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Data

Point clouds from photogram-
metry or laser acquisition:

>

>

>

may be noisy
may have outliers

most often have sharp
features

may be anisotropic

may be huge (more than
20 million points)
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Np be its neighborhood.
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Basics of the method (2D case here for readability)

Let P be a point and
Np be its neighborhood.

. e P
We consider two cases: N ®

» P lies on a planar surface

> P lies next to a sharp
feature Na

If Area(N7) > Area(N?>), picking points in N7 x N7 is more
probable than N> x A5, and N7 x N> leads to “random” normals.
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Basics of the method (2D case here for readability)

Main ldea

Draw as many primitives as necessary to estimate the normal

distribution, and then the most probable normal.

» Discretize the problem

P
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Normal
direction

N.B. We compute the normal direction, not orientation.
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Basics of the method (2D case here for readability)

Main ldea

Draw as many primitives as necessary to estimate the normal

distribution, and then the most probable normal.

» Discretize the problem
» Fill a Hough accumulator

> Select the good normal

Normal
direction

N.B. We compute the normal direction, not orientation.
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Robust Randomized Hough Transform

T, number of primitives picked after T iteration.

v

v

Tmin, number of primitives to pick

v

M, number of bins of the accumulator

v

Pm, empirical mean of the bin m

v

Ppm, theoretical mean of the bin m
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Robust Randomized Hough Transform
Global upper bound

T min such that:

P Pm — <46) >
(me?;'fi(’M}mm Pm| <6) >

From Hoeffding's inequality, for a given bin:
P(|pm — Pml| > 6) < 2exp(—26° Tin)
Considering the whole accumulator:

1 2M

Tmin > W In(

)

11—«
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Robust Randomized Hough Transform

Confidence Interva

Idea: if we pick often enough

the same bin, we want to stop AL
drawing primitives. -
From the Central Limit e
Theorem, we can stop if: Dmy T 1/
" R 1 I Pmsy
Pm; — Pmy Z 24 =

T

i.e. the confidence intervals of %‘
the most voted bins do not in-
tersect (confidence level 95%)
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Accumulator

Our primitives are planes direc-
tions (defined by two angles).

We use the accumulator of
Borrmann & al (3D  Research,
2011).

» Fast computing

» Bins of similar area
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Discretization issues

The use of a discrete accumulator
may be a cause of error.
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Discretization issues

The use of a discrete accumulator
may be a cause of error.

Solution
Iterate the algorithm using
randomly rotated accumulators.
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Normal Selection

Surface

Mean over all
the normals

Normal directions
obtained by rotation
of the accumulator

Best confidence Mean over
best cluster
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Dealing with anisotropy

The robustness to anisotropy depends of the way we select the
planes (triplets of points)

>
>
— >
p——— > *-—>
Sensitivity to anisotropy Robustness to anisotropy
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Random point selection among nearest neighbors
Dealing with anisotropy

The triplets are randomly selected
among the K nearest neighbors.

Fast but cannot deal with anisotropy.
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Uniform point selection on the neighborhood ball

Dealing with anisotropy

» Pick a point @ in the
neighborhood ball
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Uniform point selection on the neighborhood ball
Dealing with anisotropy

» Pick a point @ in the
neighborhood ball

» Consider a small ball
around @

» Pick a point randomly in the
small ball

> lterate to get a triplet

Deals with anisotropy, but for a high computation cost.

16/37



Cube discretization of the neighborhood ball
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Cube discretization of the neighborhood ball

Dealing with anisotropy

v

Discretize the neighborhood
ball

Pick a cube

v

v

Pick a point randomly in
this cube

v

Iterate to get a triplet

Good compromise between speed and robustness to anisotropy.
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Methods used for comparison

> Regression
» Hoppe & al
(SIGGRAPH,1992):
plane fitting
» Cazals & Pouget
(SGP, 2003): jet
fitting
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Anisotropy
Fast v |V
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Methods used for comparison

> Regression
» Hoppe & al
(SIGGRAPH,1992):
plane fitting
» Cazals & Pouget
(SGP, 2003): jet
fitting
» Voronoi diagram
» Dey & Goswami
(5CG, 2004):
NormFet
» Sample Consensus
Models
» Li & al (Computer &
Graphics, 2010)
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Precision

Two error measures:

» Root Mean Square (RMS):

RMS = Z np refnP est
€l =

» Root Mean Square with threshold RMS

(RMS_7):

=
RMS_1 = \C\ Pz: vP
eC
where RMS.
More suited for sharp features

—_— - —_—
vp = Np refNP est if Np ref NP est <T
> otherwise
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Visual on error distances

Same RMS, different RMS;
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Precision (with noise)
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Precision for cube uniformly sampled, depending on noise.
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Precision (with noise and anisotropy)
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Precision for a corner with anisotropy, depending on noise.
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Computation time
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Number of points

Computation time for sphere, function of the number of points.
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Robustness to outliers

Noisy model (0.2%) + 100% of outliers.
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Robustness to outliers

Noisy model (0.2%) + 200% of outliers.

26/37



Robustness to anisotropy

27/37



Preservation of sharp features

2L NGe
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Robustness to “natural” noise, outliers and anisotropy

i [ o

Point cloud created by photogrammetry.
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Normal Estimation

Conclusion
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Conclusion
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Compared to state-of-the-art
methods that preserve sharp
features, our normal estimator

IS:
>

| 2

at least as precise

at least as robust to
noise and outliers

almost 10x faster

robust to anisotropy
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Code available

Web site

https://sites.google.com/site/boulchalexandre

Two versions under GPL license:
» for Point Cloud Library
(http://pointclouds.org)

» for CGAL (http://www.cgal.org)

QA C
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Computation time

Tmin=700 Tmin=300
Nrot=5 Nrot=2

w/o with w/o with
Model (# vertices) | interv. | interv. | interv. | interv.
Armadillo (173k) 21s 20s 3s 3s
Dragon (438k) 55s 51s 8s 7s
Buddha (543k) 1.1 1 10s | 10s
Circ. Box (701k) 15 1.3 13s 12s
Omotondo (998k) 2 1.2 18s 10s
Statuette (5M) 11 10 15 1.4
Room (6.6M) 14 8 23 | 16
Lucy (14M) 28 17 4 2.5
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Parameters

» K or r: number of neighbors or neighborhood radius,

v

Tmin: number of primitives to explore,

> ng: parameter defining the number of bins,

v

Nyor: Nnumber of accumulator rotations,

» c: presampling or discretization factor (anisotropy only),

v

aciuster: tolerance angle (mean over best cluster only).
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Efficiency

Cube, 50000 points, noise = 0.1

TR =300
nRot = 2

2000 4000 6000 8000 10000 12000 14000 16000 18000
Time (s)

03

Cube, 50000 points, Noise = 0.5

2000 4000 6000 8000 10000 12000 14000 16000 18000
Time (s)
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Influence of the neighborhood size

K = 200 K = 400
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Precision (with noise)
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Precision for cube uniformly sampled, depending on noise.
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