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Abstract

We present a generative document-specific approach to
character analysis and recognition in text lines. Our main
idea is to build on unsupervised multi-object segmentation
methods and in particular those that reconstruct images
based on a limited amount of visual elements, called sprites.
Taking as input a set of text lines with similar font or hand-
writing, our approach can learn a large number of different
characters and leverage line-level annotations when avail-
able. Our contribution is twofold. First, we provide the
first adaptation and evaluation of a deep unsupervised multi-
object segmentation approach for text line analysis. Since
these methods have mainly been evaluated on synthetic data
in a completely unsupervised setting, demonstrating that
they can be adapted and quantitatively evaluated on real
images of text and that they can be trained using weak su-
pervision are significant progresses. Second, we show the
potential of our method for new applications, more specifi-
cally in the field of paleography, which studies the history
and variations of handwriting, and for cipher analysis. We
demonstrate our approach on three very different datasets:
a printed volume of the Googlel1000 dataset [45, 19], the
Copiale cipher [2, 27] and historical handwritten charters
from the 12th and early 13th century [0, 43].

1. Introduction

A popular approach to document analysis in the 1990s
was to learn document-specific character prototypes, which
enabled Optical Character Recognition (OCR) [28, 29, 46, 1]
but also other applications, such as font classification [21]
or document image compression and rendering [38]. This
idea culminated in 2013, with the Ocular system [3] which
proposed a generative model for printed text lines inspired
by the printing process and held the promise of achieving a
complete explanation of their appearance. These document-
specific generative approaches were however overshadowed
by discriminative approaches, whose sole purpose is to per-
form predictions, and which lead to higher performance at
the cost of interpretability, e.g. [16, 33]. In this paper, we
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Figure 1: The Learnable Typewriter. (a) Given a text
line dataset, we learn to reconstruct images to discover the
underlying characters. Such a generative approach can be
used to analyze complex ciphers (b) and can be used as an
automatic tool to help the study of handwriting variations in
historical documents (c).

explore how modern deep approaches enable revisiting and
extending model-based approaches to text line analysis. In
particular, we demonstrate an approach that can deal with
challenging examples of handwritten documents, opening
a new perspective for the study of historical handwriting,
paleography.

While discriminative approaches are largely dominant
in today’s deep learning-based computer vision, a recent
set of works revisited generative approaches for unsuper-
vised multi-object object segmentation [5, 10, 18, 17, 47,

, 9, 11,23, 41, 37]. Most of them provide results on syn-
thetic data or simple real images [37], and sometimes show
qualitative results on simple printed text images [41, 40].
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Surprisingly, images of handwritten characters, which were
notoriously used in the development of convolutional neural
networks [31, 32] and generative adversarial networks [ 4]
were largely overlooked by these approaches.

We build on recent sprite-based unsupervised image
decomposition approaches [41, 37] that provide an inter-
pretable decomposition of images into a dictionary of visual
elements, referred to as sprites. These methods jointly op-
timize both the sprites and the neural networks that predict
their position and color. Intuitively, we would like to adapt
these methods so that, from text lines that are extracted from
any given document, they could learn sprites that correspond
to each character. By adapting MarioNette [4 1] to perform
text line analysis, we provide quantitative evaluation on real
data and an analysis of the limitations of a state-of-the-art
unsupervised multi-object segmentation approach. We argue
that text line recognition should be used as a benchmark for
this task in future work.

Because unsupervised performances are not completely
satisfactory, we combine this approach with a weak su-
pervision from line-level transcriptions. Transcriptions are
widely available and easy to produce with dedicated soft-
ware, e.g. [24], and we show this dramatically improves the
results, while preserving their interpretability. We believe
that similar weak (i.e., image-level) annotations could also
be considered for other images decomposition problems.
Contributions. To summarize, we present:

* a deep generative approach to text line analysis, in-
spired by deep unsupervised multi-object segmentation
approaches and adapted to work in both a weakly su-
pervised and unsupervised setting,

 ademonstration of the potential of our approach in chal-
lenging applications, particularly ciphered documents
and paleographic analysis,

* experiments on three very different datasets: a printed
volume of the Google1000 dataset [45, 19], the Copiale
cipher [2, 27] and historical handwritten charters from
the 12th and early 13th century [0, 43].

Our complete implementation can be
github.com/ysig/learnable-typewriter.

found at

2. Related Work

Text recognition. Image Text Recognition, including Op-
tical Character Recognition (OCR) and Handwritten Text
Recognition (HTR), is a classic pattern recognition prob-
lem, and one of the earliest successful application of deep
learning [31, 32]. The mainstream approaches for text line
recognition rely on discriminative supervised learning. Typi-
cally, a Convolutional Neural Network (CNN) encoder will
map the input image to a sequence of features and a decoder
will associate them to the ground truth, e.g. through a re-
current architecture trained with a Connectionist Temporal

Classification (CTC) loss [15, 16, 39, 4, 8], or a transformer
trained with cross entropy [25, 33].

More related to our work, ScrabbleGAN [12] proposed
a generative adversarial approach for semi-supervised text
recognition, but their method is neither able to reconstruct an
input text line nor to decompose it into individual characters.
Also related are approaches which use already annotated
sprites (referred to as exemplars or supports) to perform
OCR/HTR [49, 42] by matching them to text lines. Recent
unsupervised approaches, either cluster input images in a
feature space [2] or rely on an existing text corpus of the
recognized language [19].

Closest to our work are classical prototype-based meth-
ods [28, 29, 46, 1] and in particular the Ocular system [3]
which follows a generative probabilistic approach to jointly
model text and character fonts in binarized documents, and is
optimized through Expectation Maximization (EM). Differ-
ent from us, it also relies on a pre-trained n-gram language
model, originally from the english language and later ex-
tended to multiple languages [13]. Other approaches rely
on language models to identify characters [30, 3, 19]. How-
ever, language models do not exist for unknown ciphers, or
historical manuscripts which are often strongly abbreviated.
Instead, we propose to disambiguate sprites by relying on
line level transcriptions.

Unsupervised multi-object segmentation. Unsupervised
multi-object segmentation refers to a family of approaches
that decompose and segment scenes into multiple objects
in an unsupervised manner [26]. Some techniques perform
decomposition by computing pixel level segmentation masks
over the whole input image [5, 10, 18, 17, 47], while oth-
ers focus on smaller regions of the input image and learn
to compose objects in an iterative fashion, mostly using a
recurrent architecture [7, 9, 11, 23]. All of these techniques
can isolate objects by producing segmentation masks, but
our goal is also to capture recurring visual elements.

We thus build on techniques that explicitly model the
objects located inside the input image, by associating them
to a set of image prototypes referred to as sprites [37, 41].
Sprites are color images with an additional transparency
channel and are associated to transformation prediction net-
works that are used to compose them onto a target canvas.
However, DTI-Sprites [37] can only predict a small amount
of sprites for a collection of fixed-size images and fails to
scale when the number of objects inside each image scales to
those of real documents. At the same time, MarioNette [41]
suffers from a high reconstruction error and fuzzy sprites
that sub-optimally reconstruct a toy text dataset.

3. The Learnable Typewriter

Given a collection of text lines written using consistent
font or handwriting, our goal is to learn the shape of all the
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(b) Details of our Typewriter module

Figure 2: Overview. (a) An image is encoded into a sequence of features, each decoded by the Typewriter module into image
layers. They are then fused by alpha compositing with a predicted uniform background. (b) The Typewriter module takes a
feature as input, computes sprites and associated probabilities from learned latent codes, and composes them into a composite
sprite that is transformed and positioned onto an image-sized canvas.

characters it contains and a deep network that predicts the ex-
act way these characters were used to generate any input text
line. Since complete supervision (i.e., the position and shape
of every character used in a document) for such a task would
be extremely costly to obtain, we propose to proceed in an
analysis-by-synthesis fashion and to build on sprite-based un-
supervised image decomposition approaches [4 1, 37] which
jointly learn a set of character images - called sprites - and a
network that transforms and positions them on a canvas in
order to reconstruct input lines. Due to the potential ambigu-
ity in the definition of sprites, we introduce a complementary
weak-supervision from line-level transcriptions.

In this section, we first present an overview of our image
model and approach (Section 3.1). Then, we describe the
deep architecture we use (Section 3.2). Finally, we discuss
our loss and training procedure (Section 3.3).

Notations. We write ay.,, the sequence {a1, ..., a,}, and
use bold letters a for images. An RGBA image a corre-
sponds to an RGB image denoted by a®, alongside an alpha-
transparency channel denoted by a®. We use 6 as a generic
notation for network parameters and thus any character in-
dexed by 0, e.g., ag, is a network.

3.1. Overview and image model

Figure 2a presents an overview of our pipeline. An in-
put image x of size H x W is fed to an encoder network
eg generating a sequence of T features f1.7 associated to
uniformly-spaced locations 1.7 in the image. Each feature
ft is processed independently by our Typewriter module
(Section 3.2) which outputs an RGBA image o, correspond-
ing to a character. The images o1.7 are then composited
with a canvas image we call o4 ;. This canvas image o741
is a completely opaque image (zero transparency). Its colors
are predicted by a Multi-Layer Perceptron (MLP) by which
takes as input the features f1.7 and outputs RGB values b;.7.
All resulting images o;.741 can be seen as ordered image
layers and are merged using alpha compositing, as proposed

by both [37,
can be written:

T+1
x=2
t=1

In practice, we randomize the order of o;.7 in the com-
positing operation to reduce overfitting, as advocated by the
MarioNette approach [41]. The full system is differentiable
and can be trained end-to-end.

]. More formally, the reconstructed image X
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3.2. Typewriter Module

We now describe in detail the Typewriter module, which
takes as input a feature f from the encoder and its position z,
and outputs an image layer o, to be composited. An overview
of the module is presented in Figure 2b. On a high level, it
is similar to the MarioNette architecture [41], but handles
blanks (i.e., the generation of a completely transparent im-
age) in a different way and has a more flexible deformation
model, similar to the one used in DTI-Sprites [37]. More
specifically, the module learns jointly RGBA images called
sprites corresponding to character images, and networks that
use the features f to predict a probability for each sprite and
a transformation of the sprite. We detail how we obtain the
following three elements: the set of K parameterized sprites,
the sprites compositing and the transformation model.

Sprite parametrization. We model characters as a set of
K sprites which are defined using a generator network. More
specifically, we learn K latent codes z1.x which are used
as an input to a generator network gy in order to generate
sprites s1.x = go(21.x). These sprites are images with a
single channel that corresponds to their opacity. Similar to
DTI-Sprites [37], we model a variable number of sprites
with an empty (i.e., completely transparent) sprite which we
write Sk +1. In comparison with directly learning sprites in
the image space as in DTI-Sprites [37], we found that using
a generator network yields faster and better convergence.



Sprite probabilities and compositing. To predict a proba-
bility py, for each sprite sg, each latent code zj, is associated
through a network py to a probability feature 2}, = pg(zy) of
the same dimension D as the encoder features (D = 64 in
our experiments). We additionally optimize directly a proba-
bility feature 2%, 1 Which we associate to the empty sprite.
Given a feature f predicted by the encoder, we predict the
probability p; of each sprite s; by computing the dot prod-
uct between the probability features 2 41 and a learned
projection of the feature 7y ( f), and applying a softmax to
the result:

p1.x+1(f) = softmax (/\zf:KJrl -Wo(f)T), (2)

where - is the dot product applied to each element of the se-
quence, A = 1/+/D is a scalar temperature hyper-parameter,
and the softmax is applied to the resulting vector. We use
these probabilities to combine the sprites into the weighted

K . "
average s = » .~ prgo(zr). Note that this compositing
can be interpreted as attention operation [44]:

o QKT _
s = attention(Q), K, V') = softmax VvV, 3
vD

with Q = 7m9(f), K = po(21:x11), V = go(21:x41), D
the dimension of the features, and by convention gg(zx+1)
is the empty sprite and pp(zx 1) = 25 ;-

We actually show that directly optimizing 27 ;- instead
of learning to predict the probability features 2} ;. from the
sprite latent codes 2., similar to MarioNette [4 1], yields
similar results. Note that we learn a probability code 27,
to compute the probability of empty sprites instead of having
a separate mechanism as in MarioNette [4 1] because it is
critical for our supervised loss (see Sec. 3.3).

Positioning and coloring. The final step of our module
is to position the selected sprite in a canvas of size H x W
and to adapt its color. We implement this operation as a
sequence of a spatial transformer [22] and a color transfor-
mation, similar to DTI-Sprites [37]. More specifically, the
feature f is given as input to a network ¢y that predicts three
parameters for the color of the sprite and three parameters for
isotropic scaling and 2D-translation that are used by a spatial
transformer [22] to deform s. Finally, using the location z
associated to the feature f, we paste the deformed colored
sprite onto a background canvas of size H x W at position z
to obtain a reconstructed RGBA image layer o. Positioning
the sprites with respect to the position of the associated local
features helps us obtain results co-variant to translations of
the text lines and independent of the line size. To produce the
background canvas, the features f.r are first each passed
through a shared MLP by, to produce background colors
bi1.7. We then use bi-linear interpolation to upscale these
T colors to fit the size of the input image. Details on the

parametrization of the transformation networks are presented
in the supplementary material.

3.3. Losses and training details

Our system is designed in an analysis-by-synthesis spirit,
and thus relies mainly on a reconstruction loss. This recon-
struction loss can be complemented by a loss on the selected
sprites in the supervised setting where each text line is paired
with a transcription. In the following, we define these losses
for a single text line image and its transcription, using the
notations of the previous section.

Reconstruction loss. Our core loss is a simple mean
square error between the input image x and its reconstruction
% predicted by our system as described in Sec. 3.1:

Lree(x,%) = [[x — x||*. “)

In the unsupervised setting, we use this loss alone without
any additional regularization.

Weakly supervised loss. The intrinsic ambiguity of the
sprite decomposition problem may result in sprites that do
not correspond to individual characters. Using line-level
annotation is an easy way to resolve this ambiguity. We
find that simply adding the classical CTC loss [15] com-
puted on the sprite probabilities to our reconstruction loss
is enough to learn sprites that exactly correspond to char-
acters. More specifically, we chose the number of sprites
as the number of different characters and associate arbi-
trarily each sprite to a character and the empty sprite to
the separator token of the CTC. Then given the one-hot
line-level annotation y and the predicted sprite probabil-
ities § = (pl:K+1(fl>7 ~--7p1:K+1(fT)), we optimize our
system’s parameters by minimizing:

£sup(x7 Y, X, g) = Lrec (X7 )A() + /\ctcﬁctc(% Z)) )

where A\ is a hyper-parameter and L. (y, 9) is the CTC
loss computed between the ground-truth y and the predicted
probabilities ¢. In our experiments we have used A\ = 0.1
for printed text and A\, = 0.01 for handwritten text.

Implementation and training details. We train on the
Google1000 [45] and Fontenay [43] datasets with lines of
height H = 64 and on the Copiale dataset [27] with H =
92. The generated sprites sq.x are of size H/2 x H/2. In
the supervised setting, we use as many sprites as there are
characters, and in the unsupervised we set K = 60 for
Google1000 and K = 120 for the Copiale cipher. In the
supervised case we train for 100 epochs on Google1000 and
for 500 epochs on Copiale with a batch size of 16, and we
select the model that performs best on the validation set for
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(b) Supervised Sprites. (c) Unsupervised Sprites.

Figure 3: Results on a printed document (Google1000). In both the supervised and unsupervised setting our method
produces meaningful sprites and accurate reconstructions (3a). We show the 60 most used sprites in alphabetic ordering in the
supervised setting (3b) and ordered by frequency in the unsupervised one (3c). See text for details and the supplementary

material for more reconstructions.

evaluation. In the unsupervised setting we use line crops of
width W = 2H and train for 1000 epochs on Google1000
and for 5000 on the Copiale cipher with a batch size of 32
and use the final model. The number of epochs is much
higher in the unsupervised case than in the supervised case
because the network sees only a small crop of each line at
each epoch, but each epoch is much faster to perform.

Our encoder network is a ResNet-32-CIFAR10 [20], that
is truncated after layer 3 with a Gaussian feature pooling
described in supplementary material. For our unsupervised
experiments, we use as generator gg the U-Net architecture
of Deformable Sprites [48] which converged quickly, and
for our supervised experiments a 2-layer MLP similar to
MarioNette [4 1] which produces sprites of higher quality.
The networks 7y and py are a single linear layers followed by
layer-normalization. We use the AdamW [34] optimizer with
a learning rate of 10~ and apply a weight-decay of 107 to
the encoder parameters. At inference we select the sprites
with the highest probabilities instead of using a softmax.

4. Experiments

4.1. Datasets and metrics

Datasets. We experiment with three datasets with different
characteristics: Google1000 [45], the Copiale cipher [27]
and Fontenay manuscripts [43, 6]:

* Googlel1000. The Google1000 dataset contains scanned
historical printed books, arranged into Volumes [45]. We
use the English Volume 0002 which we process with the
preprocessing code of [19], using 317 out of 374 pages and
train-val-test set with 5097-567-630 lines respectively. This
leads to a total number of 83 distinct annotated characters.
Although supervised printed font recognition is largely con-
sidered a solved problem, and the annotation for this dataset
are actually the result of OCR, this document is still chal-
lenging for an analysis-by-synthesis approach, containing
artifacts such as ink bleed, age degradation, as well as vari-
ance in illumination and geometric deformations.

* Copiale cipher. The Copiale cipher is an oculist German

text dating back to a 18th century secret society [27]. Oppo-
site to Baro et al. [2] which uses a binarized version of the
dataset, we train our model on the original text-line images,
which we segmented using docExtractor [35] and manually
assigned to the annotations, respecting the train-val-test split
of Baro et al. [2] with 711-156-908 lines each. The total
number of distinct annotated characters is 112. This dataset
is more challenging than printed text because because it is
handwritten, which introduces some variability in the char-
acter shapes, and because of the large number of characters.

* Fontenay manuscripts. The Fontenay dataset contains dig-
itized charters that originate from the Cistercian abbey of
Fontenay in Burgundy (France) [43, 6] and were created
during the 12th and early 13th century. Each document has
been digitized and each line has been manually segmented
and transcribed. For our experiments, we selected a subset
of 14 different documents sharing a similar script which falls
into the family of praegothica scripts. These correspond
to 163 lines, using 47 distinct characters. While they were
carefully written and preserved, these documents are still
very challenging (Figure 6). They exhibit degradation, clear
intra-document letter shape variations, and letters can over-
lap or be joined by ligature marks. Moreover, each document
represents only a small amount of data, e.g., the ones used
in Figure 6 contain between 8 and 25 lines.

Metrics. Our goal is to capture the shape of all charac-
ters and position them precisely in each text line. Such
fine-grained annotation is however not available in existing
datasets. Instead, to provide a quantitative evaluation of our
models, we report L2 reconstruction error ("Rec.” in the
tables) and Character Error Rate (CER). CER is the stan-
dard metric for Optical Character Recognition (OCR). Given
ground-truth and predicted sequences of characters, o and &,
it is defined as the minimum number of substitutions .S, dele-
tions D, and insertions I of characters necessary to match
the predicted sequence & to the ground truth sequence o,
normalized by the size of the ground truth sequence |o|:

_S+D+I

o]

CER(0,6) (6)
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(a) Input, supervised and unsupervised.

(b) Supervised Sprites.

(c) Unsupervised Sprites.

Figure 4: Results on the Copiale cipher [27]. Despite the high number of characters and their variability, our method learns
meaningful sprites and performs accurate reconstructions in both settings (4a). We show the 108 most used sprites sorted by
frequency in the supervised (4b) and the unsupervised (4c) settings.

For simplicity, we ignore spaces. Predictions are obtained
by selecting at every position the character associated to the
most likely sprite. In the supervised setting, the associa-
tion between sprites and characters is fixed at the beginning
of training. In the unsupervised setting, we associate ev-
ery sprite to a single character using a simple assignment
strategy described in supplementary material. More com-
plex assignments, for example associating sprite bi-grams
to individual characters, or even incorporating their relative
positions, could be considered for a recognition performance
boost. However, since OCR is not our main goal but simply
a proxy measure, this falls out of the scope of our work.

4.2. Qualitative results

Examples of semantic segmentation and sprites in the
supervised and unsupervised setting on Google1000 and
Copiale are shown in Figures 3 and 4 respectively.

In the unsupervised setting, several sprites (Figures 3c
and 4c) can be used to reconstruct a single character. For
example, the 'n’ and "'m’ sprites are joined in order to better
reconstruct 'm’ in Google1000. To account for appearance
variation, multiple sprites are learned to reconstruct the most
frequent character, e.g. ’e’ for Google and ’¢’ in Copiale.
This effects are even stronger in the handwritten Copiale
dataset, where generic sub-character strokes are learned and
used together to better model characters’ variations.In both
datasets, a portion of the least used sprites are not well opti-
mized, do not correspond to characters, and are not used by
the network. These behaviors are expected in a completely
unsupervised setting, because of the highly unbalanced statis-
tics of the character frequencies and ambiguity of the recon-
struction: without additional supervision, there is a clear
benefit for the network to model well variations of common
characters, and to approximate or discard rare ones. This is
a core limitation of existing unsupervised image decomposi-
tion approaches, and a motivation for the introduction of our
weakly supervised setting.

In the (weakly) supervised setting, the sprites (Figures 3b
and 4b) closely correspond to the characters, with the ex-
ception of very rare characters like the capital *Z’ character
for Google1000 (as can be seen in supplementary material),

while reconstruction is of very high quality and each charac-
ter is reconstructed with the expected sprite.

4.3. Quantitative results

Our quantitative results and ablations for Google1000 and
Copiale are reported in Tables 1 and 2 respectively.

For Google1000, the CER in the supervised setting is
close to perfect, while it is 7.7% for the unsupervised setting.
To provide baselines for these performances, we trained on
our data (i) ScrabbleGAN [12], a supervised method with
a standard recognizer and an additional generator module,
(i1) FontAdaptor [49], a recent 1-shot method that learns to
match single character examplars to text lines, and (iii) an
adaptation of the unsupervised DTI-Sprites [36] to text lines
which we detail in the supplementary material (we also show
in the supplementary material that vanilla MarioNette [4 1]
provides clearly worse results.). Our unsupervised approach
performs clearly better than our adaptation of DTI-Sprites
and is almost on par with the 1-shot FontAdaptor, while our
weakly supervised approach is almost on par with Scrabble-
GAN. Our adaptation of DTI-Sprites is better reconstruct
images, but the learned sprites are much less meaningful,
as shown by the poor CER performance. Interestingly, re-
construction is much better when using supervision, which
hints that a better optimization scheme might help improving
unsupervised performances. We also evaluated the effect
of varying the number of sprites K in the unsupervised set-
ting. For K smaller than the actual number of characters
(83), namely K = 21 and K = 41, we have a significant
performance drop of 10% and 26% CER respectively, while
increasing the number of characters to 166 and 332 doesn’t
significantly boost performances.

On the Copiale dataset, we compare our results with HTR-
byMatching [42], a few-shot approach developed specifically
for cipher recognition, using the same train/val/test splits.
HTRbyMatching was evaluated on a wide range of few-shot
scenarios, ranging from a scenario similar to FontAdaptor
where a single exemplar is available for every character, to
one where 5 exemplars are available for each character to-
gether with 5 completely annotated pages. Reported results
are only for confident character predictions with different



Method Type Rec. x 103 CER Method Type Rec. x10? CER
DTI-Sprites [37] unsup. 2.54 18.4 % HTRbyMatching [42]  few-shot - 10 — 47%*
ls:ontaja;()}tzrl\g I I-shot ) gg Z) Learnable Typewriter sup. 1.81+£0.01 4.2+0.3%
crabbleGAN [1°] Sup- - 6% w\o shared zx sup. 1794001  4.0+0.1%
Learnable Typewriter  sup. 35+0.1 0.85+0.03% w\o po sup. 1.77+0.02 4.7+0.1%
w\o shared zx sup. 33+0.1 0.89+0.06% w\o go sup. 1.96 £ 0.07 4.2+0.2%
w\0 pe sup. 35+0.1 0.99+0.05% Learnable Typewriter ~ unsup.  1.93+0.02 52.6 +1.7%
w\o go sup. 344+0.1 0.88+0.04% w\o shared z, unsup.  1.89+0.02 47.6 +2.8%
Learnable Typewriter unsup. 7.1+£0.4 7.7+ 0.6% w\o po unsup. 1.81+0.06 51.9+2.0%
w\o shared zj, unsup. 7.4+04 8.0 £0.2% w\0 go unsup.  3.99+0.14 80.6 +0.9%
w\o po unsup. 7.0 £0.3 7.7+ 2.0%
w\0 go unsup.  10.5+£0.7  27.0£2.2% Table 2: Quantitative results on Copiale [27]. We report
CER and reconstruction error for a baselines and our method.
Table 1:  Quantitative results and ablation on For our method, we report average over 5 runs and standard

Googlel1000 [45]. We report CER and L2 reconstruction
error for different approaches. For our method, we report
average over 5 runs and standard deviation.

confidence thresholds, but summing the error rate of the
predicted symbols and the percentage of non-annotated sym-
bols, one can estimate the CER to vary between 10% and
47% depending on the scenario. This is consistent with the
quantitative results we obtain with our approach, which are
much better in the supervised setting (4.2%) and worse in the
completely unsupervised one (52.6%). The low performance
of the unsupervised approach is consistent with the qualita-
tive results: given that many characters are reconstructed are
reconstructed by sub-character sprites, one would have to as-
sociate sprite bi-grams to characters in order to obtain good
CER performances. Interestingly, the reconstruction error is
similar in the supervised and unsupervised setting, hinting
that for this specific dataset, optimizing the reconstruction
quality might not be enough to obtain relevant decompo-
sition without additional priors. These results enables to
quantify and analyze a limitation of unsupervised image
decomposition approaches on a more challenging dataset.

Note that the goal of our approach is not to boost CER
performances - which in any case would be meaningless on
Google1000 where the ground truth is already the result of
an OCR model - but instead to learn character models and
image decomposition, and all these comparisons should be
considered as sanity checks. Designing post-processing to
improve CER is possible, for example we tested a simple
post-processing associating new sprites to the most frequent
bi-grams and tri-grams, that leads to an improved CER for
Copiale of 29.9%. However, we think it is more interesting
to see this metric as a tool to evaluate the raw output of
unsupervised decomposition models.

In particular, we performed on both datasets an ablation
of the architecture to better understand which design choices
are critical. Interestingly, our results show that both in the
supervised and the unsupervised setting, not sharing the la-

deviation. *See text for details.

tent codes z; between the generation network and the sprite
selection and even completely removing the probability net-
work py has limited influence on the performance, and these
design choices of MarioNette [41] are not critical. Con-
versely, removing gy and directly learning protototypes as
network parameters similar to DTI-Sprites [37] has little
impact in the supervised case but leads to significant drops
in performance. A more detailed analysis of training curves
reveals that training is slower and overfits. While it might be
possible to fix this issue by adapting the learning scheme for
the prototypes, it shows it is easier to learn the prototypes
through a generator network than optimizing them directly.

4.4. Application to paleography

To test our approach in a more challenging case and
demonstrate its potential for paleographic analysis, we ap-
plied it on a collection of 14 historical charters from the
Fontenay abbey [43, 6]. While they all use similar scripts
from the Praegothica type, they also exhibit clear variations.
One of the goals of a paleographic analysis would be to
identify and characterize these variations. We focus on the
variations in the shape of letters, which are quite challenging
to describe with natural language. One solution would be to
choose a specific example for each letter in each document
or to have a paleographer manually draw of a ’typical’ one.
However, this is very time consuming and might reflect pri-
ors or bias from the paleographer in addition to the actual
variations. Instead, we propose to fine-tune our Learnable
Typewriter approach on each document and visualize the
sprites associated to each character and each document. Be-
cause of the difficulty of the dataset, we focus on the results
of our supervised setting.

Figure 5 visualizes the sprites obtained for five different
documents from the characters "a’ to h’ and Figure 6 high-
lights different aspects of the results. Figure 6a emphasizes
the fact that the differences in the learned sprites correspond
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Figure 5: Sprites learned for similar documents in Prae-
gothica script. Each line corresponds to a different doc-
ument. Looking at any column, one can notice the small
differences that characterise the handwriting in each docu-
ment. Colored boxed correspond to cases analysed in more
details in Figure 6.

to actual variations in the different documents, whether sub-
tle, such as for the ’a’ sprite, or clearer, such as for the
descending part of the ’g’ sprite. Figure 6b shows how a
sharp sprite can be learned for the character ’e’, summariz-
ing accurately its shape despite variations in the different
occurrences. Finally, Figure 6¢ shows the case of a docu-
ment in which two types of ’d’ co-exist. In this case, the
learned sprite, shown on the left, reassembles an average of
the two, with both versions of the ascending parts visible
with intermediate transparency. Such a limitation could be
overcome by learning several sprites per character. We thus
experimented with learning two per character, simply by
summing their probabilities when optimizing the CTC-loss.
We find that when different appearances of the same letter
exist, the two sprites learn two different appearances, and
we show the example of the two different learned *d’ sprites
on the right of the original one.

Our approach could benefit paleographic analysis in more
ways than simply analyzing the characters shapes. Indeed,
our model also gives access to the position and scale varia-
tion for each letter. This would enable a quantitative analysis
of more global appearance factors of the text, related to
the space between letters or their respective size variations.
Because they would be tremendously tedious to annotate,
such variations have rarely been quantified, and their anal-
ysis could open new research topics, for example the study
of the handwriting evolution of a single writer copying a
book across several months. Another natural application of
our approach is font or writer classification, which could be

(a) ’a’ and *g’ sprite for each document and associated example of
the character. Note how the variations of the descending part of the
’g’ sprites closely match the variations observed in the documents.
Also note the subtle variations of the ’a’ which are clear in the
sprites but would be hard to notice and describe from the original
images for a non-expert.

e

(b) The appearance variations of individual instances associated to
the e’ character in the document are accurately visually summa-
rized by the sprite.

(c) The double appearance of the ascending line of the ’d’ sprite
shown on the left is related to the co-existence of two different
kinds of ’d’ in the document, as shown in the examples on the
right. We can actually learn both appearances of ’d’, shown after
the arrows, if we model every character using two sprites.

Figure 6: The sprites summarize the key attributes of a char-
acter in each specific document, averaging its variations.
Note the complexity of the documents: characters can over-
lap or be connected ligature, the parchment is often stained,
and there are important intra-document character variations.

achieved either using a single model to compare errors statis-
tics for the different letters or relative positions of bi-grams,
or by training different models for different fonts or writers.
The main advantage compared to most existing approaches
would be the high interpretability of the predictions, which a
user could easily validate.

5. Conclusion

We have presented a document-specific generative ap-
proach to document analysis. Inspired by deep unsupervised
multi-object segmentation methods, we extended them to
accurately model standard printed documents as well as
much more complex ones, such as a handwritten ciphered
manuscript or ancient charters. We outlined that a completely
unsupervised approach suffers from the ambiguity of the de-
composition problem and imbalance characters distributions.
We thus extended these approaches using weak supervision
to obtain high-quality results. Finally, we demonstrated the
potential of our Learnable Typewriter approach for a novel
application: paleographic analysis.
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