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Data

Point clouds from photogram-
metry or laser acquisition:

◮ may be noisy

◮ may have outliers

◮ most often have sharp
features

◮ may be anisotropic

◮ may be huge (more than
20 million points)

4/37



Normal Estimation

Normal estimation for point clouds

Our method

Experiments

Conclusion

5/37



Basics of the method (2D case here for readability)

Let P be a point and
NP be its neighborhood.
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Basics of the method (2D case here for readability)

Let P be a point and
NP be its neighborhood.

We consider two cases:

◮ P lies on a planar surface

◮ P lies next to a sharp
feature

If Area(N1) > Area(N2), picking points in N1 × N1 is more
probable than N2 × N2, and N1 × N2 leads to “random” normals.
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Basics of the method (2D case here for readability)

Main Idea
Draw as many primitives as necessary to estimate the normal
distribution, and then the most probable normal.

◮ Discretize the problem

P

Normal
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N.B. We compute the normal direction, not orientation.
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Basics of the method (2D case here for readability)

Main Idea
Draw as many primitives as necessary to estimate the normal
distribution, and then the most probable normal.

◮ Discretize the problem

◮ Fill a Hough accumulator

◮ Select the good normal

P

Normal

direction

N.B. We compute the normal direction, not orientation.
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Robust Randomized Hough Transform

◮ T , number of primitives picked after T iteration.

◮ Tmin, number of primitives to pick

◮ M, number of bins of the accumulator

◮ p̂m, empirical mean of the bin m

◮ pm, theoretical mean of the bin m
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Robust Randomized Hough Transform
Global upper bound

Tmin such that:

P( max
m∈{1,...,M}

|p̂m − pm| ≤ δ) ≥ α

From Hoeffding’s inequality, for a given bin:

P(|p̂m − pm| ≥ δ) ≤ 2 exp(−2δ
2Tmin)

Considering the whole accumulator:

Tmin ≥
1

2δ2
ln(

2M

1 − α
)
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Robust Randomized Hough Transform
Confidence Interval

Idea: if we pick often enough
the same bin, we want to stop
drawing primitives.
From the Central Limit
Theorem, we can stop if:

p̂m1 − p̂m2 ≥ 2

√

1

T

i.e. the confidence intervals of
the most voted bins do not in-
tersect (confidence level 95%)
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Accumulator

Our primitives are planes direc-
tions (defined by two angles).
We use the accumulator of
Borrmann & al (3D Research,
2011).

◮ Fast computing

◮ Bins of similar area
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Discretization issues

The use of a discrete accumulator
may be a cause of error.

P
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Discretization issues

The use of a discrete accumulator
may be a cause of error.

Solution
Iterate the algorithm using
randomly rotated accumulators.

P
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Normal Selection

P

Normal directions

obtained by rotation

of the accumulator

Mean over all

the normals
Best confidence Mean over

best cluster
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Dealing with anisotropy

The robustness to anisotropy depends of the way we select the
planes (triplets of points)

Sensitivity to anisotropy Robustness to anisotropy
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Random point selection among nearest neighbors
Dealing with anisotropy

The triplets are randomly selected
among the K nearest neighbors.

Fast but cannot deal with anisotropy.

15/37



Uniform point selection on the neighborhood ball
Dealing with anisotropy

◮ Pick a point Q in the
neighborhood ball

P

Q
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Uniform point selection on the neighborhood ball
Dealing with anisotropy

◮ Pick a point Q in the
neighborhood ball

◮ Consider a small ball
around Q

◮ Pick a point randomly in the
small ball

◮ Iterate to get a triplet

Deals with anisotropy, but for a high computation cost.
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Cube discretization of the neighborhood ball
Dealing with anisotropy

◮ Discretize the neighborhood
ball
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Cube discretization of the neighborhood ball
Dealing with anisotropy

◮ Discretize the neighborhood
ball

◮ Pick a cube

◮ Pick a point randomly in
this cube

◮ Iterate to get a triplet

Good compromise between speed and robustness to anisotropy.
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Methods used for comparison

◮ Regression
◮ Hoppe & al

(SIGGRAPH,1992):
plane fitting

◮ Cazals & Pouget
(SGP, 2003): jet
fitting
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◮ Regression
◮ Hoppe & al

(SIGGRAPH,1992):
plane fitting

◮ Cazals & Pouget
(SGP, 2003): jet
fitting

◮ Voronoï diagram
◮ Dey & Goswami

(SCG, 2004):
NormFet

◮ Sample Consensus
Models

◮ Li & al (Computer &
Graphics, 2010)
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Precision

Two error measures:

◮ Root Mean Square (RMS):

RMS =

√

√

√

√

1

|C|

∑

P∈C

̂nP,refnP,est

2

◮ Root Mean Square with threshold
(RMS_τ):

RMS_τ =

√

√

√

√

1

|C|

∑

P∈C

v2
P

where

vP =

{

̂nP,refnP,est if ̂nP,refnP,est < τ
π
2 otherwise

More suited for sharp features
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Visual on error distances

Same RMS, different RMSτ
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Precision (with noise)

Precision for cube uniformly sampled, depending on noise.
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Precision (with noise and anisotropy)

Precision for a corner with anisotropy, depending on noise.
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Computation time

Computation time for sphere, function of the number of points.
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Robustness to outliers

Noisy model (0.2%) + 100% of outliers.
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Robustness to outliers

Noisy model (0.2%) + 200% of outliers.
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Robustness to anisotropy
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Preservation of sharp features
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Robustness to “natural” noise, outliers and anisotropy

Point cloud created by photogrammetry.
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Conclusion
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Compared to state-of-the-art
methods that preserve sharp
features, our normal estimator
is:

◮ at least as precise

◮ at least as robust to
noise and outliers

◮ almost 10x faster

◮ robust to anisotropy
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Code available

Web site
https://sites.google.com/site/boulchalexandre

Two versions under GPL license:

◮ for Point Cloud Library
(http://pointclouds.org)

◮ for CGAL (http://www.cgal.org)
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Computation time

Tmin=700 Tmin=300
nrot=5 nrot=2

w/o with w/o with
Model (# vertices) interv. interv. interv. interv.

Armadillo (173k) 21 s 20 s 3 s 3 s
Dragon (438k) 55 s 51 s 8 s 7 s
Buddha (543k) 1.1 1 10 s 10 s
Circ. Box (701k) 1.5 1.3 13 s 12 s
Omotondo (998k) 2 1.2 18 s 10 s
Statuette (5M) 11 10 1.5 1.4
Room (6.6M) 14 8 2.3 1.6
Lucy (14M) 28 17 4 2.5
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Parameters

◮ K or r : number of neighbors or neighborhood radius,

◮ Tmin: number of primitives to explore,

◮ nφ: parameter defining the number of bins,

◮ nrot : number of accumulator rotations,

◮ c : presampling or discretization factor (anisotropy only),

◮ acluster : tolerance angle (mean over best cluster only).
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Efficiency
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Influence of the neighborhood size

K = 20 K = 200 K = 400
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Precision (with noise)

Precision for cube uniformly sampled, depending on noise.
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