimation.
Despite its simplicity, our method outperforms state-of-the-art methods by a large margin on a range of datasets, including PASCAL and
COCO for few-shot object detection, and Pascal3D+ and ObjectNet3D for few-shot viewpoint estimation. Furthermore, when the 3D
model is not available, we introduce a simple category-agnostic viewpoint estimation method by exploiting geometrical similarities and
consistent pose labeling across different classes. While it moderately reduces performance, this approach still obtains better results than
previous methods in this setting. Last, for the first time, we tackle the combination of both few-shot tasks, on three challenging
benchmarks for viewpoint estimation in the wild, ObjectNet3D, Pascal3D+ and Pix3D, showing very promising results.

Index Terms—Few-shot learning, Meta learning, Object detection, Viewpoint estimation
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1 INTRODUCTION

D ETECTING objects in 2D images and estimating their
3D pose, as shown in Figure 1, is extremely useful for

applications such as 3D scene understanding, augmented
reality and robot manipulation. With the emergence of large
databases annotated with object bounding boxes and view-
points, deep-learning-based methods have achieved very
good results on both tasks. However these methods, because
they rely on rich labeled data, usually fail to generalize to
novel object categories when only a few annotated samples
are available. Additionally, creating 3D annotations is tedious
and requires a large amount of expert effort, which slows
down the applications of these methods to new objects. Few-
shot learning, i.e., being able to transfer the knowledge learned
from large base categories with abundant annotated images
to novel categories with scarce annotated samples is therefore
highly desirable in this context.

To address the few-shot learning of object detection, some
approaches simultaneously tackle few-shot classification
and few-shot localization by disentangling the learning of
category-agnostic and category-specific network parame-
ters [1]. Others extract a class-informative feature vector
for each class and use these vectors to reweight full-image
features [2] or region-of-interest (RoI) features [3]. This
reweighting module computes a feature similarity between
query images and support classes, which has also been
demonstrated to be useful in few-shot instance segmenta-
tion [4] and few-shot image classification [5]. However, this
reweighting can easily be affected by noisy class-informative
features, especially in the few-shot setting where only a few
labeled samples are provided for novel categories. Instead,
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we propose to rely on a slightly more complex combination
of query-image features and class-informative features. We
show that this more general aggregation module can provide
better few-shot object detection performances with smaller
variations when experimented with different choices of
support images. Besides, it can also be used to exploit
class-exemplar 3D models for few-shot viewpoint estimation.
Furthermore, we explore the usage of a cosine-similarity-
based classifier [6], [7] and find that it slightly improves the
detection results.

In parallel to the endeavours made in few-shot object
detection, recent work proposes to perform category-agnostic
viewpoint estimation that can be directly applied to novel
object categories without retraining [8], [9]. However, these
methods either require the testing categories to be similar
to the training ones [8], or assume the exact CAD model to
be provided for each object during inference [9]. Differently,
the meta-learning-based method MetaView [10] introduces
the category-level few-shot viewpoint estimation problem
and addresses it by learning to estimate category-specific
keypoints, requiring extra annotations.

While MetaView [10] has achieved significantly improved
performance on novel categories for few-shot viewpoint
estimation, there are two main disadvantages: 1) specific
keypoints have to be designed for different object categories,
which requires some expertise and can be difficult to annotate
and estimate for tiny and occluded objects; 2) the number of
class-specific keypoint estimation branches increases linearly
with the number of object classes.

Instead, we rely on a category-agnostic viewpoint estima-
tion network, that directly predicts three Euler angles from
an image embedding, without explicit class knowledge. To
that end, we exploit the fact that similar classes, e.g., sofa and
chair, often have a consistent canonical pose, with aligned
similarities. The reason probably is that many objects are
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Fig. 1: Few-shot object detection and viewpoint estimation. Starting with images labeled with bounding boxes and viewpoints
of objects from base classes, and given only a few similarly labeled images for new categories (top), we predict in a query
image the 2D location of objects of new categories, as well as their 3D poses, optionally leveraging just a few arbitrary
3D class models (bottom). To the best of our knowledge, we are the first to conduct this joint task of object detection and
viewpoint estimation in the few-shot regime.

consistently oriented with respect to verticality according
to their regular usage. Besides, objects often present a
main vertical symmetry plane and/or a notion of front
and back. This is enough to define a somehow “natural”
canonical frame, possibly up to symmetry, even for remotely-
related classes such as chair and bed. Then, leveraging pose
consistency across pictured classes, we learn a category-
agnostic image feature embedding space by sharing the
network weights between all categories. This allows the
network to exploit the geometrical similarities shared across
different categories. As for the few-shot task, we first train
on base classes and then simply operate a balanced fine-
tuning with both novel and base classes, which is simpler
and more direct than explicit feature-comparison approaches
used in other class-agnostic few-shot methods [11], [12],
towards segmentation or object counting. Like for any
few-shot method, our strategy works all the better when
there are more similarities between base and novel classes.
Despite its simplicity, we find that this category-agnostic
prediction approach does not only outperform the state-of-
the-art methods on few-shot viewpoint estimation, but also
largely reduces the network complexity.

Moreover, we propose to optionally use 3D models, which
we call ”exemplar 3D models”, as additional input of the
viewpoint estimation network and to condition the final
viewpoint prediction on both the image embeddings and the
3D model embeddings through a feature aggregation module.
These 3D models are easy to obtain for many categories [13].
They do not need to correspond exactly to the objects present
in the input image—in fact we use the same exemplar 3D

model for all the objects of a same category. Their purpose
is only to help the viewpoint estimation network generalize
better to new classes. The use of these exemplar 3D models
for viewpoint estimation is similar to exploiting images
annotated with bounding boxes for object detection, from
which we extract the task-aware class-specific information.
Using this information, we obtain an embedding for each
class and condition the network prediction on both the class-
informative embeddings and instance-wise query image
embeddings through a feature aggregation module. This
exploitation of 3D models leads to a clear performance
improvement of viewpoint estimation on novel classes under
the few-shot learning regime.

Finally, by combining our few-shot object detection with
our few-shot viewpoint estimation, we address the joint prob-
lem of learning to detect objects in images and to estimate
their viewpoints from only a few shots. This corresponds
to the real world in contrast with other few-shot viewpoint
estimation methods, that only evaluate in the ideal case with
ground-truth classes and ground-truth bounding boxes. We
demonstrate that our few-shot viewpoint estimation method
can achieve very good results even based on the predicted
classes and bounding boxes.

To summarize, our contributions are three-fold. First,
we define a simple yet effective unifying framework that
addresses both few-shot object detection and few-shot
viewpoint estimation in images, and achieves state-of-the-
art performances across various benchmarks. Second, we
show how the performance of our category-agnostic few-shot
viewpoint estimation method is boosted by the additional
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knowledge at training time of one or a few exemplar 3D
models per class, requiring only viewpoint supervision (as
opposed to extra annotations such as keypoints), which
is a realistic scenario. Third, we propose an evaluation of
the new few-shot learning task of jointly detecting objects
and estimating their viewpoint, for which we provide
promising results. Our data and code are available at
http://imagine.enpc.fr/∼xiaoy/FSDetView/.

This paper is an extended version of our previous
work [14], with several improvements:
• introducing a category-agnostic few-shot viewpoint

estimation method that predicts viewpoint directly from
image embeddings, without relying on any 3D models
during training and testing.

• providing a more in-depth explanation of implemen-
tation details and a thorough analysis of different
components of the method.

• extended evaluation of joint few-shot object detection
and viewpoint estimation on Pascal3D+ and Pix3D.

2 RELATED WORK

Since there is a vast amount of literature on both object
detection and viewpoint estimation, we focus here on recent
work that targets these tasks in the case of limited labels.

Few-shot learning. Few-shot learning has been defined for
the purpose of transferring the knowledge learned from large
base categories with abundant annotated samples to novel
categories with only a few annotated samples. Li et al. [15]
employ Bayesian inference to generalize knowledge from a
pre-trained model to perform one-shot learning. While some
methods propose to hallucinate additional training examples
for the data-starved novel classes [16], [17], [18], [19], recent
work is more focused on meta-learning [5], [20], [21], [22],
[23], [24], [25], [26] , which we detail below.

Such meta-learning-based methods can be roughly di-
vided into three categories. 1) Metric-learning-based ap-
proaches [5], [22], [23], [25], [27], [28], [29], [30] aim to learn an
embedding space that is efficiently transferable for scarcely
annotated training samples. MatchingNet [5] uses the cosine
similarity to find the most similar class for the query image
among a small set of labeled images. ProtoNet [22] replaces
the weighted nearest neighbor classifier in [5] by a linear
classifier where the squared Euclidean distance is used. Rela-
tionNet [23] proposes to learn the relation between support
data and query data through a neural network, which is
similar to CAN [29] and LGM-Net [30]. 2) Optimization-
based fast adaptation approaches [21], [24], [31], [32], [33]
intend to adjust the optimization algorithm such that the
model can quickly converge on the few annotated samples.
Ravi and Larochelle [24] train a LSTM-based meta-learner to
learn a classifier in new few-shot tasks. Model-Agnostic Meta-
Learning (MAML) [31] explicitly optimizes the parameters of
the model such that a small number of gradient descents on
the novel task will produce good generalization performance.
Sun et al. [33] propose to adapt a model for few-shot learning
tasks by learning scaling and shifting functions of model
weights for multiple tasks. 3) Parameter-prediction-based
approaches [20], [34], [35] attempt to generate network
parameters for new tasks. Bertinetto et al. [20] learn the

parameters of factorized weight layers based on a single
example of each class. Gidaris and Komodakis [34] introduce
an attention-based few-shot classification weight generator.

Besides the standard few-shot learning setting, there is
also other work focused on different settings. In transductive
few-shot learning [26], [36], the unlabeled query set is
assumed to be accessible for training and testing. This is
highly related to the semi-supervised few-shot learning [37],
[38], where an extra unlabeled training set is allowed. These
approaches only tackle the problem of few-shot image
classification, while we seek to study the more challenging
and under-explored problem of few-shot object detection
and viewpoint estimation.

Object detection with limited annotations. The general
deep-learning models for object detection can be divided
into two groups: proposal-based methods and direct methods
without proposals. While the R-CNN series [39], [40], [41]
and FPN [42] fall into the former line of work, the YOLO
series [43], [44] and SSD [45] belong to the latter. All these
methods mainly focus on learning from abundant data to
improve detection regarding accuracy and speed. Yet, there
are also some attempts to solve the problem with limited
labeled data.

Chen et al. [46] propose an approach based on transfer
learning to train a network to detect objects of novel classes
from just a few annotated images in the target domain.
Recent work [2], [3] proposes to integrate a reweighting
module in existing detection models such as YOLO or Faster
R-CNN, which enables the network to learn generalizable
features and automatically adjust them for novel class
detection through a set of class-specific coefficient vectors
produced from the support samples. Similar to the parameter-
prediction-based few-shot learning methods, Wang et al. [1]
propose to disentangle the learning of category-agnostic
and category-specific components in the detection model
and learn a weight-generation module to predict category-
specific parameters for novel classes. More recently, Wang
et al. [7] find that a simple fine-tuning detection model can
achieve impressive results on novel classes using a category-
agnostic box regressor and a cosine-similarity-based box
classifier. They also analyze the variance of the detection
results obtained with different support samples and show
the importance of averaging evaluation results over multiple
experimental runs, which has been sometimes disregarded
in previous work.

In contrast, we replace the feature reweighting module
in [3] by a feature aggregation module that achieves a
better detection performance under the few-shot regime.
Following [1], [3], [7], we also conduct multiple experiments
with randomly selected support samples and report average
results to prevent biases in evaluation.

There is also prior work focusing on object detection with
limited annotations in different settings. Weakly-supervised
detection [47], [48], [49] considers the problem of training a
detection model with only image-level labels, but without
bounding box annotations that are more difficult to acquire.
Semi-supervised detection [50], [51], [52] makes use of a small
amount of labeled images per class to generate pseudo labels
on a large amount of unlabeled images for training. Zero-
shot detection [53], [54], [55] considers there is no available
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Fig. 2: Examples of class data for object detection (left) & viewpoint estimation (right). While the images with box masks
capture the characteristic appearances and the common context for different classes, the point clouds in a canonical object
space capture the geometric information such as the principal axis of symmetry and the position of the main object parts.

annotations for the novel categories and relies on external
information such as inter-class relation or word embeddings
for novel class detection. Since these settings differs from the
few-shot object detection setting, they are out of our scope in
this work.

Viewpoint estimation with limited annotations. Deep-
learning methods for viewpoint estimation follow roughly
three different paths: direct estimation of Euler angles [9],
[56], [57], [58], [59], template-based matching [60], [61] that
encodes images in latent spaces and compares them against a
dictionary of pre-defined viewpoints, and keypoint detection
relying on 3D bounding box corners [62], [63], [64] or
semantic keypoints [8], [65]. Training a viewpoint estimation
network requires a large amount of images manually labeled
with aligned 3D CAD models or 2D keypoints, which are
expensive to obtain in terms of time and human labor. To
overcome this limitation, recent works propose to conduct
unsupervised viewpoint estimation [66] or predict generic 3D
keypoints for all object classes [8]. Alternatively, along with
the improvement of image quality and processing speed
in rendering methods, abundant synthetic images can be
automatically generated for network training [57], [60], [67],
[68]. Some work also focuses on training the viewpoint
estimation network on a collection of unlabeled images by
self-supervised learning [69], [70], [71].

Most of the existing viewpoint estimation methods are
designed for known object categories or instances; very little
work reports performance on unseen objects [8], [9], [10],
[64], [72], [73]. Zhou et al. [8] propose a category-agnostic
method to learn general keypoints for both seen and unseen
objects, while Xiao et al. [9] show that better results can be
obtained when exact 3D models of the objects are additionally
provided. Park et al. [73] propose a novel framework for
6D pose estimation of unseen objects by learning a latent
3D representation from a set of reference views for each
target object during inference. In contrast to these category-
agnostic methods, Tseng et al. [10] specifically address the
few-shot scenario by training a category-specific viewpoint
estimation network for novel classes with limited samples.
More recently, Wang et al. [74] study the problem of learning
to estimate the 3D object pose from a few labeled examples
and a collection of unlabeled data, and show promising
results in particular on vehicle categories.

Instead of using exact 3D object models as [9], we propose

a meta-learning approach to extract a class-informative
canonical shape feature vector for each novel class from
a few labeled samples, with random object models. Besides,
our network can be applied to both base and novel classes
without changing the network architecture, while [10] re-
quires a separate meta-training procedure for each class and
needs keypoint annotations in addition to the viewpoint.

3 METHOD

In this section, we first introduce the setup for few-shot object
detection and few-shot viewpoint estimation (Section 3.1).
Then, we present our network architecture for these two
tasks with class data (Section 3.2) and a fine-tuning category-
agnostic viewpoint estimation method (Section 3.3). Finally,
we describe the learning procedure adopted in both few-shot
learning tasks (Section 3.4).

3.1 Few-shot Learning Setup

For both the object detection and viewpoint estimation tasks,
we assume we have training samples (x, y)∈ (X ,Y). A few
3D shapes may also be available for viewpoint estimation.
• In the case of object detection, x is an image,
y= {(clsi, boxi) | i ∈ Objx} indicates the class label clsi
and bounding box boxi of each object i in the image.

• In the case of viewpoint estimation, x= (cls, box, img)
represents an object of class cls(x) pictured in bounding
box box(x) of an image img(x); y = ang = (azi, ele, inp)
is the 3D pose (viewpoint) of the object, given by Euler
angles (azimuth, elevation, in-plane rotation).

For each class c∈C = {clsi |x∈X , i∈Objx}, we consider a
set Zc of class data (see Figure 2) to learn from using meta-
learning:
• For object detection, Zc = {(x,maski) |x∈X , i∈Objx}

is made of images x plus an extra channel with a binary
mask for bounding box boxi of object i∈Objx.

• For viewpoint estimation, Zc is an optional, additional
set of 3D models of class c, which is not used in the
purely image-based category-agnostic variant.

At each training iteration, class data zc is randomly sampled
in Zc for each c∈C .

In the few-shot setting, we have a partition of the classes
C = Cbase ∪ Cnovel, with many samples for base classes in
Cbase and only a few samples (possibly also including a few
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(a) few-shot object detection.

(b) few-shot viewpoint estimation.

Fig. 3: Method overview. (a) For object detection, we sample for each class c one image x in the training set containing an
object j of class c, to which we add an extra channel for the binary mask maskj of the ground-truth bounding box boxj of
object j. Each corresponding vector of class features fclsc (red) is then combined with each vector of query features fqryi (blue)
associated to one of the region of interest i in the query image, via an aggregation module. Finally, the aggregated features
faggi,c pass through a predictor that estimates a class probability clsi,c and regresses a bounding box boxi,c. (b) For few-shot
viewpoint estimation, we represent the 3D pose using three Euler angles. We estimate them either directly from the query
features extracted from the image or, optionally, indirectly from aggregated features made of both query features and class
information extracted from a few point clouds with coordinates in a normalized, canonical object space.

shapes) for novel classes in Cnovel. The goal is to transfer the
knowledge learned on base classes with abundant samples
to little-represented novel classes.

3.2 Few-shot Learning with Class Data

Our general approach has three steps illustrated in Figure 3.
First, query data x and class-informative data zc pass respec-
tively through the query encoder Fqry and the class encoder
Fcls to generate corresponding feature vectors , for each each
region of interest (RoI) and each class respectively. Next, a
feature aggregation module A combines a query feature
(for a given RoI) with a class feature. Finally, the output of
the network is obtained by passing each aggregated feature
through a task-specific predictor P :

• For object detection, the predictor estimates a classifica-
tion score and an object location (i.e.., bounding box) for
each region of interest (RoI) and each class.

• For viewpoint estimation, the predictor selects quantized
angles by classification, that are refined using regressed
angular offsets.

3.2.1 Few-shot Object Detection.
We adopt the popular Faster R-CNN [40] approach in our
few-shot object detection network (see Figure 3(a)). The query
encoder Fqry includes the backbone, the region proposal
network (RPN) and the proposal-level feature alignment
module. In parallel, the class encoder Fcls is the backbone
sharing the same weights as Fqry except for the first
convolutional layer, that has an additional fourth channel for
extracting class features from RGB images with binary masks
of the object bounding boxes [2], [3]. Each extracted vector
of query features is aggregated with each extracted vector of
class features before being processed for class classification
and bounding box regression:

(clsi,c, boxi,c) = P
(
A
(
fqryi , fclsc

))
for fqryi ∈Fqry(x), fclsc = Fcls(zc), c ∈ Ctrain

(1)

where Ctrain is the set of all training classes, and where
clsi,c and boxi,c are the predicted classification scores and
object locations for the ith RoI in query image x and for
class c. The prediction branch P is implemented as two
fully-connected layers of size 4096 without activation that
output respectively Ntrain = |Ctrain| classification scores and
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Fig. 4: Illustration of our category-agnostic viewpoint estimation approach without using 3D models. The network is first
trained on abundant labeled images of base classes (left), then fine-tuned on a balanced set of images containing both base
and novel classes (right).

Ntrain box regressions for each RoI. The final predictions are
obtained by concatenating all the class-wise network outputs.

Cosine similarity for box classifier. Inspired by Wang et
al. [7], we use a cosine-similarity-based classifier in the
bounding box predictor. We note the weight matrix of the
box classifier as W = [w1,w2, . . . ,wc], where wc ∈ Rd is
the class-wise weight vector and d is the dimension of the
aggregated features. Thus, the classification score for the ith

RoI and class c can be written as:

clsi,c =
αA
(
fqryi , fclsc

)>
wc

‖A
(
fqryi , fclsc

)
‖‖wc‖

, (2)

where α is a scaling factor, set to 20 in all experiments.
The instance-level feature normalization used in this cosine-
similarity-based classifier was found empirically to be helpful
in reducing the intra-class variance and improving the
detection accuracy of novel classes.

3.2.2 Few-shot Viewpoint Estimation.

For few-shot viewpoint estimation, we rely on the recently
proposed PoseFromShape [9] architecture to implement our
network. To create class data zc, we transform the 3D models
in the dataset into point clouds by uniformly sampling points
on the surface, with coordinates in a normalized, canonical
object space. The query encoder Fqry and class encoder
Fcls (cf. Figure 3(b)) correspond respectively to the image
encoder ResNet-18 [75] and shape encoder PointNet [76] in
PoseFromShape. By aggregating the query features and class
features, we estimate the three Euler angles via the predictor
P , which is implemented as a three-layer fully-connected
network of sizes 800, 400, 200, each layer being followed by
a batch normalization and ReLU activation:

(azi, ele, inp) = P
(
A
(
fqry, fcls

))
with fqry = Fqry(crop(img(x), box(x))), and

fcls = Fcls(zc), c = cls(x)

(3)

where crop(img(x), box(x)) indicates that the query features
are extracted from the object-centred crops. Unlike the object
detection making a prediction for each class, here we only
make the prediction for the object class cls(x) by passing the
corresponding class data through the network. We also use
the mixed classification-and-regression viewpoint estimator
of [9]: the output consists of angular bin classification scores
and within-bin offsets for three Euler angles: azimuth (azi),
elevation (ele), and in-plane rotation (inp).

3.2.3 Feature Aggregation.
In recent few-shot object detection methods such as FSRW [2]
and Meta R-CNN [3], features are aggregated by reweighting
the query features fqry according to the output fcls of the
class encoder Fcls:

A(fqry, fcls) = fqry � fcls , (4)

where � represents element-wise multiplication (Hadamard
product) and fqry has the same number of channels as fcls. By
jointly training the query encoder Fqry and the class encoder
Fcls with this reweighting module, it is possible to learn to
generate meaningful reweighting vectors fcls. Fqry and Fcls

actually share their weights, except the first layer [3].
We choose to rely on a slightly more complex aggregation

scheme. The fact is that feature subtraction is a different
but also effective way to measure similarity between image
features [77], [78]. The image embedding fqry itself, without
any reweighting, contains relevant information too. Our
aggregation thus concatenates the three forms:

A(fqry, fcls) = [fqry � fcls, fqry − fcls, fqry] , (5)

where [·, ·, ·] represents channel-wise concatenation. The last
part of the aggregated features in Eq. (5) is independent of the
class data. As observed experimentally in Table 3, this partial
disentanglement does not only improve few-shot detection
performance, it also reduces the variation introduced by the
randomness of support samples.

3.3 Category-agnostic Viewpoint Estimation
We also consider the case where no 3D model is provided.
In this case, we bypass the requirement of task-aware class
data as mentioned in the previous section and we estimate
viewpoints only from the image embeddings. Given a query
object x pictured in image img(x) and its bounding box
box(x), the query encoder generates an image embedding
fqry. Then, given such an embedding, the viewpoint predic-
tion component estimates the three Euler angles:

(azi, ele, inp) = P
(

fqry
)

with fqry = Fqry(crop(img(x), box(x))) .
(6)

The feature extraction module is category-agnostic and all
object classes share the same prediction module. And the
viewpoint predictor P is implemented in the same way as in
Section 3.2.2. Therefore, the network can fully leverage the
geometrical similarities between related categories such as
bicycle and motorbike.

As illustrated in Figure 4, we first train on a large
base-class dataset and then fine-tune on a balanced dataset
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consisting of base and novel classes. While not exactly
following the general framework of Figure 3, it follows a
related pattern, where the 3D branch is removed, as well
as, consequently, the aggregation module. This simple yet
effective approach outperforms previous methods on few-
shot viewpoint estimation (see Section 4.2).

Following previous few-shot approaches, we fine-tune
the network on both base and novel categories for “learning
without forgetting”, which prevents the network to only
focus on increasing its performance on novel categories
ignoring possible dramatic drops on base categories.

3.4 Learning Procedure
Our learning procedure consists of two phases: base-class
training on many samples from base classes (Ctrain = Cbase),
followed by few-shot fine-tuning on a balanced small set
of samples from both base and novel classes (Ctrain =
Cbase ∪ Cnovel). More precisely, in the K-shot fine-tuning
stage where only K labeled samples are available for each
novel class, we randomly selectK samples for each base class
to balance the training iterations between base and novel
classes. In both phases, we optimize the network using the
same loss function.

3.4.1 Loss Function

Detection loss function.
We optimize our few-shot object detection network using

the same loss function as Meta R-CNN [3]:

L = Lrpn + Lcls + Lloc + Lmeta , (7)

where Lrpn is applied to the output of the RPN to distinguish
foreground from background and refine the proposals,
Lcls is a cross-entropy loss for box classification, Lloc is
a Huber loss for box regression, and Lmeta is a cross-entropy
loss encouraging class features to be diverse for different
classes [3].

Viewpoint loss function. For the task of estimating view-
points, we discretize each Euler angle with a bin size of 15
degrees and use the same loss function as PoseFromShape [9]
to train the network:

L =
∑

θ∈{azi,ele,inp}

Lθcls + Lθreg , (8)

where Lθcls is a cross-entropy loss for angle bin classification
of Euler angle θ, and Lθreg is a Huber loss for the regression of
offsets relatively to bin centers. Here we remove the meta loss
Lmeta used in object detection since we want the network to
learn useful inter-class similarities for viewpoint estimation,
instead of the inter-class differences for box classification in
object detection.

3.4.2 Class Data Construction
For viewpoint estimation, unless otherwise stated, we make
use of all the 3D models available for each class (typically
less than 10) during both training stages. In contrast, the
class data used in object detection requires the information of
object class and location, which is limited for novel classes by
the number of annotated samples. Therefore, we use a large
number of class data for base classes in the base training

stage (typically |Zc| = 200, as in Meta R-CNN [3]) and limit
the size of Zc to the number of shots for both base and novel
classes in the K-shot fine-tuning stage (|Zc| = K).

For inference, instead of randomly sampling class data
from the dataset as done during training, we construct class
features once and for all after learning is finished: for each
class c, we average all class features used in the few-shot
fine-tuning stage:

fclsc =
1

|Zc|
∑
zc∈Zc

Fcls(zc) . (9)

This corresponds to the offline computation of all orange
feature vectors in Figure 3(a).

4 EXPERIMENTS

In this section, we first evaluate on few-shot object detection
(Section 4.1) and few-shot viewpoint estimation benchmarks
(Section 4.2) to empirically assess the effectiveness of our
method. For a fair comparison, we use the same splits
between base and novel classes as used in previous work [2],
[10] and report the performance averaged over multiple runs
with different groups of few-shot training examples to obtain
a sensible accuracy estimation [7], [10]. Furthermore, we
conduct an evaluation of the joint task of few-shot object
detection and viewpoint estimation on three datasets to
demonstrate the generalization capacity of our method for
both tasks in the few-shot regime (Section 4.3). We conclude
this empirical study with limitations of our approach (Sec-
tion 4.4).

4.1 Few-shot Object Detection

We adopt a well-established evaluation protocol for few-
shot object detection [1], [2], [3] and report performance
on PASCAL VOC [79], [80] (reported in Table 1) and MS-
COCO [81] (reported in Table 2).

4.1.1 Experimental Setup

Datasets. PASCAL VOC [79], [80] is a small-scale object
detection dataset containing 20 object categories. Following
the common protocol [39], [40], [44], we use the test set of
VOC 2007 [79] for testing and the train-val set of VOC 07-
12 [80] for training, which results in 16,551 training images
and 4,952 testing images. Among the 20 object categories,
[2] introduces three few-shot splits by randomly selecting
5 classes as the novel ones while keeping the remaining
15 ones as the base: (bird, bus, cow, motorbike, sofa / rest);
(aeroplane, bottle, cow, horse, sofa / rest); (boat, cat, motorbike,
sheep, sofa / rest). We evaluate on these 3 different base/novel
splits assuming that only K annotated bounding boxes are
provided for each novel class during training, where K
equals 1, 2, 3, 5 or 10.

MS-COCO [81] is a large-scale object detection dataset
containing 80 object categories. We follow [1], [2], [3] to use
5,000 images from the mini-val set for testing and use the
remaining 118,287 images in train-val set for training. Among
the 80 object categories, we select the 20 classes common to
PASCAL VOC as novel classes and consider the remaining
60 classes as base classes. For this dataset, the evaluation
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TABLE 1: Few-shot object detection evaluation on PASCAL VOC. We report the Average Precision with a single IoU
threshold at 0.5 (AP0.5) under 3 different splits for 5 novel classes [2] with a small number of shots. *Results computed over
single experimental run with a fix set of support images.

Novel Set 1 Novel Set 2 Novel Set 3
Method \ Shots 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

LSTD [46]* 8.2 1.0 12.4 29.1 38.5 11.4 3.8 5.0 15.7 31.0 12.6 8.5 15.0 27.3 36.3
FSRW [2]* 14.8 15.5 26.7 33.9 47.2 15.7 15.2 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9
MetaDet [1] 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1
Meta R-CNN [3] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1
TFA w/fc [7] 22.9 34.5 40.4 46.7 52.0 16.9 26.4 30.5 34.6 39.7 15.7 27.2 34.7 40.8 44.6
TFA w/cos [7] 25.3 36.4 42.1 47.9 52.8 18.3 27.5 30.9 34.1 39.5 17.9 27.2 34.3 40.8 45.6
Ours w/fc 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6
Ours w/cos 26.9 35.7 42.3 48.9 57.8 21.2 26.7 30.6 37.7 45.1 24.3 30.4 36.3 41.6 50.1

TABLE 2: Few-shot object detection evaluation on MS-COCO. We report the standard MS-COCO evaluation metrics on
the 20 novel classes of COCO. *Results computed over single experimental run with a fix set of support images.

Average Precision Average Recall
Shots Method 0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

10

LSTD [46]* 3.2 8.1 2.1 0.9 2.0 6.5 7.8 10.4 10.4 1.1 5.6 19.6
FSRW [2]* 5.6 12.3 4.6 0.9 3.5 10.5 10.1 14.3 14.4 1.5 8.4 28.2
MetaDet [1] 7.1 14.6 6.1 1.0 4.1 12.2 11.9 15.1 15.5 1.7 9.7 30.1
Meta R-CNN [3] 8.7 19.1 6.6 2.3 7.7 14.0 12.6 17.8 17.9 7.8 15.6 27.2
FSOD [82]* 11.1 20.4 10.6 – – – – – – – – –
MPSR [83]* 9.8 17.9 9.7 3.3 9.2 16.1 15.7 21.2 21.2 4.6 19.6 34.3
TFA w/fc [7] 9.1 17.3 8.5 – – – – – – – – –
TFA w/cos [7] 9.1 17.1 8.8 – – – – – – – – –
Ours w/fc 12.5 27.3 9.8 2.5 13.8 19.9 20.0 25.5 25.7 7.5 27.6 38.9
Ours w/cos 13.6 28.6 11.3 2.6 14.6 22.1 20.6 26.8 27.0 7.9 28.8 41.3

30

LSTD [46]* 6.7 15.8 5.1 0.4 2.9 12.3 10.9 14.3 14.3 0.9 7.1 27.0
FSRW [2]* 9.1 19.0 7.6 0.8 4.9 16.8 13.2 17.7 17.8 1.5 10.4 33.5
MetaDet [1] 11.3 21.7 8.1 1.1 6.2 17.3 14.5 18.9 19.2 1.8 11.1 34.4
Meta R-CNN [3] 12.4 25.3 10.8 2.8 11.6 19.0 15.0 21.4 21.7 8.6 20.0 32.1
MPSR [83]* 14.1 25.4 14.2 4.0 12.9 23.0 17.7 24.2 24.3 5.5 21.0 39.3
TFA w/fc [7] 12.0 22.2 11.8 – – – – – – – – –
TFA w/cos [7] 12.1 22.0 12.0 – – – – – – – – –
Ours w/fc 14.7 30.6 12.2 3.2 15.2 23.8 22.0 28.2 28.4 8.3 30.3 42.1
Ours w/cos 16.4 32.6 14.7 3.5 17.1 26.2 23.3 29.7 29.9 8.8 31.9 44.7

protocol used in previous work is to test on K = 10 or 30
annotated bounding boxes for each novel class.

Evaluation metrics. We measure the Average Precision (AP)
of detections as the area under a precision-recall curve. For
few-shot object detection on PASCAL VOC, we classically re-
port AP0.5, that computes AP with a single Intersection over
Union (IoU) threshold at 0.5. For evaluation on MS-COCO,
we use the standard MS-COCO evaluation metrics [40],
[44]: mAP, AP0.5, AP0.75, APS, APM, APL, AR1, AR10,
AR100, ARS, ARM, ARL. While AP0.5 and AP0.75 represent
respectively the AP with a single IoU threshold at 0.5 and
0.75, mAP is the averaged AP over multiple IoU thresholds
from 0.5 to 0.95 with a step of 0.05. Average Recall (AR)
computed with the N most confident predictions per image
is noted as ARN , where N equals 1, 10 or 100. Moreover,
we report the detection performance across different object
scales: S (small: area < 322 square pixels), M (medium:
322 ≤ area < 962) and L (large: 962 ≤ area).

Training details. We employ the same learning scheme as [3],
which uses the SGD optimizer with an initial learning rate
of 10−3 and a batch size of 4. Weight decay and momentum
are set to 0.0005 and 0.9, respectively. In the first training
stage, we train for 20 epochs and divide the learning rate
by 10 after each 5 epochs. In the second stage, we train for
5 epochs with a learning rate of 10−3 and another 4 epochs
with a learning rate of 10−4. For anchor scales, we use three

scales (1282, 2562, 5122) for PASCAL VOC and add a fourth
scale of 642 for MS-COCO. The three aspect ratios of anchors
are set to 1:2, 1:1, 2:1. We augment the data with horizontal
flipping. Training on a single Titan-X GPU takes around one
day for PASCAL VOC and ten days for MS-COCO.

4.1.2 Few-shot Detection Results

Cosine similarity vs. dot product. We first compare the
cosine-similarity-based box classifier (Ours w/cos) with the
normal FC-based classifier (Ours w/fc) that uses a simple
dot product between feature representations and weight
vectors to compute the classification scores. Indeed, in few-
shot learning tasks, features learned with a cosine-similarity-
based classifier have been found empirically to generalize
better to novel categories compared to features learned with
FC-based classifier [7], [34]. As observed in Table 1 and
Table 2, even though the improvement is not systematic on
novel classes of PASCAL VOC, cosine similarity does bring
a consistent performance boost on novel classes of COCO,
compared to FC-based classifier with direct dot product.

Different feature aggregations. We analyze the impact of
different feature aggregation schemes. For this purpose, we
evaluate K-shot object detection on PASCAL VOC with
K = 3 or 10. Here, we compare results obtained by models
with an FC-based classifier. The results are reported in
Table 3. We can see that our feature aggregation scheme
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TABLE 3: Ablation study on the feature aggregation scheme. Using the same class splits of PASCAL VOC as in Table 1,
we measure the performance of few-shot object detection on the novel classes for 3 shots and 10 shots. We report the average
and standard deviation of the AP50 metric over ten runs. fqry is the query features and fcls is the class features.

Novel Set 1 Novel Set 2 Novel Set 3
Method \ Shots 3 10 3 10 3 10

[fqry � fcls] 35.0± 3.6 51.5± 5.8 29.6± 3.5 45.4± 5.5 27.5± 5.2 48.1± 5.9
[fqry � fcls, fqry] 36.6± 7.1 49.6± 4.3 27.5± 5.7 41.6± 3.7 28.7± 5.9 44.0± 2.7
[fqry � fcls, fqry, fcls] 37.6± 7.2 54.2± 4.9 30.0± 2.9 41.0± 5.3 33.6± 5.0 47.5± 2.3
[fqry � fcls, fqry − fcls] 39.2± 4.5 55.5± 3.9 31.7± 6.2 45.2± 3.3 35.6± 5.6 48.9± 3.3
[fqry � fcls, fqry − fcls, fqry] 42.2± 2.1 57.4± 2.7 31.9± 2.7 45.7± 1.8 37.2± 3.5 49.6± 2.2

[fqry � fcls, fqry− fcls, fqry] yields the best precision. In par-
ticular, although the difference fqry− fcls could in theory be
learned from the individual feature vectors [fqry, fcls], the
network performs better when explicitly provided with their
subtraction. Moreover, our aggregation scheme significantly
reduces the variance introduced by the random sampling of
few-shot support data, which is a major issues in few-shot
learning (although sometimes neglected).

Comparison with the state of the art. Tables 1 and 2 show
the comparison with previous few-shot object detection
methods. On the PASCAL VOC dataset, our method achieves
the best performance in most cases, in particular when the
number of shots tends to be large. This indicates that our
method can better leverage the task-relevant information
from novel classes when more labeled examples are provided.
Moreover, it significantly improves results on MS-COCO for
all evaluation metrics, which validates again the effectiveness
of our approach.

4.2 Few-shot Viewpoint Estimation

Following the few-shot viewpoint estimation protocol pro-
posed in [10], we evaluate our method in two settings: intra-
dataset on ObjectNet3D [84] (cf. Table 4) and inter-dataset
between ObjectNet3D and Pascal3D+ [85] (cf. Table 5).

4.2.1 Experimental Setup

Datasets. Pascal3D+ [85] is a standard evaluation benchmark
used in 3D pose estimation. Unlike 6D pose estimation
datasets [86], [87], [88] that usually focus on dozens of objects
with limited environment variations, Pascal3D+ contains
12 man-made object categories with 2k to 4k images per
category,allowing the benchmarking of object pose estimation
in the wild. ObjectNet3D [84], extended from Pascal3D+,
features 100 object categories, with 90,127 images and 201,888
objects in total. In both datasets, only a small number of
roughly-aligned 3D models are provided for each category.

Evaluation metrics. We use the most common metrics
for evaluation: Acc30, which is the percentage of estima-
tions with a rotational error smaller than 30◦, and Med-
Err, which is the median rotational error measured in
degrees. We compute the rotational error as ∆(Rpred, Rgt) =
‖ log(R>

pred,Rgt)‖F√
2

, where ‖ · ‖F is the Frobenius norm. Follow-
ing previous work [8], [10], we only use the non-occluded
and non-truncated objects for evaluation, and assume in this
subsection, for all methods, that the ground-truth classes and
ground-truth bounding boxes are provided at test time.

Training details. We resize the object image crops into
224 × 224 pixels as the input for our viewpoint estimation
networks, with (Ours w/ 3D) or without (Ours w/o 3D)
using exemplar 3D models. Both networks are trained using
the Adam optimizer with a batch size of 16. Weight decay is
set to 0.0005. During the base-class training stage, we train
for 150 epochs with a learning rate of 10−4. For few-shot
fine-tuning, we train for 50 epochs with learning rate of
10−4 and another 50 epochs with a learning rate of 10−5.
Standard data augmentation is applied during training, such
as random rotation, random flipping and color jittering. The
training is done in about one day on a single Titan-X GPU.

Compared methods. For few-shot viewpoint estimation,
we compare our method to MetaView [10] and to two
adaptations of StarMap [8]. More precisely, the authors of
MetaView [10] re-implemented StarMap with one stage of
ResNet-18 as the backbone, and trained the network with
MAML [31] for a fair comparison in the few-shot regime
(StarMap+M). They also provided StarMap results by just
fine-tuning it on the novel classes using the scarce labeled
data (StarMap+F). We consider the two variants of our
method, with (Ours w/ 3D) or without 3D data (Ours w/o
3D) at training time.

4.2.2 Few-shot Viewpoint Estimation Results

Intra-dataset evaluation. We follow the protocol of [9], [10]
to split the 100 categories of ObjectNet3D into 80 base
classes and 20 novel classes. As shown in Table 4, our
model outperforms the recently proposed meta-learning-
based method MetaView [10] by a very large margin in
overall performance: +16 points in Acc30 and half MedErr
(from 31.5◦ down to 15.6◦). Besides, keypoint annotations
are not available for some object categories such as door,
pen and shoe in ObjectNet3D. This lack of annotations limits
the generalization of keypoint-based approaches [8], [10]
as they require a set of manually labeled keypoints for
network training. In contrast, our model can be trained and
evaluated on all object classes of ObjectNet3D as we only
rely on the viewpoint annotations. More importantly, our
model can be directly deployed on different classes using the
same architecture, while MetaView learns a set of separate
category-specific semantic keypoint detectors for each class.
This flexibility suggests that our approach is likely to exploit
the similarities between different categories (e.g., bicycle
and motorbike) and has more potentials for applications to
robotics and augmented reality.

Inter-dataset evaluation. To further evaluate our method in
a more practical scenario, we use a source dataset for base
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TABLE 4: Intra-dataset 10-shot viewpoint estimation evaluation. We report Acc30(↑) / MedErr(↓) on the same 20 novel
classes of ObjectNet3D for each method, while 80 are used as base classes. All models are trained and tested on ObjectNet3D.

Method bed bookshelf calculator cellphone computer door f cabinet

StarMap+F [8] 0.32 / 47.2 0.61 / 21.0 0.26 / 50.6 0.56 / 26.8 0.59 / 24.4 - / - 0.76 / 17.1
StarMap+M [8] 0.32 / 42.2 0.76 / 15.7 0.58 / 26.8 0.59 / 22.2 0.69 / 19.2 - / - 0.76 / 15.5
MetaView [10] 0.36 / 37.5 0.76 / 17.2 0.92 / 12.3 0.58 / 25.1 0.70 / 22.2 - / - 0.66 / 22.9
Ours w/o 3D 0.53 / 26.8 0.82 / 9.4 0.76 / 11.6 0.54 / 24.0 0.82 / 11.8 0.86 / 3.1 0.83 / 11.1
Ours w/ 3D 0.64 / 14.8 0.90 / 7.8 0.90 / 8.2 0.61 / 13.2 0.86 / 10.3 0.90 / 0.8 0.86 / 10.2

Method guitar iron knife microwave pen pot rifle

StarMap+F [8] 0.54 / 27.9 0.00 / 128 0.05 / 120 0.82 / 19.0 - / - 0.51 / 29.9 0.02 / 100
StarMap+M [8] 0.59 / 21.5 0.00 / 136 0.08 / 117 0.82 / 17.3 - / - 0.51 / 28.2 0.01 / 100
MetaView [10] 0.63 / 24.0 0.20 / 77 0.05 / 98 0.77 / 17.9 - / - 0.49 / 31.6 0.21 / 81
Ours w/o 3D 0.60 / 21.5 0.08 / 118 0.21 / 137 0.91 / 8.9 0.39 / 63.2 0.64 / 17.5 0.15 / 91
Ours w/ 3D 0.68 / 19.4 0.34 / 60 0.27 / 137 0.93 / 7.4 0.47 / 36.4 0.76 / 11.8 0.28 / 87

Method shoe slipper stove toilet tub wheelchair All

StarMap+F [8] - / - 0.08 / 128 0.80 / 16.1 0.38 / 36.8 0.35 / 39.8 0.18 / 80.4 0.41 / 41.0
StarMap+M [8] - / - 0.15 / 128 0.83 / 15.6 0.39 / 35.5 0.41 / 38.5 0.24 / 71.5 0.46 / 33.9
MetaView [10] - / - 0.07 / 115 0.74 / 21.7 0.50 / 32.0 0.29 / 46.5 0.27 / 55.8 0.48 / 31.5
Ours w/o 3D 0.35 / 47.2 0.19 / 125 0.86 / 11.3 0.49 / 30.2 0.50 / 32.0 0.36 / 57.8 0.56 / 22.0
Ours w/ 3D 0.49 / 30.6 0.28 / 93 0.91 / 9.5 0.69 / 17.8 0.65 / 16.4 0.35 / 61.2 0.65 / 15.6

TABLE 5: Inter-dataset 10-shot viewpoint estimation evaluation. We report Acc30(↑) / MedErr(↓) on the 12 novel classes of
Pascal3D+, while the 88 base classes are in ObjectNet3D. All models are trained on ObjectNet3D and tested on Pascal3D+.

Method aero bike boat bottle bus car chair

StarMap+F [8] 0.03 / 102 0.05 / 98.8 0.07 / 99 0.48 / 31.9 0.46 / 33.0 0.18 / 80.8 0.22 / 74.6
StarMap+M [8] 0.03 / 99 0.08 / 88.4 0.11 / 92 0.55 / 28.0 0.49 / 31.0 0.21 / 81.4 0.21 / 80.2
MetaView [10] 0.12 / 104 0.08 / 91.3 0.09 / 108 0.71 / 24.0 0.64 / 22.8 0.22 / 73.3 0.20 / 89.1
Ours w/o 3D 0.14 / 88 0.30 / 67.8 0.20 / 83 0.81 / 12.1 0.73 / 9.6 0.43 / 53.8 0.30 / 78.8
Ours w/ 3D 0.21 / 73 0.33 / 64.7 0.25 / 78 0.91 / 11.6 0.74 / 9.0 0.49 / 32.8 0.32 / 79.1

Method table mbike sofa train tv All

StarMap+F [8] 0.46 / 31.4 0.09 / 91.6 0.32 / 44.7 0.36 / 41.7 0.52 / 29.1 0.25 / 64.7
StarMap+M [8] 0.29 / 36.8 0.11 / 83.5 0.44 / 42.9 0.42 / 33.9 0.64 / 25.3 0.28 / 60.5
MetaView [10] 0.39 / 36.0 0.14 / 74.7 0.29 / 46.2 0.61 / 23.8 0.58 / 26.3 0.33 / 51.3
Ours w/o 3D 0.51 / 31.2 0.36 / 49.8 0.49 / 34.6 0.62 / 16.1 0.77 / 18.7 0.46 / 38.3
Ours w/ 3D 0.59 / 20.9 0.44 / 37.2 0.58 / 23.9 0.72 / 12.1 0.79 / 19.0 0.51 / 29.1

classes and another target dataset for novel (disjoint) classes.
Following the same split as MetaView [10], we use all 12 cate-
gories of Pascal3D+ as novel categories and the remaining 88
categories of ObjectNet3D as base categories. Distinct from
the previous intra-dataset experiment that focuses more on
the cross-category generalization capacity, this inter-dataset
setup also reveals the cross-domain generalization ability.

As shown in Table 5, our approach again significantly out-
performs StarMap and MetaView. Our overall improvement
in inter-dataset evaluation is even larger than in intra-dataset
evaluation: we gain +19 points in Acc30 and again divide
MedErr by about 2 (from 51.3◦ down to 28.3◦). This indicates
that our approach, by leveraging viewpoint-relevant 3D
information, not only helps the network generalize to novel
classes from the same domain, but also addresses the domain
shift issues when trained and evaluated on different datasets.

Visual results. We illustrate on Figure 5 viewpoint estimation
for novel objects in ObjectNet3D and Pascal3D+. We show
both success (green boxes) and failure cases (red boxes) to
help analyze possible error types. We visualize categories
giving large rotational errors: iron, knife, rifle and slipper for
ObjectNet3D, aeroplane, bicycle, boat and chair for Pascal3D+.
The most common failure cases come from objects with
similar appearances in different poses, e.g., iron and knife
in ObjectNet3D, aeroplane and boat in Pascal3D+. It seems
that more complex methods based on keypoints [8], [10]
perform a bit better on this kind of objects, although being

nevertheless grossly wrong too. Other failure cases include
heavy clutter cases (bicycle) and large shape variations
between training objects and testing objects (chair).

4.2.3 Ablation Study

Different 3D model representations, if any. In Table 6,
we analyze the impact of different 3D model representa-
tions in our few-shot viewpoint estimation approach using
exemplar 3D models. Besides using a point cloud (Point
Cloud), we can also represent 3D shapes using a group
of depth images (Depth) or non-textured rendered images
(Rendering) captured in a set of camera locations defined on
the upper hemisphere. We also use the normalized, canonical
object space [89], [90], [91] to represent the 3D models by
transforming the 3D coordinates into RGB values (Object
Coord.). For these variants that consider 2D inputs rather
than a 3D point cloud, we implement the class encoder Fcls

using a ResNet-18 to extract features from images.
We find that using point clouds (with PointNet encoding)

provides the best overall performance compared to training
with the other 3D representations. This demonstrates the
effectiveness of 3D model embedding with point clouds for
viewpoint estimation. By comparing the performance gap
between our methods using 3D models, regardless of the
choice of 3D representation, and our method without using
3D models (first row in Table 6), we note again that the 3D
models can indeed help improve the viewpoint estimation
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Fig. 5: Qualitative results of few-shot viewpoint estimation using ground-truth 2D bounding boxes (and classes). We
visualize results on ObjectNet3D and Pascal3D+. For each category, we show three success cases (first six columns) and one
failure case (last two columns). CAD models are shown here only for the purpose of illustrating the estimated viewpoint.
Failure cases usually result from appearance ambiguities of a same object in different poses, or from heavily cluttered scenes.

Intra-dataset (base) Intra-dataset (novel) Inter-dataset (base) Inter-dataset (novel)

No 3D Exemplar Single 3D Exemplar Multiple 3D Exemplars

Fig. 6: Few-shot viewpoint estimation evaluation using different number of shots. For each metric, we report the average
and standard deviation computed over 10 random experiments.



12

TABLE 6: Efficacy of different 3D representations, if any.
We show few-shot viewpoint estimation results on the 20
novel classes of ObjectNet3D. The first row represents our
approach without using any form of 3D information, while
other rows correspond to our method using exemplar 3D
models with different representations. We also plot the four
different 3D representations of an example CAD model on
the bottom.

Acc30(↑) / MedErr(↓)
3D exemplar Base Novel

None 0.58± 0.01 / 21.3± 0.31 0.56± 0.01 / 22.1± 0.80

Depth 0.61± 0.01 / 22.0± 0.97 0.57± 0.02 / 24.3± 1.52
Object Coord. 0.61± 0.01 / 22.0± 0.54 0.59± 0.02 / 23.7± 1.09
Rendering 0.61± 0.01 / 21.7± 0.92 0.60± 0.01 / 22.9± 0.77
Point Cloud 0.64± 0.01 / 17.5± 0.18 0.65± 0.01 / 15.6± 0.38

accuracy on novel classes and reduce the variance introduced
by different support training samples.

Number of exemplars. We show detailed evaluation of few-
shot viewpoint estimation with different number of shots
in Figure 6. For both the intra-dataset and inter-dataset
evaluations, we compute the accuracies and median errors
on base and novel classes. We report the average results and
the standard deviations computed over 10 experimental runs
with different support training samples.

We first note that all variants of our viewpoint estimation
approach can achieve better results when more annotated
samples are provided. Secondly, we find that our approach
using only one 3D exemplar model per class clearly improves
the performance on both base and novel classes compared
to results without using 3D models. Moreover, adding 3D
information also reduces the variance on novel classes,
which can clearly be seen in the inter-dataset evaluation.
This shows that our method without 3D models, which
relies on geometrical similarities and consistent labeling
between different categories, can already learn a good image
embedding space for few-shot viewpoint estimation. Yet,
adding 3D models can certainly provide a more direct
guidance for a better generalization towards novel categories.

On the other hand, we note that the performance gap
between our approach using a single 3D exemplar per class or
using multiple 3D exemplars per class is negligible compared
to the gap between using or not 3D models. It demonstrates
that even a single 3D model is sufficient to obtain a good
3D-aware class embedding for viewpoint estimation. It is
possible that extra 3D exemplars could prove useful to
generate more informative class embeddings, but it would
probably require a more sophisticated feature combination
than just feature averaging.

4.3 Joint Detection and Viewpoint Estimation
To further demonstrate the generality of our approach in real-
world scenarios, we consider the joint problem of detecting
objects of novel classes in images and estimating their
viewpoints. The fact is that evaluating a viewpoint estimator

on ground-truth classes and ground-truth bounding boxes is
a toy setting [8], [10], that is not representative of actual needs.
On the contrary, estimating viewpoints based on predicted
detection is much more realistic and challenging. Note that
our object detection model and our viewpoint estimation
model were trained separately.

4.3.1 Experimental Setup

Datasets. As introduced in Section 4.2, Pascal3D+ [85] and
ObjectNet3D [84] are two common viewpoint estimation
benchmarks that have already been used in a number of
previous publications. Apart from these two datasets, we also
evaluate our method on a more recent benchmark: Pix3D [92].
This is a large-scale dataset of 10,069 image-shape pairs with
accurate 2D-3D alignment. It contains 395 3D shapes of
9 object categories. Each shape is associated with a set of
images capturing the exact object in various environments.

Evaluation metric. As we are considering the joint eval-
uation of object detection and viewpoint estimation in
this section, the metric should reflect the performance of
both tasks. We thus compute the percentage of objects for
which the intersection over union between the ground-truth
bounding box and the predicted bounding box (with the
right class) is larger than 0.5 and the rotational error between
the ground-truth viewpoint and the predicted viewpoint
is smaller than 30◦. This metric corresponds to the AccRπ
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proposed in [93], which is used to evaluate a joint focal length
and 3D pose estimation approach.

Compared methods. We compare our approach to the other
viewpoint estimation methods, namely MetaView [10] and
StarMap+M, which is the best performing adaptation of
StarMap [8] (cf. Tables 4-5). However, these methods are only
evaluated on perfect detections, i.e., ground-truth classes
and ground-truth bounding boxes, and no code is available
to rerun them on other inputs. Regarding our approach,
we consider the case of imperfect detections, where classes
and bounding boxes are predicted by our object detector.
Note that the object class is only useful for our viewpoint
estimation variant that exploits exemplar 3D models (Ours
w/ 3D), as the method variant without 3D information (Ours
w/o 3D) is category-agnostic.

4.3.2 Results

Intra-dataset evaluation on ObjectNet3D. To experiment
with this scenario, we split ObjectNet3D into 80 base classes
and 20 novel classes as done in Section 4.2, and train the
object detector and viewpoint estimator using the abundant
annotated samples of base classes and scarce labeled samples
of novel classes. In this setting, both training and testing
samples are from the same dataset, i.e. ObjectNet3D.

As recalled in the left part of Table 7, our few-shot
viewpoint estimation outperforms other methods by a
large margin when evaluated using ground-truth classes
and ground-truth bounding boxes in the 10-shot setting.
When using predicted classes and predicted bounding boxes,
accuracy drops for most categories. One explanation is that
viewpoint estimation becomes difficult when the objects are
truncated by imperfect predicted bounding boxes, especially
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TABLE 7: Evaluation of joint few-shot detection and viewpoint estimation. We first recall viewpoint estimation results
assuming perfect detection, i.e., using the ground-truth classes and ground-truth bounding boxes (cf. Tables 4-5). Then we
use as input predicted classes and estimated bounding boxes given an object detector. As no code is available to evaluate
StarMap+M and MetaView in this setting, we can only evaluate our viewpoint estimation method, for which we used our
own detections as input. (Ours w/o 3D actually does not need to know the class as it is category-agnostic.) We report the
percentage of objects that are correctly detected (right class) with IoU threshold at 0.5, and a rotational error less than 30◦.
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Evaluated using ground-truth classes and ground-truth bounding boxes (viewpoint estimation)

StarMap+M [8] 32 76 58 59 69 – 76 59 0 8 82 – 51 1 – 15 83 39 41 24 46 3 8 11 55 49 21 21 29 11 44 42 64 28
MetaView [10] 36 76 92 58 70 – 66 63 20 5 77 – 49 21 – 7 74 50 29 27 48 12 8 9 71 64 22 20 39 14 29 61 58 33
Ours w/o 3D 53 82 76 54 82 86 83 60 8 21 91 39 64 15 35 19 86 49 50 36 56 14 30 20 81 73 43 30 51 36 49 62 77 46
Ours w/ 3D 64 90 90 61 86 90 86 68 34 27 93 47 76 28 49 28 91 69 65 35 65 21 33 25 91 74 49 32 59 44 58 72 79 51

Evaluated using predicted classes and predicted bounding boxes (detection + viewpoint estimation)

Ours w/o 3D 44 73 57 43 48 60 65 60 7 5 55 17 46 4 16 12 76 41 48 19 40 14 14 10 12 73 34 19 0 20 41 64 74 31
Ours w/ 3D 56 75 70 47 53 64 65 75 39 8 57 22 57 15 36 24 82 64 58 24 50 15 22 15 15 74 42 16 0 30 54 70 74 35

for tiny objects (shoes) and ambiguous objects with similar ap-
pearances in different poses (knives, rifles). Yet, by comparing
the performance gap between, on the one hand, our method
when tested using predicted classes and predicted boxes, and,
on the other hand, MetaView when tested using ground-truth
classes and ground-truth boxes, we find that our approach
is able to reach a better accuracy: 50% against 48%. This
improvement is a strongly encouraging achievement since
we free the viewpoint estimation approach from requiring the
perfect ground-truth bounding boxes (and classes) without
degrading the performance.

Inter-dataset evaluation on Pascal3D+. Here, we consider
all 12 object categories of Pascal3D+ as novel classes, while
the base classes are a set of disjoint object categories from
ObjectNet3D and COCO for viewpoint estimation and object
detection, respectively. We use the same split as in the inter-
dataset few-shot viewpoint estimation (Section 4.2), that
divides the 100 ObjectNet3D categories into 12 novel ones
that intersect with Pascal3D+ and 88 remaining base classes.
Besides, the 12 classes of Pascal3D+ are completely included
in the 20 PASCAL VOC object categories, which are set
to be the novel classes in the few-shot object detection on
MS-COCO (Section 4.1). Therefore, we first use the 10-shot
object detection network trained on MS-COCO to detect the
novel objects on Pascal3D+, and then, using the predicted 2D
bounding boxes, the 10-shot viewpoint estimation network
trained on ObjectNet3D. Unlike the intra-dataset evaluation
on ObjectNet3D, our networks are trained and tested on
different datasets in this part.

We report the results in the right part of Table 7. Again,
our few-shot viewpoint estimation network outperforms
other methods by a large margin when evaluated using
ground-truth classes and ground-truth bounding boxes in
the 10-shot setting. Even though a performance drop appears
when replacing the ground-truth bounding boxes by the
predicted ones, our method using exemplar 3D models
still outperforms other methods: 35% against 33%. This
improvement is especially impressive considering the fact
that our object detection and viewpoint estimation networks
are both tested on a new dataset that is different from
the training datasets, which is a big step towards realistic
scenarios and industrial applications.

Visual results. We provide in Figure 7 some qualitative

TABLE 8: Inter-dataset few-shot detection and viewpoint es-
timation evaluation on Pix3D. †Detection network from [93].
‡Our few-shot object detection and viewpoint estimation
networks trained and tested on different datasets.

Method bed chair sofa table Mean

Detection + Viewpoint Estimation

Fine-grained [94] 95 88 95 73 88
GP2C [93] 98 91 97 77 91

Detection† + Few-shot Viewpoint Estimation‡

Ours w/o 3D 81 47 88 53 67
Ours w/ 3D 86 51 92 58 72

Few-shot Detection‡ + Few-shot Viewpoint Estimation‡

Ours w/o 3D 68 34 81 13 49
Ours w/ 3D 71 36 87 14 52

results of few-shot object detection and viewpoint estimation
of novel objects on ObjectNet3D and Pascal3D+. For each
sample we show the predicted bounding boxes on the left
and the estimated viewpoints on the right (visualized by the
projected CAD models). Besides the appearance ambiguities
causing major viewpoint estimation errors, we note that
the principal failure cases result from the target objects
being missed by our object detector (iron and knife) or
the objects being wrongly classified (car and motorbike).
Another error is that only one bounding box is predicted
for multiple objects of the same class, which usually occurs
in cluttered scenes (pen). These detection errors contribute
considerably to the performance drop between evaluating
using ground-truth bounding boxes and evaluating using
predicted bounding boxes, especially for categories mainly
containing tiny objects such as knife in ObjectNet3D and
bottle in Pascal3D+.

Additional results on Pix3D. To further demonstrate the
effectiveness of our few-shot object detection network and
few-shot viewpoint estimation network, we follow GP2C [93]
and conduct evaluation on four object categories of Pix3D:
bed, chair, sofa and table. As these four classes are completely
included in the 12 Pascal3D+ object categories that are
considered as novel categories in the inter-dataset evaluation
described before, we use the same object detector trained on
MS-COCO and viewpoint estimator trained on ObjectNet3D
to perform an inter-dataset evaluation on Pix3D.
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Fig. 7: Qualitative results of joint few-shot object detection and viewpoint estimation using the predicted 2D bounding boxes
given by our object detection model. We visualize results on ObjectNet3D and Pascal3D+. For each category, we show three
success cases (the first six columns) and one failure case (the last two columns). For each testing image, we project the CAD
model of the corresponding class into the predicted 2D bounding box and rotate it according to the estimated viewpoint.
Error cases include: missing target objects (iron, knife, boat); failed classification (motorbike, car); cluttered objects being
detected as one (pen); successful detection but failed viewpoint estimation (shoe and airplane).

We first report our results evaluated using the 2D
bounding boxes predicted by GP2C in the middle of Table 8.
Even though the performance drops from 91% to 72%, this
result is very encouraging since our viewpoint estimation
network has only trained on 10 annotated samples for each
testing category while previous methods has trained on
thousands of annotated samples. Besides using only a small
number of annotated training samples of the target classes,
our viewpoint estimation network is trained on ObjectNet3D
images and directly tested on Pix3D images, while Fine-
grained [94] and GP2C [93] use images from the same dataset
for training and testing. Therefore, our setting is much harder
compared to [93], [94]. We then report our results evaluated
using predicted bounding boxes given by our few-shot object
detector at the bottom of Table 8. The overall performance
drops around 20% points compared to the evaluation using
bounding boxes predicted by GP2C, where the detection
network is pre-trained on all 80 object categories of MS-
COCO and fine-tuned on the 4 categories of Pix3D. In both
cases, our viewpoint estimation method using 3D models
performs better than our method without 3D models. This

consistent improvement demonstrates again the benefits of
adding 3D information in viewpoint estimation.

4.4 Limitations
Our work shares a common limitation with other work
on viewpoint estimation in that it does not handle very
well small objects, which have less visible cues, and objects
that are nearly symmetrical, such as knives. In the latter
case, a wrong prediction of the front-back orientation can
result in a very large prediction error, although the rendered
views can be very similar to the actual images. It is even
more so in the few-shot setting, where only a few labeled
samples are provided for the novel categories. Preventing
such failure cases could require a specific treatment of almost-
symmetries.

Also, as discussed in the introduction regarding the case
where we do not use 3D model information for viewpoint
estimation but a class-agnostic approach instead, we rely on
the fact that objects of different but related classes often are
consistently oriented, with aligned similarities. While it is the
case for all datasets we know of, this fact is not guaranteed.
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Yet, in case of orientation discrepancies between classes, a
dataset can somehow be “normalized” before training by
applying systematic rotations of ground-truth viewpoints.

5 CONCLUSION AND PERSPECTIVES

In this work, we presented an approach to few-shot object
detection and viewpoint estimation that can tackle both tasks
in a coherent and efficient framework. We demonstrated
the benefits of this approach in terms of accuracy, and
significantly improved the state of the art on several standard
benchmarks for few-shot object detection and few-shot view-
point estimation. Moreover, we showed that our few-shot
viewpoint estimation model can achieve promising results on
the novel objects detected by our few-shot detection model,
compared in an adversarial setting to other existing methods
tested on perfect detection, i.e., ground-truth classes and
ground-truth bounding boxes.

This is of particular interest for scene understanding
in weakly-controlled environments, such as robotic manip-
ulation with various objects in the wild. In future work,
we are interested in developing category-agnostic models
that can detect arbitrary objects and estimate their poses
without seeing them during training. We will also expand
our approach to perform 3D model retrieval and estimation
refinement by selecting the 3D candidate that best agrees
with the measured visual evidence, which might include RGB
images, depth maps, and deep features extracted by a neural
network. The exploitation of multiple views and additional
inputs such as depth maps could also be considered.
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