

Learning Co-segmentation by Segment Swapping for Retrieval and Discovery

Xi Shen¹

Alexei A. Efros² Armand Joulin³

Mathieu Aubry¹

¹LIGM (UMR 8049) - Ecole des Ponts, UPE ² UC Berkeley ³ Meta Al

Task: co-segmentation in a pair of images

Input predicted masks **Problem: no training data available**

Roadmap

• 1. Co-segmentation by Segment Swapping

• 2. Application to Image Retrieval

• 3. Application to Discovery on a Database

• 4. Summary

Roadmap

• 1. Co-segmentation by Segment Swapping

• 2. Application to Image Retrieval

• 3. Application to Discovery on a Database

• 4. Summary

Key idea: synthetic pairs with duplicated patterns

Source and selected segment

Background

Key idea: direct copy-paste

Direct Copy-paste

Key idea: our blending

Our blending

Poisson blending [Pérez et al. 2003]

> Style transfer [Huang and Belongie 2017]

Annotations

Generated images

Masks

Correspondences

Training data

One object COCO Seg.

Two objects Unsup. Seg.

Source

Blended

Source

Blended

$$\mathcal{L}_{sup}^{s} = \underbrace{CE(\mathbf{M}_{gt}^{s}, \mathbf{M}^{s})}_{\mathcal{L}_{mask}} + \underbrace{CE(\mathbf{M}_{gt}^{s}, \mathbf{M}^{t}(\mathbf{C}^{s \to t}))}_{\mathcal{L}_{tmask}} + \underbrace{\eta \frac{1}{\sum_{i,j} \mathbf{M}_{gt}^{s}(i,j)} \sum_{i,j} \mathbf{M}_{gt}^{s}(i,j) \| \mathbf{C}^{s \to t}(i,j) - \mathbf{C}_{gt}^{s \to t}(i,j) \|}_{\mathcal{L}_{corr}}$$

$$\mathcal{L}_{sup}^{s} = \underbrace{\underbrace{CE(\mathbf{M}_{gt}^{s}, \mathbf{M}^{s})}_{\mathcal{L}_{mask}}}_{\mathcal{L}_{mask}} + \underbrace{\underbrace{CE(\mathbf{M}_{gt}^{s}, \mathbf{M}^{t}(\mathbf{C}^{s \to t}))}_{\mathcal{L}_{tmask}}}_{\mathcal{L}_{tmask}} + \underbrace{\eta \frac{1}{\sum_{i,j} \mathbf{M}_{gt}^{s}(i,j)} \sum_{i,j} \mathbf{M}_{gt}^{s}(i,j) \| \mathbf{C}^{s \to t}(i,j) - \mathbf{C}_{gt}^{s \to t}(i,j) \|}_{\mathcal{L}_{corr}}$$

$$\mathcal{L}_{sup}^{s} = \underbrace{CE(\mathbf{M}_{gt}^{s}, \mathbf{M}^{s})}_{\mathcal{L}_{mask}} + \underbrace{CE(\mathbf{M}_{gt}^{s}, \mathbf{M}^{t}(\mathbf{C}^{s \to t}))}_{\mathcal{L}_{tmask}} + \underbrace{\eta \frac{1}{\sum_{i,j} \mathbf{M}_{gt}^{s}(i,j)} \sum_{i,j} \mathbf{M}_{gt}^{s}(i,j) \| \mathbf{C}^{s \to t}(i,j) - \mathbf{C}_{gt}^{s \to t}(i,j) \|}_{\mathcal{L}_{corr}}$$

$$\mathcal{L}_{sup}^{s} = \underbrace{CE(\mathbf{M}_{gt}^{s}, \mathbf{M}^{s})}_{\mathcal{L}_{mask}} + \underbrace{CE(\mathbf{M}_{gt}^{s}, \mathbf{M}^{t}(\mathbf{C}^{s \to t}))}_{\mathcal{L}_{tmask}} + \underbrace{\eta \frac{1}{\sum_{i,j} \mathbf{M}_{gt}^{s}(i,j)} \sum_{i,j} \mathbf{M}_{gt}^{s}(i,j) \| \mathbf{C}^{s \to t}(i,j) - \mathbf{C}_{gt}^{s \to t}(i,j) \|}_{\mathcal{L}_{corr}}$$

Roadmap

• 1. Co-segmentation by Segment Swapping

• 2. Application to Image Retrieval

- 3. Application to Discovery on a Database
- 4. Summary

One-shot detection on Brueghel

Score between a pair of images

$$\begin{split} \mathcal{S}(\mathbf{I}^{s},\mathbf{I}^{t}) = \sum_{i,j} \underbrace{\mathbf{M}_{joint}^{s}(i,j)}_{\text{Mask}} \underbrace{cos(\mathbf{F}^{s}(i,j),\mathbf{F}^{t}(\mathbf{C}^{s \to t}(i,j)))}_{\text{Feat. similarity}} \\ \mathbf{M}_{joint}^{s}(i,j) = \mathbf{M}^{t}(\mathbf{C}^{s \to t}(i,j))\mathbf{M}^{s}(i,j) \end{split}$$

Query

Top-3 retrieved images

One-shot detection on Brueghel

Faat 1 Mathada	mAP					
real. + Methous	Retrieval	Det.(IoU > 0.3)				
Shen et al. $[53] + \cos[53]$	75.5	75.3				
Shen et al. [53] + discovery [53]	76.6	76.4				
MocoV2 [8] + cos [53]	79.0	78.7				
MocoV2 [8] + discovery [53]	80.8	79.6				
Ours + Unsupervised segments						
Transformer	81.8	79.4				
Sparse-Ncnet	82.8	73.4				
Ours + COCO segments [35]						
Transformer	84.4	81.8				
Sparse-Ncnet	83.3	73.7				

Table 1. Art detail retrieval and detection on Brueghel [53]. For detection, we employ ArtMiner (Brueghel [53] + \cos [53]) as a post-processing and reports results with IoU > 0.3 [53]

One-shot detection on Brueghel

Faat 1 Mathada	mAP				
reat. + Methous	Retrieval	Det.(IoU > 0.3)			
Shen et al. $[53] + \cos[53]$	75.5	75.3			
Shen et al. [53] + discovery [53]	76.6	76.4			
MocoV2 [8] + cos [53]	79.0	78.7			
MocoV2 [8] + discovery [53]	80.8	79.6			
Ours + Unsupervised segments					
Transformer	81.8	79.4			
Sparse-Ncnet	82.8	73.4			
Ours + COCO segments [35]					
Transformer	84.4	81.8			
Sparse-Ncnet	83.3	73.7			

Table 1. Art detail retrieval and detection on Brueghel [53]. For detection, we employ ArtMiner (Brueghel [53] + \cos [53]) as a post-processing and reports results with IoU > 0.3 [53]

Place recognition on Pitts30K and Tokyo 24/7

Place recognition Tokyo24/7 [Torii et al. 2015]

Place recognition Pitts30K [Torri et al. 2013]

Ablation on the architectures and losses: <u>http://imagine.enpc.fr/~shenx/SegSwap/</u>

Place recognition on Pitts30K and Tokyo 24/7

		Tokyo 24/7 [61]			Pitts30k-test [62]				
Method	Supervision	R@1	R@5	R@10	R@1	R@5	R@10		
AP-GEM [20, 44]	Image location	40.3	55.6	65.4	75.3	89.3	92.5		
DenseVLAD [20, 61]	Image location	59.4	67.3	72.1	77.7	88.3	91.6		
NetVLAD [3, 20]	Image location	73.3	82.9	86.0	86.0	93.2	95.1		
CRN [16,29]	Image location	75.2	83.8	87.3	-	-	-		
SARE [16, 38]	Image location	79.7	86.7	90.5	-	-	-		
IBL [16]	Image location	85.4	91.1	93.3		2	-		
Re-ranking Top-100 from NetVLAD [3,20]									
Patch-NetVLAD [20]	Image location	81.9	85.7	87.9	88.6	94.5	95.8		
Patch-NetVLAD [20] + RANSAC	Image location	86.0	88.6	90.5	88.7	94.5	95.9		
SuperGlue [20, 50]*	Pose+Depth	88.2	90.2	90.2	88.7	95.1	96.4		
Ours + Unsupervised segments									
Transformer	Segment swapping	74.0	82.9	86.0	85.2	93.5	95.4		
Nc-Net	Segment swapping	84.1	87.0	88.9	86.4	94.3	95.6		
Ours + COCO segments [36]		5. 1040 1. avenus		anna an					
Transformer	Segment swapping	80.0	86.0	87.9	84.7	93.5	95.6		
Nc-Net	Segment swapping	85.4	88.3	89.2	86.8	94.4	95.8		

* uses learnt keypoint detector Superpoint [14]

Table 2. Image-based localization on Tokyo 24/7 [61] and Pitts30k [62]. We follow Patch-NetVLAD [20] and re-rank the top-100 images ranked by NetVLAD [3] features.

Roadmap

• 1. Co-segmentation by Segment Swapping

• 2. Application to Image Retrieval

• 3. Application to Discovery on a Database

• 4. Summary

Discovery on Brueghel: Correspondences graphCorrespondences $\mathcal{V} = \{v_1, v_2, ..., v_j, ..., v_j, ...\}$ \mathcal{C} $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

$$\frac{1}{2} \frac{m_i m_j}{\sigma} \exp\left(\frac{||x_i^s - x_j^s||}{\sigma}\right) \left[\exp\left(\frac{||x_i^t - C^{t_j \to t_i}(x_j^t)||}{\sigma}\right) + \exp\left(\frac{||x_j^t - C^{t_i \to t_j}(x_i^t)||}{\sigma}\right)\right]$$

$$v_{i} = (s_{i}, t_{i}, x_{i}^{s}, x_{i}^{t}, m_{i})$$

$$(v_{i} = (s_{i}, t_{i}, x_{j}^{s}, x_{j}^{t}, m_{i})$$

$$(v_{i} = (s_{i}, t_{i}, x_{j}^{s}, x_{j}^{t}, m_{i})$$

$$\frac{1}{2}m_im_j\exp(\frac{||x_i^s-x_j^s||}{\sigma})\left[\exp(\frac{||x_i^t-C^{t_j\to t_i}(x_j^t)||}{\sigma})+\exp(\frac{||x_j^t-C^{t_i\to t_j}(x_i^t)||}{\sigma})\right]$$

$$v_{i} = (s_{i}, t_{i}, x_{i}^{s}, x_{j}^{t}, m_{i})$$

$$v_{i} = (s_{i}, t_{i}, x_{j}^{s}, x_{j}^{t}, m_{i})$$

$$v_{j} = (s_{j}, t_{j}, x_{j}^{s}, x_{j}^{t}, m_{j})$$

$$\frac{1}{2} m_i m_j \exp\left(\frac{||\mathbf{x}_i^s - \mathbf{x}_j^s||}{\sigma}\right) \left[\exp\left(\frac{||\mathbf{x}_i^t - \mathbf{C}^{t_j \to t_i}(\mathbf{x}_j^t)||}{\sigma}\right) + \exp\left(\frac{||\mathbf{x}_j^t - \mathbf{C}^{t_i \to t_j}(\mathbf{x}_i^t)||}{\sigma}\right)\right]$$

$$v_{i} = (s_{i}, t_{i}, x_{j}^{s}, x_{j}^{t}, m_{i})$$

$$v_{i} = (s_{i}, t_{i}, x_{j}^{s}, x_{j}^{t}, m_{i})$$

$$v_{i} = (s_{i}, t_{i}, x_{j}^{s}, x_{j}^{t}, m_{i})$$

$$\frac{1}{2} m_i m_j \exp\left(\frac{||\mathbf{x}_i^s - \mathbf{x}_j^s||}{\sigma}\right) \left[\exp\left(\frac{||\mathbf{x}_i^t - \mathbf{C}^{t_j \to t_i}(\mathbf{x}_j^t)||}{\sigma}\right) + \exp\left(\frac{||\mathbf{x}_j^t - \mathbf{C}^{t_i \to t_j}(\mathbf{x}_i^t)||}{\sigma}\right)\right]$$

$$v_{i} = (s_{i}, t_{i}, x_{i}^{s}, x_{i}^{t}, m_{i})$$

$$w_{i} = (s_{i}, t_{i}, x_{i}^{s}, x_{i}^{t}, m_{i})$$

$$w_{i} = (s_{i}, t_{i}, x_{i}^{s}, x_{i}^{t}, m_{i})$$

$$w_{i} = (s_{i}, t_{i}, x_{i}^{s}, x_{i}^{t}, m_{i})$$

Experiments: discovery on Brueghel [Shen et al. 2019]

Object discovery on the dataset of [Rubinstein et al. 2013]

Method	Airplane		Car		Horse		Avg	
	\mathcal{P}	\mathcal{J}	\mathcal{P}	\mathcal{J}	\mathcal{P}	\mathcal{J}	\mathcal{P}	\mathcal{J}
DOCS [35]*	0.946	0.64	0.940	0.83	0.914	0.65	0.933	0.70
Sun et al. [57]	0.886	0.36	0.870	0.73	0.876	0.55	0.877	0.55
Rubinstein et al. [49]	0.880	0.56	0.854	0.64	0.828	0.52	0.827	0.43
Chen et al. [10]	0.902	0.40	0.876	0.65	0.893	0.58	0.890	0.54
Quan et al. [43]	0.910	0.56	0.885	0.67	0.893	0.58	0.896	0.60
Chang et al. [8]	0.726	0.27	0.759	0.36	0.797	0.36	0.761	0.33
Lee et al. [31]	0.528	0.36	0.647	0.42	0.701	0.39	0.625	0.39
Jerripothula et al. [25]	0.905	0.61	0.880	0.71	0.883	0.61	0.889	0.64
Hsu et al. [22]	0.936	0.66	0.914	0.79	0.876	0.59	0.909	0.68
Chen et al. [11]	0.941	0.65	0.940	0.82	0.922	0.63	0.935	0.70
Ours + Unsupervised segments								
transformer	0.925	0.65	0.914	0.79	0.909	0.60	0.916	0.68
Nc-Net	0.746	0.25	0.874	0.68	0.836	0.38	0.819	0.44
Ours + COCO segments [36]								
transformer	0.941	0.67	0.928	0.82	0.916	0.60	0.928	0.70
Nc-Net	0.655	0.23	0.857	0.61	0.873	0.43	0.795	0.42

* learned with strong supervision (i.e., manually annotated object masks)

Table 5. Co-segmentation on the dataset of [49]. We report pixel level precision \mathcal{P} and Jaccard index \mathcal{J}

- Learning co-segmentation from synthetic pairs
- Discovering patterns using the correspondence graph

 Learning Co-segmentation by Segment Swapping for Retrieval and Discovery

 arXiv

 Xi Shen¹
 Alexei A. Efros²
 Armand Joulin³
 Mathieu Aubry¹

 ¹LIGM (UMR 8049) - Ecole des Ponts, UPE
 ²UC Berkeley
 ³Facebook Al Research

 Code
 arXiv

Code, data and more experimental results can be found in our project page: http://imagine.enpc.fr/~shenx/SegSwap/